Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Ali, R.; Usama, M.; Muhammad, M.A.; Khairuddin, A.S.M. A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems. Appl. Energy 2021, 307, 118185. [CrossRef]
Paper not yet in RePEc: Add citation now
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Almohaimeed, Z.M.; Muhammad, M.A.; Khairuddin, A.S.M.; Akram, R.; Hussain, M.M. An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants. Energies 2022, 15,
Paper not yet in RePEc: Add citation now
- Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009â1023. [CrossRef]
Paper not yet in RePEc: Add citation now
- AlShafeey, M.; Csáki, C. Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. Energy Rep. 2021, 7, 7601â7614. [CrossRef]
Paper not yet in RePEc: Add citation now
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-De-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78â111. [CrossRef]
Paper not yet in RePEc: Add citation now
Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [CrossRef]
- Belmahdi, B.; Louzazni, M.; El Bouardi, A. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik 2020, 219, 165207. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bozorg, M.; Bracale, A.; Carpita, M.; De Falco, P.; Mottola, F.; Proto, D. Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting. Sol. Energy 2021, 225, 577â590. [CrossRef]
Paper not yet in RePEc: Add citation now
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912â928. [CrossRef]
Paper not yet in RePEc: Add citation now
- David, M.; Martin, J.M. Comparison of Machine Learning Methods for Photovoltaic Power Forecasting Based on Numerical Weather Prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364.
Paper not yet in RePEc: Add citation now
- Ding, S.; Li, R.; Tao, Z. A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting. Energy Convers. Manag. 2020, 227, 113644. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dubey, A.K.; Kumar, A.; GarcÃa-DÃaz, V.; Sharma, A.K.; Kanhaiya, K. Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain. Energy Technol. Assess. 2021, 47, 101474. [CrossRef]
Paper not yet in RePEc: Add citation now
- Etxegarai, G.; López, A.; Aginako, N.; RodrÃguez, F. An Analysis of Different Deep Learning Neural Networks for Intra-hour Solar Irradiation Forecasting to Compute Solar Photovoltaic Generatorsâ Energy Production. Energy Sustain. Dev. 2022, 68, 1â17. [CrossRef]
Paper not yet in RePEc: Add citation now
Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Appl. Energy 2021, 299, 117291. [CrossRef]
Han, S.; Qiao, Y.-H.; Yan, J.; Liu, Y.-Q.; Li, L.; Wang, Z. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Appl. Energy 2019, 239, 181â191. [CrossRef]
- Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Nwokolo, S.C. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew. Energy 2021, 171, 191â209. [CrossRef] Sustainability 2023, 15, 6538 26 of 27
Paper not yet in RePEc: Add citation now
- Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Zhang, J.; Shi, J.; Gao, B.; Liu, W. Hybrid deep neural model for hourly solar irradiance forecasting. Renew. Energy 2021, 171, 1041â1060. [CrossRef] Sustainability 2023, 15, 6538 27 of 27
Paper not yet in RePEc: Add citation now
- IRENA. Renewable Energy Statistics. 2021. Available online: https://www.irena.org/publications/2021/March/RenewableCap acityStatistics2021 (accessed on 31 March 2021).
Paper not yet in RePEc: Add citation now
Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 2022, 240, 122812. [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33â50. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kumari, P.; Toshniwal, D. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Clean. Prod. 2021, 318, 128566. [CrossRef]
Paper not yet in RePEc: Add citation now
- Lai, C.S.; Zhong, C.; Pan, K.; Ng, W.W.; Lai, L.L. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst. Appl. 2021, 177, 114941. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A. Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 138, 110512. [CrossRef]
Paper not yet in RePEc: Add citation now
Liu, L.; Zhao, Y.; Chang, D.; Xie, J.; Ma, Z.; Sun, Q.; Yin, H.; Wennersten, R. Prediction of short-term PV power output and uncertainty analysis. Appl. Energy 2018, 228, 700â711. [CrossRef]
- Ma, X.; Zhang, X. A short-term prediction model to forecast power of photovoltaic based on MFA-Elman. Energy Rep. 2022, 8, 495â507. [CrossRef]
Paper not yet in RePEc: Add citation now
- Mayer, M.J. Influence of design data availability on the accuracy of physical photovoltaic power forecasts. Sol. Energy 2021, 227, 532â540. [CrossRef]
Paper not yet in RePEc: Add citation now
Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [CrossRef]
Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy 2021, 172, 276â288. [CrossRef]
- Moreira, M.; Balestrassi, P.; Paiva, A.; Ribeiro, P.; Bonatto, B. Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renew. Sustain. Energy Rev. 2020, 135, 110450. [CrossRef]
Paper not yet in RePEc: Add citation now
- Natapol, K.; Thananchai, L. Uncertainty via Statistical Interpretation of Multiple Forecasting Models. Energy 2019, 180, 387â397.
