create a website

Forecasting and Uncertainty Analysis of Day-Ahead Photovoltaic Power Based on WT-CNN-BiLSTM-AM-GMM. (2023). Li, XI ; Yang, Xiaopeng ; Wang, Pengzhan ; Xu, Fengliang ; Gu, BO.
In: Sustainability.
RePEc:gam:jsusta:v:15:y:2023:i:8:p:6538-:d:1121748.

Full description at Econpapers || Download paper

Cited: 3

Citations received by this document

Cites: 54

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Multi-Timescale Voltage Regulation for Distribution Network with High Photovoltaic Penetration via Coordinated Control of Multiple Devices. (2024). Chen, Xunxun ; Guo, Xinyu ; Yan, Qingyuan ; Xing, Ling ; Zhu, Chenchen.
    In: Energies.
    RePEc:gam:jeners:v:17:y:2024:i:15:p:3830-:d:1449148.

    Full description at Econpapers || Download paper

  2. Research on Combination of Distributed Generation Placement and Dynamic Distribution Network Reconfiguration Based on MIBWOA. (2023). Yan, Xin ; Zhang, Qian.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:12:p:9580-:d:1171134.

    Full description at Econpapers || Download paper

  3. Sizing PV and BESS for Grid-Connected Microgrid Resilience: A Data-Driven Hybrid Optimization Approach. (2023). Pol, Suhas ; Bayne, Stephen ; Adeyanju, Olatunji ; Chamana, Manohar ; Murshed, Mahtab ; Kork, Konrad Erich.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:21:p:7300-:d:1269047.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [CrossRef]

  2. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Ali, R.; Usama, M.; Muhammad, M.A.; Khairuddin, A.S.M. A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems. Appl. Energy 2021, 307, 118185. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Almohaimeed, Z.M.; Muhammad, M.A.; Khairuddin, A.S.M.; Akram, R.; Hussain, M.M. An Hour-Ahead PV Power Forecasting Method Based on an RNN-LSTM Model for Three Different PV Plants. Energies 2022, 15,
    Paper not yet in RePEc: Add citation now
  4. Akhter, M.N.; Mekhilef, S.; Mokhlis, H.; Shah, N.M. Review on forecasting of photovoltaic power generation based on machine learning and metaheuristic techniques. IET Renew. Power Gener. 2019, 13, 1009–1023. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. AlShafeey, M.; Csáki, C. Evaluating neural network and linear regression photovoltaic power forecasting models based on different input methods. Energy Rep. 2021, 7, 7601–7614. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-De-Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [CrossRef]

  8. Belmahdi, B.; Louzazni, M.; El Bouardi, A. One month-ahead forecasting of mean daily global solar radiation using time series models. Optik 2020, 219, 165207. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Bozorg, M.; Bracale, A.; Carpita, M.; De Falco, P.; Mottola, F.; Proto, D. Bayesian bootstrapping in real-time probabilistic photovoltaic power forecasting. Sol. Energy 2021, 225, 577–590. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Mekhilef, S.; Idris, M.Y.I.; Van Deventer, W.; Horan, B.; Stojcevski, A. Forecasting of photovoltaic power generation and model optimization: A review. Renew. Sustain. Energy Rev. 2018, 81, 912–928. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. David, M.; Martin, J.M. Comparison of Machine Learning Methods for Photovoltaic Power Forecasting Based on Numerical Weather Prediction. Renew. Sustain. Energy Rev. 2022, 161, 112364.
    Paper not yet in RePEc: Add citation now
  12. Ding, S.; Li, R.; Tao, Z. A novel adaptive discrete grey model with time-varying parameters for long-term photovoltaic power generation forecasting. Energy Convers. Manag. 2020, 227, 113644. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Dubey, A.K.; Kumar, A.; García-Díaz, V.; Sharma, A.K.; Kanhaiya, K. Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain. Energy Technol. Assess. 2021, 47, 101474. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Etxegarai, G.; López, A.; Aginako, N.; Rodríguez, F. An Analysis of Different Deep Learning Neural Networks for Intra-hour Solar Irradiation Forecasting to Compute Solar Photovoltaic Generators’ Energy Production. Energy Sustain. Dev. 2022, 68, 1–17. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Gu, B.; Shen, H.; Lei, X.; Hu, H.; Liu, X. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method. Appl. Energy 2021, 299, 117291. [CrossRef]

