- Abbas, Z.; Al-Shishtawy, A.; Girdzijauskas, S.; Vlassov, V. Short-term traffic prediction using long short-term memory neural networks. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), Seattle, WA, USA, 10â13 December 2018; Volume 1, pp. 57â65.
Paper not yet in RePEc: Add citation now
- Abd Al-Azeem Hussieny, O.; El-Beltagy, M.A.; El-Tantawy, S. Forecasting of renewable energy using ANN, GPANN and ANFIS (A comparative study and performance analysis). In Proceedings of the 2nd Novel Intelligent Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24â26 October 2020; pp. 54â59.
Paper not yet in RePEc: Add citation now
Abdi, H. Profit-based unit commitment problem: A review of models, methods, challenges, and future directions total revenue. Renew. Sustain. Energy Rev. 2021, 138, 110504. [CrossRef]
- Abdou, I.; Tkiouat, M. Unit commitment problem in electrical power system: A literature review. Int. J. Electr. Comput. Eng. 2018, 8, 1357â1372. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alqunun, K. Optimal Unit commitment problem considering stochastic wind energy penetration. Eng. Technol. Appl. Sci. Res. 2020, 10, 6316â6322. [CrossRef]
Paper not yet in RePEc: Add citation now
- Alvarez, G.E.; Marcovecchio, M.G.; Aguirre, P. Security constrained unit commitment scheduling: A new MILP formulation for solving transmission constraints. Comput. Chem. Eng. 2018, 115, 455â473. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ananthan, D. Unit commitment solution using particle swarm optimisation (PSO). IOSR J. Eng. 2014, 4, 48â55. [CrossRef]
Paper not yet in RePEc: Add citation now
- Arora, V.; Chanana, S. Solution to unit commitment problem using Lagrangian relaxation and Mendelâs GA method. In Proceedings of the 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), Sultanpur, India, 11â12 March 2016; Volume 2016, pp. 126â129.
Paper not yet in RePEc: Add citation now
Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312â1326. [CrossRef]
- Blanchard, T.; Samanta, B. Wind speed forecasting using neural networks. Wind Eng. 2020, 44, 33â48. [CrossRef]
Paper not yet in RePEc: Add citation now
- Boqtob, O.; El Moussaoui, H.; El Markhi, H.; Lamhamdi, T. Optimal robust unit commitment of microgrid using hybrid particle swarm optimization with sine cosine acceleration coefficients. Int. J. Renew. Energy Res. 2019, 9, 1125â1134.
Paper not yet in RePEc: Add citation now
- Ding, Y. Wind Time Series Dataset; CRC Press: Boca Raton, FL, USA, 2021. [CrossRef]
Paper not yet in RePEc: Add citation now
- Dong, D.; Sheng, Z.; Yang, T. Wind power prediction based on recurrent neural network with long short-term memory units. In Proceedings of the 2018 International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 24â26 November 2018; Volume 2019, pp. 34â38.
Paper not yet in RePEc: Add citation now
Furukakoi, M.; Adewuyi, O.B.; Matayoshi, H.; Howlader, A.M.; Senjyu, T. Multi objective unit commitment with voltage stability and PV uncertainty. Appl. Energy. 2018, 228, 618â623. [CrossRef]
- Gaddam, R.R. Optimal Unit Commitment Using Swarm Intelligence for Secure Operation of Solar Energy Integrated Smart Grid; Power Systems Research Center; International Institute of Information Technology: Hyderabad, India, 2013.
Paper not yet in RePEc: Add citation now
- Hu, G.; Yang, L. The parallel interior point for solving the continuous optimization problem of unit commitment. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15â17 October 2016; pp. 1333â1338.
Paper not yet in RePEc: Add citation now
Huang, W.T.; Yao, K.C.; Chen, M.K.; Wang, F.Y.; Zhu, C.H.; Chang, Y.R.; Lee, Y.D.; Ho, Y.H. Derivation and application of a new transmission loss formula for power system economic dispatch. Energies 2018, 11, 417. [CrossRef]
- Kamboj, V.K. A novel hybrid PSOâGWO approach for unit commitment problem. Neural Comput. Appl. 2016, 27, 1643â1655. [CrossRef]
Paper not yet in RePEc: Add citation now
- Kamh, M.; Abdelaziz, A.Y.; Mekhamer, S.F.; Badr, M.A. Modified augmented hopfield neural network for optimal thermal unit commitment. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26â30 July 2009; pp. 1â8.
Paper not yet in RePEc: Add citation now
- Kokare, M.B.; Tade, S.V. Application of Artificial Bee Colony Method for Unit Commitment. In Proceedings of the 2018 4th International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16â18 August 2018; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef] Sustainability 2021, 13, 13609 22 of 22
Paper not yet in RePEc: Add citation now
- Liu, C.; Jin, Z.; Gu, J.; Qiu, C. Short-term load forecasting using a long short-term memory network. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26â29 September 2017; Volume 2018, pp. 1â6.
Paper not yet in RePEc: Add citation now
- Liu, M.; Quilumba, F.; Lee, W.-J. Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting. IEEE Trans. Ind. Appl. 2015, 51, 1970â1977. [CrossRef]
Paper not yet in RePEc: Add citation now
- Logenthiran, T.; Srinivasan, D. Particle swarm optimization for unit commitment problem. In Proceedings of the 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14â17 June 2010; Volume 2010, pp. 642â647. Sustainability 2021, 13, 13609 21 of 22
Paper not yet in RePEc: Add citation now
- Ma, Z.; Zhong, H.; Xia, Q.; Kang, C.; Wang, Q.; Cao, X. A unit commitment algorithm with relaxation-based neighborhood search and improved relaxation inducement. IEEE Trans. Power Syst. 2020, 35, 3800â3809. [CrossRef]
Paper not yet in RePEc: Add citation now
- Madraswala, H.S. Modified genetic algorithm solution to unit commitment problem. In Proceedings of the 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 27â28 January 2017; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Majidi, H.; Emadaleslami, M.; Haghifam, M.R. A new binary-coded approach to the unit commitment problem using grey wolf optimization. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4â6 August 2020; pp. 1â5.