Paper not yet in RePEc: Add citation now
- Natarajan, Y.; Kannan, S.; Selvaraj, C.; Mohanty, S.N. Forecasting energy generation in large photovoltaic plants using radial belief neural network. Sustain. Comput. Inform. Syst. 2021, 31, 100578. [CrossRef]
Paper not yet in RePEc: Add citation now
- Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Sci. Total Environ. 2020, 715, 136848. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Peng, C.; Zou, J.; Zhang, Z.; Han, L.; Liu, M. An Ultra-Short-Term Pre-Plan Power Curve based Smoothing Control Approach for Grid-connected Wind-Solar-Battery Hybrid Power System. IFAC-PapersOnLine 2017, 50, 7711â7716. [CrossRef]
Paper not yet in RePEc: Add citation now
Qu, J.; Qian, Z.; Pei, Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. Energy 2021, 232, 120996. [CrossRef]
Ramadhan, R.A.; Heatubun, Y.R.; Tan, S.F.; Lee, H.-J. Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power. Renew. Energy 2021, 178, 1006â1019. [CrossRef]
- Ramirez-Vergara, J.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Review of Forecasting Methods to Support Photovoltaic Predictive Maintenance. Clean. Eng. Technol. 2022, 8, 100460. [CrossRef]
Paper not yet in RePEc: Add citation now
- RodrÃguez, F.; MartÃn, F.; Fontán, L.; Galarza, A. Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generatorsâ output power. Energy 2021, 229, 120647. [CrossRef]
Paper not yet in RePEc: Add citation now
- Savkin, A.V.; Petersen, I.R. Robust filtering with missing data and a deterministic description of noise and uncertainty. Int. J. Syst. Sci. 1997, 28, 373â378. [CrossRef]
Paper not yet in RePEc: Add citation now
Schinke-Nendza, A.; von Loeper, F.; Osinski, P.; Schaumann, P.; Schmidt, V.; Weber, C. Probabilistic forecasting of photovoltaic power supplyâA hybrid approach using D-vine copulas to model spatial dependencies. Appl. Energy 2021, 304, 117599. [CrossRef]
- Sobrina, S.; Sam, K.K.; Nasrudin, A.R. Solar Photovoltaic Generation Forecasting Methods: A Review. Energy Convers. Manag. 2018, 156, 459â497. [CrossRef]
Paper not yet in RePEc: Add citation now
Sugiyama, S. Forecast Uncertainty and Monte Carlo Simulation. Foresight Int. J. Appl. Forecast. 2007, 29â37. Available online: https://econpapers.repec.org/article/forijafaa/ (accessed on 31 March 2021).
- Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [CrossRef]
Paper not yet in RePEc: Add citation now
van der Meer, D.; Widén, J.; Munkhammar, J. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renew. Sustain. Energy Rev. 2018, 81, 1484â1512. [CrossRef]
- von Loeper, F.; Schaumann, P.; de Langlard, M.; Hess, R.; Bäsmann, R.; Schmidt, V. Probabilistic prediction of solar power supply to distribution networks, using forecasts of global horizontal irradiation. Sol. Energy 2020, 203, 145â156. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [CrossRef]
Paper not yet in RePEc: Add citation now
Wang, J.; Zhou, Y.; Li, Z. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Appl. Energy 2022, 312, 118725. [CrossRef]
- Wang, X.; Sun, Y.; Luo, D.; Peng, J. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. Energy 2021, 240, 122733. [CrossRef]
Paper not yet in RePEc: Add citation now
- Watanabe, T.; Nohara, D. Prediction of time series for several hours of surface solar irradiance using one-granule cloud property data from satellite observations. Sol. Energy 2019, 186, 113â125. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wen, X.; Abbes, D.; Francois, B. Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid. Math. Comput. Simul. 2020, 183, 116â128. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60â101. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, M.; Zhu, L. Short-term Prediction Error Analysis of Photovoltaic Power Based on Non-Parametric Estimation. Power Grids Clean Energy 2020, 36, 107â114.
Paper not yet in RePEc: Add citation now
- Yu, C.; Li, Y.; Zhang, M. An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on Elman Neural Network. Energy Convers. Manag. 2017, 148, 895â904. [CrossRef] Disclaimer/Publisherâs Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Paper not yet in RePEc: Add citation now
- Zang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Wei, Z.; Sun, G. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. Int. J. Electr. Power Energy Syst. 2020, 118, 105790. [CrossRef]
Paper not yet in RePEc: Add citation now