  16. Han, S.; Qiao, Y.-H.; Yan, J.; Liu, Y.-Q.; Li, L.; Wang, Z. Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network. Appl. Energy 2019, 239, 181–191. [CrossRef]

  17. Hassan, M.A.; Bailek, N.; Bouchouicha, K.; Nwokolo, S.C. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. Renew. Energy 2021, 171, 191–209. [CrossRef] Sustainability 2023, 15, 6538 26 of 27
    Paper not yet in RePEc: Add citation now
  18. Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Zhang, J.; Shi, J.; Gao, B.; Liu, W. Hybrid deep neural model for hourly solar irradiance forecasting. Renew. Energy 2021, 171, 1041–1060. [CrossRef] Sustainability 2023, 15, 6538 27 of 27
    Paper not yet in RePEc: Add citation now
  19. IRENA. Renewable Energy Statistics. 2021. Available online: https://www.irena.org/publications/2021/March/RenewableCap acityStatistics2021 (accessed on 31 March 2021).
    Paper not yet in RePEc: Add citation now
  20. Khan, W.; Walker, S.; Zeiler, W. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. Energy 2022, 240, 122812. [CrossRef]

  21. Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Kumari, P.; Toshniwal, D. Deep learning models for solar irradiance forecasting: A comprehensive review. J. Clean. Prod. 2021, 318, 128566. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Lai, C.S.; Zhong, C.; Pan, K.; Ng, W.W.; Lai, L.L. A deep learning based hybrid method for hourly solar radiation forecasting. Expert Syst. Appl. 2021, 177, 114941. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Li, B.; Delpha, C.; Diallo, D.; Migan-Dubois, A. Application of Artificial Neural Networks to photovoltaic fault detection and diagnosis: A review. Renew. Sustain. Energy Rev. 2021, 138, 110512. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Liu, L.; Zhao, Y.; Chang, D.; Xie, J.; Ma, Z.; Sun, Q.; Yin, H.; Wennersten, R. Prediction of short-term PV power output and uncertainty analysis. Appl. Energy 2018, 228, 700–711. [CrossRef]

  26. Ma, X.; Zhang, X. A short-term prediction model to forecast power of photovoltaic based on MFA-Elman. Energy Rep. 2022, 8, 495–507. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Mayer, M.J. Influence of design data availability on the accuracy of physical photovoltaic power forecasts. Sol. Energy 2021, 227, 532–540. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. Mayer, M.J.; Gróf, G. Extensive comparison of physical models for photovoltaic power forecasting. Appl. Energy 2021, 283, 116239. [CrossRef]

  29. Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy 2021, 172, 276–288. [CrossRef]

  30. Moreira, M.; Balestrassi, P.; Paiva, A.; Ribeiro, P.; Bonatto, B. Design of experiments using artificial neural network ensemble for photovoltaic generation forecasting. Renew. Sustain. Energy Rev. 2020, 135, 110450. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Natapol, K.; Thananchai, L. Uncertainty via Statistical Interpretation of Multiple Forecasting Models. Energy 2019, 180, 387–397.
    Paper not yet in RePEc: Add citation now
  32. Natarajan, Y.; Kannan, S.; Selvaraj, C.; Mohanty, S.N. Forecasting energy generation in large photovoltaic plants using radial belief neural network. Sustain. Comput. Inform. Syst. 2021, 31, 100578. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Pazikadin, A.R.; Rifai, D.; Ali, K.; Malik, M.Z.; Abdalla, A.N.; Faraj, M.A. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Sci. Total Environ. 2020, 715, 136848. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  34. Peng, C.; Zou, J.; Zhang, Z.; Han, L.; Liu, M. An Ultra-Short-Term Pre-Plan Power Curve based Smoothing Control Approach for Grid-connected Wind-Solar-Battery Hybrid Power System. IFAC-PapersOnLine 2017, 50, 7711–7716. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Qu, J.; Qian, Z.; Pei, Y. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. Energy 2021, 232, 120996. [CrossRef]

  36. Ramadhan, R.A.; Heatubun, Y.R.; Tan, S.F.; Lee, H.-J. Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power. Renew. Energy 2021, 178, 1006–1019. [CrossRef]

