create a website

Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting. (2021). Kusaf, Mehmet ; Salman, Diaa.
In: Sustainability.
RePEc:gam:jsusta:v:13:y:2021:i:24:p:13609-:d:698734.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 49

References cited by this document

Cocites: 62

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Study on hierarchical model of hydroelectric unit commitment based on similarity schedule and quadratic optimization approach. (2024). Yang, Yuqi ; Shen, Keyan ; Huang, Jingwei ; Qin, Hui ; Jia, Benjun.
    In: Energy.
    RePEc:eee:energy:v:305:y:2024:i:c:s0360544224020036.

    Full description at Econpapers || Download paper

  2. Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources. (2022). Krechowicz, Maria ; Poczeta, Katarzyna.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:23:p:9146-:d:991550.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abbas, Z.; Al-Shishtawy, A.; Girdzijauskas, S.; Vlassov, V. Short-term traffic prediction using long short-term memory neural networks. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), Seattle, WA, USA, 10–13 December 2018; Volume 1, pp. 57–65.
    Paper not yet in RePEc: Add citation now
  2. Abd Al-Azeem Hussieny, O.; El-Beltagy, M.A.; El-Tantawy, S. Forecasting of renewable energy using ANN, GPANN and ANFIS (A comparative study and performance analysis). In Proceedings of the 2nd Novel Intelligent Leading Emerging Sciences Conference (NILES), Giza, Egypt, 24–26 October 2020; pp. 54–59.
    Paper not yet in RePEc: Add citation now
  3. Abdi, H. Profit-based unit commitment problem: A review of models, methods, challenges, and future directions total revenue. Renew. Sustain. Energy Rev. 2021, 138, 110504. [CrossRef]

  4. Abdou, I.; Tkiouat, M. Unit commitment problem in electrical power system: A literature review. Int. J. Electr. Comput. Eng. 2018, 8, 1357–1372. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Alqunun, K. Optimal Unit commitment problem considering stochastic wind energy penetration. Eng. Technol. Appl. Sci. Res. 2020, 10, 6316–6322. [CrossRef]
    Paper not yet in RePEc: Add citation now
  6. Alvarez, G.E.; Marcovecchio, M.G.; Aguirre, P. Security constrained unit commitment scheduling: A new MILP formulation for solving transmission constraints. Comput. Chem. Eng. 2018, 115, 455–473. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Ananthan, D. Unit commitment solution using particle swarm optimisation (PSO). IOSR J. Eng. 2014, 4, 48–55. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Arora, V.; Chanana, S. Solution to unit commitment problem using Lagrangian relaxation and Mendel’s GA method. In Proceedings of the 2016 International Conference on Emerging Trends in Electrical Electronics & Sustainable Energy Systems (ICETEESES), Sultanpur, India, 11–12 March 2016; Volume 2016, pp. 126–129.
    Paper not yet in RePEc: Add citation now
  9. Bedi, J.; Toshniwal, D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312–1326. [CrossRef]

  10. Blanchard, T.; Samanta, B. Wind speed forecasting using neural networks. Wind Eng. 2020, 44, 33–48. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Boqtob, O.; El Moussaoui, H.; El Markhi, H.; Lamhamdi, T. Optimal robust unit commitment of microgrid using hybrid particle swarm optimization with sine cosine acceleration coefficients. Int. J. Renew. Energy Res. 2019, 9, 1125–1134.
    Paper not yet in RePEc: Add citation now
  12. Ding, Y. Wind Time Series Dataset; CRC Press: Boca Raton, FL, USA, 2021. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Dong, D.; Sheng, Z.; Yang, T. Wind power prediction based on recurrent neural network with long short-term memory units. In Proceedings of the 2018 International Conference on Renewable Energy and Power Engineering (REPE), Toronto, ON, Canada, 24–26 November 2018; Volume 2019, pp. 34–38.
    Paper not yet in RePEc: Add citation now
  14. Furukakoi, M.; Adewuyi, O.B.; Matayoshi, H.; Howlader, A.M.; Senjyu, T. Multi objective unit commitment with voltage stability and PV uncertainty. Appl. Energy. 2018, 228, 618–623. [CrossRef]