Paper not yet in RePEc: Add citation now
McLarty, D.; Panossian, N.; Jabbari, F.; Traverso, A. Dynamic economic dispatch using complementary quadratic pro-gramming. Energy 2019, 166, 755â764. [CrossRef]
- Mehranpour, A.; Ramezani, M. Unit commitment in the presence of photovoltaic cells. In Proceedings of the 1st Conference on Applied Research in Electrical Engineering (AREE), Ahvaz, Iran, 27 January 2020; Volume 2020, pp. 1â9.
Paper not yet in RePEc: Add citation now
Ming, B.; Liu, P.; Guo, S.; Cheng, L.; Zhou, Y.; Gao, S.; Li, H. Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China. Appl. Energy 2018, 228, 1341â1352. [CrossRef]
- Mohy-Ud-Din, G.; Vu, D.H.; Muttaqi, K.M.; Sutanto, D. An integrated energy management approach for the economic operation of industrial microgrids under uncertainty of renewable energy. IEEE Trans. Ind. Appl. 2020, 56, 1062â1073. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ning, C.; You, F. Data-driven adaptive robust unit commitment under wind power uncertainty: A Bayesian nonparametric approach. IEEE Trans. Power Syst. 2019, 34, 2409â2418. [CrossRef]
Paper not yet in RePEc: Add citation now
- Palis, D.; Palis, S. Efficient unit commitmentâA modified branch-and-bound approach. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22â25 November 2016; Volume 2017, pp. 267â271.
Paper not yet in RePEc: Add citation now
Pang, Z.; Niu, F.; OâNeill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279â289. [CrossRef]
- Rachunok, B.; Staid, A.; Watson, J.P.; Woodruff, D.L.; Yang, D. Stochastic unit commitment performance considering monte carlo wind power scenarios. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24â28 June 2018; pp. 1â6.
Paper not yet in RePEc: Add citation now
- Reddy, S.; Kumar, R.; Panigrahi, B.K. Binary bat search algorithm for unit commitment problem in power system. In Proceedings of the 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dehradun, Indi, 18â19 December 2018; pp. 121â124.
Paper not yet in RePEc: Add citation now
- Rouhi, F.; Effatnejad, R. Unit commitment in power system t by combination of dynamic programming (DP), genetic algorithm (GA) and particle swarm optimization (PSO). Indian J. Sci. Technol. 2015, 8, 134â141. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shabbir, N.; Kutt, L.; Jawad, M.; Amadiahanger, R.; Iqbal, M.N.; Rosin, A. Wind Energy Forecasting Using Recurrent Neural Networks. In Proceedings of the 2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 21â22 November 2019; pp. 1â5.
Paper not yet in RePEc: Add citation now
- Singh, A.; Khamparia, A. A hybrid whale optimization-differential evolution and genetic algorithm based approach to solve unit commitment scheduling problem: WODEGA. Sustain. Comput. Inform. Syst. 2020, 28, 100442. [CrossRef]
Paper not yet in RePEc: Add citation now
- Sivaneasan, B.; Yu, C.Y.; Goh, K.P. Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia 2017, 143, 727â732. [CrossRef]
Paper not yet in RePEc: Add citation now
- Thakur, N.; Titare, L.S. Determination of unit commitment problem using dynamic programming. Int. J. Nov. Res. Electr. Mech. Eng. 2016, 3, 24â28.
Paper not yet in RePEc: Add citation now
- Vargas, D.V.; Murata, J.; Takano, H. Tackling unit commitment and load dispatch problems considering all constraints with evolutionary computation. arXiv 2019, arXiv:1903.09304.
Paper not yet in RePEc: Add citation now
- Wang, C.; Li, X.; Wang, Z.; Dong, X.; Liang, Z.; Liu, X.; Liang, J.; Han, X. Day-ahead unit commitment method considering time sequence feature of wind power forecast error. Int. J. Electr. Power Energy Syst. 2018, 98, 156â166. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wang, J.; Shahidehpour, M.; Li, Z. Security-constrained unit commitment with volatile wind power generation. IEEE Trans. Power Syst. 2008, 23, 1319â1327. [CrossRef]
Paper not yet in RePEc: Add citation now
- Wulandhari, L.A.; Komsiyah, S.; Wicaksono, W. Bat algorithm implementation on economic dispatch optimization problem. Procedia Comput. Sci. 2018, 135, 275â282. [CrossRef]
Paper not yet in RePEc: Add citation now
- Yang, Y.; Wu, W.; Wang, B.; Li, M. Analytical solution for stochastic unit commitment considering wind power uncertainty with gaussian mixture model. IEEE Trans. Power Syst. 2019, 35, 2769â2782. [CrossRef]
Paper not yet in RePEc: Add citation now
Zhang, Y.; Liu, Y.; Shu, S.; Zheng, F.; Huang, Z. A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources. Energy 2021, 216, 119171. [CrossRef]
- Zhu, Y.; Liu, X.; Deng, R.; Zhai, Y. Memetic algorithm for solving monthly unit commitment problem considering uncertain wind power. J. Control Autom. Electr. Syst. 2020, 31, 511â520. [CrossRef]
Paper not yet in RePEc: Add citation now