  37. Ramirez-Vergara, J.; Bosman, L.B.; Wollega, E.; Leon-Salas, W.D. Review of Forecasting Methods to Support Photovoltaic Predictive Maintenance. Clean. Eng. Technol. 2022, 8, 100460. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Rodríguez, F.; Martín, F.; Fontán, L.; Galarza, A. Ensemble of machine learning and spatiotemporal parameters to forecast very short-term solar irradiation to compute photovoltaic generators’ output power. Energy 2021, 229, 120647. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Savkin, A.V.; Petersen, I.R. Robust filtering with missing data and a deterministic description of noise and uncertainty. Int. J. Syst. Sci. 1997, 28, 373–378. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Schinke-Nendza, A.; von Loeper, F.; Osinski, P.; Schaumann, P.; Schmidt, V.; Weber, C. Probabilistic forecasting of photovoltaic power supply—A hybrid approach using D-vine copulas to model spatial dependencies. Appl. Energy 2021, 304, 117599. [CrossRef]

  41. Sobrina, S.; Sam, K.K.; Nasrudin, A.R. Solar Photovoltaic Generation Forecasting Methods: A Review. Energy Convers. Manag. 2018, 156, 459–497. [CrossRef]
    Paper not yet in RePEc: Add citation now
  42. Sugiyama, S. Forecast Uncertainty and Monte Carlo Simulation. Foresight Int. J. Appl. Forecast. 2007, 29–37. Available online: https://econpapers.repec.org/article/forijafaa/ (accessed on 31 March 2021).

  43. Tang, Y.; Yang, K.; Zhang, S.; Zhang, Z. Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy. Renew. Sustain. Energy Rev. 2022, 162, 112473. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. van der Meer, D.; Widén, J.; Munkhammar, J. Review on probabilistic forecasting of photovoltaic power production and electricity consumption. Renew. Sustain. Energy Rev. 2018, 81, 1484–1512. [CrossRef]

  45. von Loeper, F.; Schaumann, P.; de Langlard, M.; Hess, R.; Bäsmann, R.; Schmidt, V. Probabilistic prediction of solar power supply to distribution networks, using forecasts of global horizontal irradiation. Sol. Energy 2020, 203, 145–156. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Wang, J.; Zhou, Y.; Li, Z. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. Appl. Energy 2022, 312, 118725. [CrossRef]

  48. Wang, X.; Sun, Y.; Luo, D.; Peng, J. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. Energy 2021, 240, 122733. [CrossRef]
    Paper not yet in RePEc: Add citation now
  49. Watanabe, T.; Nohara, D. Prediction of time series for several hours of surface solar irradiance using one-granule cloud property data from satellite observations. Sol. Energy 2019, 186, 113–125. [CrossRef]
    Paper not yet in RePEc: Add citation now
  50. Wen, X.; Abbes, D.; Francois, B. Modeling of photovoltaic power uncertainties for impact analysis on generation scheduling and cost of an urban micro grid. Math. Comput. Simul. 2020, 183, 116–128. [CrossRef]
    Paper not yet in RePEc: Add citation now
  51. Yang, D.; Kleissl, J.; Gueymard, C.A.; Pedro, H.T.; Coimbra, C.F. History and trends in solar irradiance and PV power forecasting: A preliminary assessment and review using text mining. Sol. Energy 2018, 168, 60–101. [CrossRef]
    Paper not yet in RePEc: Add citation now
  52. Yang, M.; Zhu, L. Short-term Prediction Error Analysis of Photovoltaic Power Based on Non-Parametric Estimation. Power Grids Clean Energy 2020, 36, 107–114.
    Paper not yet in RePEc: Add citation now
  53. Yu, C.; Li, Y.; Zhang, M. An improved Wavelet Transform using Singular Spectrum Analysis for wind speed forecasting based on Elman Neural Network. Energy Convers. Manag. 2017, 148, 895–904. [CrossRef] Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
    Paper not yet in RePEc: Add citation now
  54. Zang, H.; Cheng, L.; Ding, T.; Cheung, K.W.; Wei, Z.; Sun, G. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. Int. J. Electr. Power Energy Syst. 2020, 118, 105790. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting. (2022). Son, Yongju ; Yoon, Yeunggurl ; Choi, Sungyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:8:p:4427-:d:789392.