  15. Gaddam, R.R. Optimal Unit Commitment Using Swarm Intelligence for Secure Operation of Solar Energy Integrated Smart Grid; Power Systems Research Center; International Institute of Information Technology: Hyderabad, India, 2013.
    Paper not yet in RePEc: Add citation now
  16. Hu, G.; Yang, L. The parallel interior point for solving the continuous optimization problem of unit commitment. In Proceedings of the 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Datong, China, 15–17 October 2016; pp. 1333–1338.
    Paper not yet in RePEc: Add citation now
  17. Huang, W.T.; Yao, K.C.; Chen, M.K.; Wang, F.Y.; Zhu, C.H.; Chang, Y.R.; Lee, Y.D.; Ho, Y.H. Derivation and application of a new transmission loss formula for power system economic dispatch. Energies 2018, 11, 417. [CrossRef]

  18. Kamboj, V.K. A novel hybrid PSO–GWO approach for unit commitment problem. Neural Comput. Appl. 2016, 27, 1643–1655. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Kamh, M.; Abdelaziz, A.Y.; Mekhamer, S.F.; Badr, M.A. Modified augmented hopfield neural network for optimal thermal unit commitment. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009; pp. 1–8.
    Paper not yet in RePEc: Add citation now
  20. Kokare, M.B.; Tade, S.V. Application of Artificial Bee Colony Method for Unit Commitment. In Proceedings of the 2018 4th International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  21. Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef] Sustainability 2021, 13, 13609 22 of 22
    Paper not yet in RePEc: Add citation now
  22. Liu, C.; Jin, Z.; Gu, J.; Qiu, C. Short-term load forecasting using a long short-term memory network. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Torino, Italy, 26–29 September 2017; Volume 2018, pp. 1–6.
    Paper not yet in RePEc: Add citation now
  23. Liu, M.; Quilumba, F.; Lee, W.-J. Dispatch scheduling for a wind farm with hybrid energy storage based on wind and LMP forecasting. IEEE Trans. Ind. Appl. 2015, 51, 1970–1977. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Logenthiran, T.; Srinivasan, D. Particle swarm optimization for unit commitment problem. In Proceedings of the 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14–17 June 2010; Volume 2010, pp. 642–647. Sustainability 2021, 13, 13609 21 of 22
    Paper not yet in RePEc: Add citation now
  25. Ma, Z.; Zhong, H.; Xia, Q.; Kang, C.; Wang, Q.; Cao, X. A unit commitment algorithm with relaxation-based neighborhood search and improved relaxation inducement. IEEE Trans. Power Syst. 2020, 35, 3800–3809. [CrossRef]
    Paper not yet in RePEc: Add citation now
  26. Madraswala, H.S. Modified genetic algorithm solution to unit commitment problem. In Proceedings of the 2017 International Conference on Nascent Technologies in Engineering (ICNTE), Navi Mumbai, India, 27–28 January 2017; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  27. Majidi, H.; Emadaleslami, M.; Haghifam, M.R. A new binary-coded approach to the unit commitment problem using grey wolf optimization. In Proceedings of the 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 4–6 August 2020; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  28. McLarty, D.; Panossian, N.; Jabbari, F.; Traverso, A. Dynamic economic dispatch using complementary quadratic pro-gramming. Energy 2019, 166, 755–764. [CrossRef]

  29. Mehranpour, A.; Ramezani, M. Unit commitment in the presence of photovoltaic cells. In Proceedings of the 1st Conference on Applied Research in Electrical Engineering (AREE), Ahvaz, Iran, 27 January 2020; Volume 2020, pp. 1–9.
    Paper not yet in RePEc: Add citation now
  30. Ming, B.; Liu, P.; Guo, S.; Cheng, L.; Zhou, Y.; Gao, S.; Li, H. Robust hydroelectric unit commitment considering integration of large-scale photovoltaic power: A case study in China. Appl. Energy 2018, 228, 1341–1352. [CrossRef]