    Full description at Econpapers || Download paper

  2. Parameter Evaluation in Motion Estimation for Forecasting Multiple Photovoltaic Power Generation. (2022). Kameda, Yusuke ; Kure, Taiki ; Kondoh, Junji ; Yamamoto, Hiroki ; Tsuchiya, Haruka Danil ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:8:p:2855-:d:793339.

    Full description at Econpapers || Download paper

  3. Advanced Forecasting Methods of 5-Minute Power Generation in a PV System for Microgrid Operation Control. (2022). Kapler, Piotr ; Piotrowski, Pawe ; Parol, Mirosaw ; Fetliski, Bartosz.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2645-:d:786857.

    Full description at Econpapers || Download paper

  4. Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement. (2022). Ollis, Thomas B ; Ferrari, Maximiliano F ; Tomsovic, Kevin ; Liu, Guodong ; Sundararajan, Aditya.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:6:p:2249-:d:774811.

    Full description at Econpapers || Download paper

  5. Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction. (2022). Mayer, Martin Janos ; Markovics, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s136403212200274x.

    Full description at Econpapers || Download paper

  6. A review of behind-the-meter solar forecasting. (2022). Doubleday, Kate ; Feng, Cong ; Erdener, Burcin Cakir ; Hodge, Bri-Mathias ; Florita, Anthony.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:160:y:2022:i:c:s1364032122001472.

    Full description at Econpapers || Download paper

  7. Analysis of data errors in the solar photovoltaic monitoring system database: An overview of nationwide power plants in Korea. (2022). Cha, Suk-Won ; Choi, Jongwoo ; Lee, Il-Woo.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012703.

    Full description at Econpapers || Download paper

  8. The uncertainties involved in measuring national solar photovoltaic electricity generation. (2022). Tilley, K ; Taylor, J ; Harwood, J ; Briggs, J ; Everard, A ; Buckley, A ; Huxley, O T.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:156:y:2022:i:c:s1364032121012636.

    Full description at Econpapers || Download paper

  9. A review of very short-term wind and solar power forecasting. (2022). Tawn, R ; Browell, J.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:153:y:2022:i:c:s1364032121010285.

    Full description at Econpapers || Download paper

  10. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. (2022). Tai, Yonghang ; Huang, Xiaoqiao ; Liu, Wuming ; Shi, Junsheng ; Chen, Zaiqing.
    In: Energy.
    RePEc:eee:energy:v:246:y:2022:i:c:s0360544222003061.

    Full description at Econpapers || Download paper

  11. Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach. (2022). Zeiler, Wim ; Khan, Waqas ; Walker, Shalika.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030619.

    Full description at Econpapers || Download paper

  12. Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification. (2022). Sun, Yunlin ; Wang, Xiaoyang ; Peng, Jinqing ; Luo, Duo.
    In: Energy.
    RePEc:eee:energy:v:240:y:2022:i:c:s0360544221029820.

    Full description at Econpapers || Download paper

  13. Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control. (2022). Vasquez, Juan C ; Guerrero, Josep M ; Rodriguez, Fermin ; Galarza, Ainhoa.
    In: Energy.
    RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221023641.

    Full description at Econpapers || Download paper

  14. Probability density forecasts for natural gas demand in China: Do mixed-frequency dynamic factors matter?. (2022). Zhao, Zhongchao ; Ding, Lili ; Wang, Lei.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922002100.

    Full description at Econpapers || Download paper

  15. Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm. (2022). Li, Zhiwu ; Zhou, Yilin ; Wang, Jianzhou.
    In: Applied Energy.
    RePEc:eee:appene:v:312:y:2022:i:c:s0306261922001830.

    Full description at Econpapers || Download paper

  16. An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. (2022). Lens, Hendrik ; Mitrentsis, Georgios.
    In: Applied Energy.
    RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016950.

    Full description at Econpapers || Download paper

  17. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. (2022). Cai, Zuansi ; Fjelkestam, Cornelia A.
    In: Applied Energy.
    RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014276.

    Full description at Econpapers || Download paper

  18. Hybrid Forecasting Methodology for Wind Power-Photovoltaic-Concentrating Solar Power Generation Clustered Renewable Energy Systems. (2021). Zheng, Zixuan ; Xiao, Xianyong ; Pang, Simian ; Xu, Lanlan ; Luo, Fan.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:12:p:6681-:d:573715.

    Full description at Econpapers || Download paper

  19. Comparison and Explanation of Forecasting Algorithms for Energy Time Series. (2021). Zhang, Yuyi ; Liu, Xiuxiu ; Ma, Ruimin ; Petrosian, Ovanes ; Krinkin, Kirill.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:21:p:2794-:d:671887.

    Full description at Econpapers || Download paper

  20. Hour-Ahead Photovoltaic Output Forecasting Using Wavelet-ANFIS. (2021). Chang, Yu-Ming ; Tan, Shih-Wei ; Ouedraogo, Faouzi Brice ; Larasati, Devita Ayu ; Chen, Chao-Rong.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:19:p:2438-:d:648136.

    Full description at Econpapers || Download paper

  21. A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period. (2021). An, Yuan ; Shi, Xiaoyu ; Jia, Rong ; Huang, Qiang ; Zhang, Kai ; Dang, Kaikai.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:859-:d:495015.

    Full description at Econpapers || Download paper

  22. Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System. (2021). Collino, Elena ; Ronzio, Dario.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:789-:d:491908.

    Full description at Econpapers || Download paper

  23. Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations. (2021). Kure, Taiki ; Tsukazaki, Kazuki ; Kondoh, Junji ; Kodaira, Daisuke.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7340-:d:672260.

    Full description at Econpapers || Download paper

  24. Short-Term Deterministic Solar Irradiance Forecasting Considering a Heuristics-Based, Operational Approach. (2021). Escobar, Rodrigo ; Boland, John ; Castillejo-Cuberos, Armando.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:6005-:d:640192.

    Full description at Econpapers || Download paper

  25. Prediction of Solar Power Using Near-Real Time Satellite Data. (2021). Kay, Merlinde ; Prasad, Abhnil Amtesh.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5865-:d:636858.

    Full description at Econpapers || Download paper

  26. Probabilistic Forecasting of Wind and Solar Farm Output. (2021). Farah, Sleiman ; Boland, John.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:16:p:5154-:d:618439.

    Full description at Econpapers || Download paper

  27. A Comparison of the Performance of Supervised Learning Algorithms for Solar Power Prediction. (2021). Gutierrez, Leidy ; Patio, Julian ; Duque-Grisales, Eduardo.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:15:p:4424-:d:599316.

    Full description at Econpapers || Download paper

  28. A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting. (2021). Thil, Stephane ; Grieu, Stephane ; Gbemou, Shab ; Eynard, Julien ; Guillot, Emmanuel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:11:p:3192-:d:565352.

    Full description at Econpapers || Download paper

  29. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. (2021). Cheng, Ziming ; Shuai, Yong ; Yang, Luwei ; Liang, Huaxu ; Tan, Heping ; Wang, Fuqiang.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:141:y:2021:i:c:s1364032121000800.

    Full description at Econpapers || Download paper

  30. State-of-the-art short-term electricity market operation with solar generation: A review. (2021). Wang, Jessie ; Li, Z ; Fang, X ; Yin, S.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:138:y:2021:i:c:s136403212030931x.

    Full description at Econpapers || Download paper

  31. Ultra-short-term exogenous forecasting of photovoltaic power production using genetically optimized non-linear auto-regressive recurrent neural networks. (2021). Nwokolo, Samuel Chukwujindu ; Bailek, Nadjem ; Hassan, Muhammed A ; Bouchouicha, Kada.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:191-209.

    Full description at Econpapers || Download paper

  32. Hybrid deep neural model for hourly solar irradiance forecasting. (2021). Huang, Xiaoqiao ; Liu, Wuming ; Zhang, Jun ; Shi, Junsheng ; Gao, Bixuan ; Chen, Zaiqing ; Tai, Yonghang.
    In: Renewable Energy.
    RePEc:eee:renene:v:171:y:2021:i:c:p:1041-1060.

    Full description at Econpapers || Download paper

  33. Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants. (2021). Vasallo, Manuel Jesus ; Gegundez, Manuel Emilio ; Cojocaru, Emilian Gelu ; Marin, Diego.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:1130-1149.

    Full description at Econpapers || Download paper

  34. Day-ahead hourly photovoltaic power forecasting using attention-based CNN-LSTM neural network embedded with multiple relevant and target variables prediction pattern. (2021). Qian, Zheng ; Pei, Yan ; Qu, Jiaqi.
    In: Energy.
    RePEc:eee:energy:v:232:y:2021:i:c:s0360544221012445.