  31. Mohy-Ud-Din, G.; Vu, D.H.; Muttaqi, K.M.; Sutanto, D. An integrated energy management approach for the economic operation of industrial microgrids under uncertainty of renewable energy. IEEE Trans. Ind. Appl. 2020, 56, 1062–1073. [CrossRef]
    Paper not yet in RePEc: Add citation now
  32. Ning, C.; You, F. Data-driven adaptive robust unit commitment under wind power uncertainty: A Bayesian nonparametric approach. IEEE Trans. Power Syst. 2019, 34, 2409–2418. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Palis, D.; Palis, S. Efficient unit commitment—A modified branch-and-bound approach. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; Volume 2017, pp. 267–271.
    Paper not yet in RePEc: Add citation now
  34. Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study with comparisons. Renew. Energy 2020, 156, 279–289. [CrossRef]

  35. Rachunok, B.; Staid, A.; Watson, J.P.; Woodruff, D.L.; Yang, D. Stochastic unit commitment performance considering monte carlo wind power scenarios. In Proceedings of the 2018 IEEE International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Boise, ID, USA, 24–28 June 2018; pp. 1–6.
    Paper not yet in RePEc: Add citation now
  36. Reddy, S.; Kumar, R.; Panigrahi, B.K. Binary bat search algorithm for unit commitment problem in power system. In Proceedings of the 2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE), Dehradun, Indi, 18–19 December 2018; pp. 121–124.
    Paper not yet in RePEc: Add citation now
  37. Rouhi, F.; Effatnejad, R. Unit commitment in power system t by combination of dynamic programming (DP), genetic algorithm (GA) and particle swarm optimization (PSO). Indian J. Sci. Technol. 2015, 8, 134–141. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Shabbir, N.; Kutt, L.; Jawad, M.; Amadiahanger, R.; Iqbal, M.N.; Rosin, A. Wind Energy Forecasting Using Recurrent Neural Networks. In Proceedings of the 2019 Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 21–22 November 2019; pp. 1–5.
    Paper not yet in RePEc: Add citation now
  39. Singh, A.; Khamparia, A. A hybrid whale optimization-differential evolution and genetic algorithm based approach to solve unit commitment scheduling problem: WODEGA. Sustain. Comput. Inform. Syst. 2020, 28, 100442. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Sivaneasan, B.; Yu, C.Y.; Goh, K.P. Solar forecasting using ANN with fuzzy logic pre-processing. Energy Procedia 2017, 143, 727–732. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Thakur, N.; Titare, L.S. Determination of unit commitment problem using dynamic programming. Int. J. Nov. Res. Electr. Mech. Eng. 2016, 3, 24–28.
    Paper not yet in RePEc: Add citation now
  42. Vargas, D.V.; Murata, J.; Takano, H. Tackling unit commitment and load dispatch problems considering all constraints with evolutionary computation. arXiv 2019, arXiv:1903.09304.
    Paper not yet in RePEc: Add citation now
  43. Wang, C.; Li, X.; Wang, Z.; Dong, X.; Liang, Z.; Liu, X.; Liang, J.; Han, X. Day-ahead unit commitment method considering time sequence feature of wind power forecast error. Int. J. Electr. Power Energy Syst. 2018, 98, 156–166. [CrossRef]
    Paper not yet in RePEc: Add citation now
  44. Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Wang, J.; Shahidehpour, M.; Li, Z. Security-constrained unit commitment with volatile wind power generation. IEEE Trans. Power Syst. 2008, 23, 1319–1327. [CrossRef]
    Paper not yet in RePEc: Add citation now
  46. Wulandhari, L.A.; Komsiyah, S.; Wicaksono, W. Bat algorithm implementation on economic dispatch optimization problem. Procedia Comput. Sci. 2018, 135, 275–282. [CrossRef]
    Paper not yet in RePEc: Add citation now
  47. Yang, Y.; Wu, W.; Wang, B.; Li, M. Analytical solution for stochastic unit commitment considering wind power uncertainty with gaussian mixture model. IEEE Trans. Power Syst. 2019, 35, 2769–2782. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Zhang, Y.; Liu, Y.; Shu, S.; Zheng, F.; Huang, Z. A data-driven distributionally robust optimization model for multi-energy coupled system considering the temporal-spatial correlation and distribution uncertainty of renewable energy sources. Energy 2021, 216, 119171. [CrossRef]

  49. Zhu, Y.; Liu, X.; Deng, R.; Zhai, Y. Memetic algorithm for solving monthly unit commitment problem considering uncertain wind power. J. Control Autom. Electr. Syst. 2020, 31, 511–520. [CrossRef]
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Security-constrained unit commitment: Modeling, solutions and evaluations. (2025). Alavi-Eshkaftaki, Amin ; Najafabadi, Fatemeh Rajaei ; Hashemian, Seyed Nasrollah ; Khaleghizadeh, Ali ; Nezamabadi, Hossein ; Ramandi, Mostafa Yousefi ; Mozdawar, Seyed Alireza ; Hatziargyriou, Nikos D ; Dolatabadi, Sarineh Hacopian ; Latify, Mohammad Amin ; Mokhtari, Ali.
    In: Applied Energy.
    RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005264.

    Full description at Econpapers || Download paper

  2. A digital twin-based adaptive optimization approach applied to waste heat recovery in green steel production: Development and experimental investigation. (2024). Hofmann, Rene ; Schwarzmayr, Paul ; Schwaiger, Michael ; Kasper, Lukas ; Javernik, Florian ; Birkelbach, Felix.
    In: Applied Energy.
    RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015568.

    Full description at Econpapers || Download paper

  3. Mixed-Integer Conic Formulation of Unit Commitment with Stochastic Wind Power. (2023). Quan, Ran ; Huang, Liying ; Zheng, Haiyan.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:2:p:346-:d:1029916.

    Full description at Econpapers || Download paper

  4. A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions. (2023). Abdi, Hamdi.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:19:p:4170-:d:1253980.

    Full description at Econpapers || Download paper

  5. Modified Genetic Algorithm for the Profit-Based Unit Commitment Problem in Competitive Electricity Market. (2023). Nepomuceno, Lucas Santiago ; de Oliveira, Layon Mescolin ; da Silva, Ivo Chaves ; de Paula, Arthur Neves.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:23:p:7751-:d:1286926.

    Full description at Econpapers || Download paper

  6. Peak shaving and short-term economic operation of hydro-wind-PV hybrid system considering the uncertainty of wind and PV power. (2023). Wang, Yimin ; Lei, Kaixuan ; Chang, Jianxia ; Ren, Chengqing ; Guo, Aijun.
    In: Renewable Energy.
    RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008005.

    Full description at Econpapers || Download paper

  7. Real-time pricing based on convex hull method for smart grid with multiple generating units. (2023). Gao, Yan ; Li, Ningning.
    In: Energy.
    RePEc:eee:energy:v:285:y:2023:i:c:s0360544223029377.

    Full description at Econpapers || Download paper

  8. Distributionally robust unit commitment with an adjustable uncertainty set and dynamic demand response. (2023). Du, Yuefang ; Hu, Weihao ; Huang, QI ; Bamisile, Olusola ; Jiang, Lin ; Qing, KE.
    In: Energy.
    RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023167.

    Full description at Econpapers || Download paper

  9. Multi-objective optimization of crude oil-supply portfolio based on interval prediction data. (2022). Li, jianping ; Sun, Xiaolei ; Hao, Jun.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:309:y:2022:i:2:d:10.1007_s10479-020-03701-w.