    Full description at Econpapers || Download paper

  35. Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming. (2021). Liu, Zhe ; Wu, Zening ; Wang, Xinqi ; Yuan, Wenlin ; Cheng, Chuntian ; Su, Chengguo.
    In: Energy.
    RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002450.

    Full description at Econpapers || Download paper

  36. Probability density forecasts for steam coal prices in China: The role of high-frequency factors. (2021). Zhao, Zhongchao ; Han, Meng ; Ding, Lili.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544221000074.

    Full description at Econpapers || Download paper

  37. Combining CFD and artificial neural network techniques to predict the thermal performance of all-glass straight evacuated tube solar collector. (2021). Lund, Peter D ; Wang, Jun ; Du, Bin.
    In: Energy.
    RePEc:eee:energy:v:220:y:2021:i:c:s0360544220328206.

    Full description at Econpapers || Download paper

  38. Probabilistic real-time deep-water natural gas hydrate dispersion modeling by using a novel hybrid deep learning approach. (2021). Zhu, Yuan ; Li, Junjie ; Shi, Jihao ; Chen, Guoming ; Yang, Dongdong ; Usmani, Asif Sohail.
    In: Energy.
    RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326797.

    Full description at Econpapers || Download paper

  39. SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting. (2021). Korkmaz, Deniz.
    In: Applied Energy.
    RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072.

    Full description at Econpapers || Download paper

  40. Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance. (2021). Trapero, Juan R ; Pedregal, Diego J.
    In: Applied Energy.
    RePEc:eee:appene:v:298:y:2021:i:c:s0306261921005882.

    Full description at Econpapers || Download paper

  41. Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data. (2021). Ajith, Meenu ; Martinez-Ramon, Manel.
    In: Applied Energy.
    RePEc:eee:appene:v:294:y:2021:i:c:s0306261921004803.

    Full description at Econpapers || Download paper

  42. Lifetime improvement for wind power generation system based on optimal effectiveness of thermal management. (2021). Du, Xiong ; Zhang, Jun ; Qian, Cheng.
    In: Applied Energy.
    RePEc:eee:appene:v:286:y:2021:i:c:s0306261921000416.

    Full description at Econpapers || Download paper

  43. Short-term solar power forecasting: Investigating the ability of deep learning models to capture low-level utility-scale Photovoltaic system behaviour. (2021). Strauss, J M ; Rix, A J ; du Plessis, A A.
    In: Applied Energy.
    RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317657.

    Full description at Econpapers || Download paper

  44. Extensive comparison of physical models for photovoltaic power forecasting. (2021). Mayer, Martin Janos ; Grof, Gyula.
    In: Applied Energy.
    RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316330.

    Full description at Econpapers || Download paper

  45. What drives the accuracy of PV output forecasts?. (2021). Nguyen, Thi Ngoc ; Musgens, Felix.
    In: Papers.
    RePEc:arx:papers:2111.02092.

    Full description at Econpapers || Download paper

  46. Combined Multi-Layer Feature Fusion and Edge Detection Method for Distributed Photovoltaic Power Station Identification. (2020). Deng, Yupeng ; Jie, Yongshi ; Zhang, YI ; Chen, Jing ; Yue, Anzhi.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6742-:d:465673.

    Full description at Econpapers || Download paper

  47. Reliability Predictors for Solar Irradiance Satellite-Based Forecast. (2020). Cros, Sylvain ; Haeffelin, Martial ; Badosa, Jordi ; Szantai, Andre.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5566-:d:433975.

    Full description at Econpapers || Download paper

  48. Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies. (2020). Tola, Vittorio ; Petrollese, Mario ; Oyekale, Joseph ; Cau, Giorgio.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4856-:d:414596.

    Full description at Econpapers || Download paper

  49. Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling. (2020). Lie, Tek Tjing ; Zamora, Ramon ; Mohammad, Asaad.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4541-:d:407570.

    Full description at Econpapers || Download paper

  50. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. (2020). Dong, Z Y ; Begum, R A ; Ker, Pin Jern ; Faisal, M ; Hannan, M A ; Zhang, C.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:131:y:2020:i:c:s1364032120303130.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 19:00:04 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.