    Full description at Econpapers || Download paper

  10. A Brief Review of Microgrid Surveys, by Focusing on Energy Management System. (2022). Abdi, Hamdi.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2022:i:1:p:284-:d:1013650.

    Full description at Econpapers || Download paper

  11. Neural Approaches to Short-Time Load Forecasting in Power Systems—A Comparative Study. (2022). Ciechulski, Tomasz ; Osowski, Stanislaw ; Szmurlo, Robert ; Siwek, Krzysztof.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3265-:d:805761.

    Full description at Econpapers || Download paper

  12. Trend- and Periodicity-Trait-Driven Gasoline Demand Forecasting. (2022). Zhao, Jinlou ; Zhang, Jindai.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:10:p:3553-:d:814143.

    Full description at Econpapers || Download paper

  13. Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization. (2022). Zhao, Ning ; You, Fengqi.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122003343.

    Full description at Econpapers || Download paper

  14. A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks. (2022). Jasiński, Tomasz ; Jasiski, Tomasz.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:159:y:2022:i:c:s136403212200140x.

    Full description at Econpapers || Download paper

  15. A novel seasonal fractional grey model for predicting electricity demand: A case study of Zhejiang in China. (2022). Zhang, Zhiwei ; Zhou, Wenhao ; Li, Hailin.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:200:y:2022:i:c:p:128-147.

    Full description at Econpapers || Download paper

  16. Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN). (2022). Tan, Mustafa ; Emeksiz, Cem.
    In: Energy.
    RePEc:eee:energy:v:249:y:2022:i:c:s0360544222006880.

    Full description at Econpapers || Download paper

  17. Probabilistic load forecasting with a non-crossing sparse-group Lasso-quantile regression deep neural network. (2022). Liu, Yezheng ; Lu, Shixiang ; Xu, Qifa ; Jiang, Cuixia ; Kusiak, Andrew.
    In: Energy.
    RePEc:eee:energy:v:242:y:2022:i:c:s0360544221032047.

    Full description at Econpapers || Download paper

  18. A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India. (2022). Natarajan, Sukumar ; Chaturvedi, Shobhit ; McCullen, Nick ; Rajasekar, Elangovan.
    In: Energy Policy.
    RePEc:eee:enepol:v:168:y:2022:i:c:s0301421522003226.

    Full description at Econpapers || Download paper

  19. A novel quantitative forecasting framework in energy with applications in designing energy-intelligent tax policies. (2022). Onel, Onur ; Matthews, Logan R ; Pistikopoulos, Efstratios N ; Hallermann, Detlef R ; Floudas, Christodoulos A ; Niziolek, Alexander M ; Baratsas, Stefanos G ; Sorescu, Sorin M.
    In: Applied Energy.
    RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011260.

    Full description at Econpapers || Download paper

  20. Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting. (2021). Kusaf, Mehmet ; Salman, Diaa.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:24:p:13609-:d:698734.

    Full description at Econpapers || Download paper

  21. Uncertainty in Unit Commitment in Power Systems: A Review of Models, Methods, and Applications. (2021). Hong, Ying-Yi ; Francesco, Gerard.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:20:p:6658-:d:656355.

    Full description at Econpapers || Download paper

  22. A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV. (2021). Steens, Thomas ; Grottke, Matthias ; von Maydell, Karsten ; Telle, Jan-Simon ; di Modica, Gian-Luca ; Agert, Carsten ; Engel, Bernd ; Hanke, Benedikt.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3576-:d:575802.

    Full description at Econpapers || Download paper

  23. A deep learning framework for building energy consumption forecast. (2021). Somu, Nivethitha ; Ramamritham, Krithi ; Raman, Gauthama.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:137:y:2021:i:c:s1364032120308753.

    Full description at Econpapers || Download paper

  24. Can electricity demand lead to air pollution? A spatio-temporal analysis of electricity demand with climatic conditions. (2021). Bedi, Jatin ; Toshniwal, Durga.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:136:y:2021:i:c:s1364032120307000.

    Full description at Econpapers || Download paper

  25. Improved efficiency maximization strategy for vehicular dual-stack fuel cell system considering load state of sub-stacks through predictive soft-loading. (2021). Liu, Zhixiang ; Zeng, Tao ; Chan, Siew Hwa ; Wu, QI ; Deng, Chenghao ; Zhang, Caizhi.
    In: Renewable Energy.
    RePEc:eee:renene:v:179:y:2021:i:c:p:929-944.

    Full description at Econpapers || Download paper

  26. Energy consumption prediction model with deep inception residual network inspiration and LSTM. (2021). Salam, Abdulwahed ; el Hibaoui, Abdelaaziz.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:97-109.

    Full description at Econpapers || Download paper

  27. Research and application of a hybrid model for mid-term power demand forecasting based on secondary decomposition and interval optimization. (2021). Ji, Zhengsen ; Xu, Xiaomin ; Li, Wanying ; Niu, Dongxiao ; Liu, DA.
    In: Energy.
    RePEc:eee:energy:v:234:y:2021:i:c:s0360544221013931.

    Full description at Econpapers || Download paper

  28. Real-time power prediction approach for turbine using deep learning techniques. (2021). Xie, Yonghui ; Xia, Xinlei ; Liu, Tianyuan ; Sun, Lei ; Zhang, DI.
    In: Energy.
    RePEc:eee:energy:v:233:y:2021:i:c:s0360544221013785.

    Full description at Econpapers || Download paper

  29. Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network. (2021). Yuan, Shan ; Cheng, Ming ; Cao, Junxing ; Wang, Jun.
    In: Energy.
    RePEc:eee:energy:v:233:y:2021:i:c:s036054422101330x.

    Full description at Econpapers || Download paper

  30. Impact of Covid-19 pandemic on electricity demand in the UK based on multivariate time series forecasting with Bidirectional Long Short Term Memory. (2021). Lin, ZI ; Liu, Xiaolei.
    In: Energy.
    RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007040.

    Full description at Econpapers || Download paper

  31. Forecasting seasonal variations in electricity consumption and electricity usage efficiency of industrial sectors using a grey modeling approach. (2021). Zhao, Yu-Feng ; Pei, Ling-Ling ; Chen, Hai-Bao .
    In: Energy.
    RePEc:eee:energy:v:222:y:2021:i:c:s0360544221002012.

    Full description at Econpapers || Download paper

  32. A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19. (2021). Ma, Xin ; Lu, Hongfang.
    In: Energy.
    RePEc:eee:energy:v:219:y:2021:i:c:s036054422032675x.

    Full description at Econpapers || Download paper

  33. Analysis and forecast of Chinas energy consumption structure. (2021). Su, Bin ; Luo, Song ; Zeng, Sheng ; Tao, Qingmei ; Zhang, Minglong ; Liu, Jun ; Gao, Yuan.
    In: Energy Policy.
    RePEc:eee:enepol:v:159:y:2021:i:c:s030142152100495x.

    Full description at Econpapers || Download paper

  34. A hybrid deep learning-based online energy management scheme for industrial microgrid. (2021). Lu, Renzhi ; Wei, Min ; Sun, Mingyang ; Jiang, Junhui ; Zhang, Hai-Tao ; Xiao, Feng ; Ding, Yuemin ; Bai, Ruichang.
    In: Applied Energy.
    RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011806.

    Full description at Econpapers || Download paper

  35. Artificial Intelligence and emerging digital technologies in the energy sector. (2021). Lyu, Wenjing ; Liu, Jin.
    In: Applied Energy.
    RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009843.

    Full description at Econpapers || Download paper

  36. Forecasting seasonal electricity generation in European countries under Covid-19-induced lockdown using fractional grey prediction models and machine learning methods. (2021). Chen, Yan ; Ahin, Utkucan ; Balli, Serkan.
    In: Applied Energy.
    RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009181.

    Full description at Econpapers || Download paper

  37. Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression. (2021). Chen, Ying ; Goude, Yannig ; Xu, Xiuqin ; Yao, Qiwei.
    In: Applied Energy.
    RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008539.

    Full description at Econpapers || Download paper

  38. Long short term memory–convolutional neural network based deep hybrid approach for solar irradiance forecasting. (2021). Kumari, Pratima ; Toshniwal, Durga.
    In: Applied Energy.
    RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005158.

    Full description at Econpapers || Download paper

  39. A framework for predicting the production performance of unconventional resources using deep learning. (2021). Rui, Zhenhua ; Wang, Sen ; Feng, Qihong ; Javadpour, Farzam ; Qin, Chaoxu.
    In: Applied Energy.
    RePEc:eee:appene:v:295:y:2021:i:c:s0306261921004827.

    Full description at Econpapers || Download paper

  40. An improved self-organizing incremental neural network model for short-term time-series load prediction. (2021). Wong, Yee Wan ; Rajkumar, Rajprasad Kumar ; Chong, Lee Wai ; Begam, Kasim Mumtaj.
    In: Applied Energy.
    RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003949.

    Full description at Econpapers || Download paper

  41. Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. (2021). Sulbaran, Tulio ; Chaudhuri, Saptarshi ; Langar, Sandeep ; Baaaolu, Hakan ; Chakraborty, Debaditya ; Alam, Arafat.
    In: Applied Energy.
    RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003093.

    Full description at Econpapers || Download paper

  42. Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model. (2021). Safder, Usman ; Ifaei, Pouya ; Lim, Juin Yau ; Yoo, Changkyoo ; How, Bing Shen.
    In: Applied Energy.
    RePEc:eee:appene:v:283:y:2021:i:c:s0306261920316883.

    Full description at Econpapers || Download paper

  43. Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network. (2021). Shi, YU ; Song, Xianzhi.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920314811.

    Full description at Econpapers || Download paper

  44. A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity. (2020). Son, Hyojoo ; Kim, Changwan.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:8:p:3103-:d:344794.

    Full description at Econpapers || Download paper

  45. Bayesian Optimized Echo State Network Applied to Short-Term Load Forecasting. (2020). Mariani, Viviana Cocco ; Fraccanabbia, Naylene ; Santos, Leandro Dos ; Sauer, Joo Guilherme ; Ribeiro, Gabriel Trierweiler.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2390-:d:356418.

    Full description at Econpapers || Download paper

  46. A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm. (2020). Sun, Xiaolei ; Feng, Qianqian ; Hao, Jun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:550-:d:312344.

    Full description at Econpapers || Download paper

  47. Multi-Objective Particle Swarm Optimization Algorithm for Multi-Step Electric Load Forecasting. (2020). Shang, Zhihao ; Yang, YI ; Chen, Yao.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:532-:d:311787.

    Full description at Econpapers || Download paper

  48. Deep Learning Approach to Power Demand Forecasting in Polish Power System. (2020). Ciechulski, Tomasz ; Osowski, Stanisaw.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:6154-:d:449826.

    Full description at Econpapers || Download paper

  49. Multistep-ahead forecasting of coal prices using a hybrid deep learning model. (2020). Jianhua, Zhang ; Alameer, Zakaria ; Li, Kenli ; Ye, Haiwang ; Fathalla, Ahmed.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:65:y:2020:i:c:s0301420719305240.

    Full description at Econpapers || Download paper

  50. Big data driven predictive production planning for energy-intensive manufacturing industries. (2020). Ge, Yuntian ; Zhang, Yingfeng ; Ma, Shuaiyin ; Li, Lin ; Lv, Jingxiang ; Yang, Haidong.
    In: Energy.
    RePEc:eee:energy:v:211:y:2020:i:c:s0360544220314274.

    Full description at Econpapers || Download paper

  51. A hybrid data mining driven algorithm for long term electric peak load and energy demand forecasting. (2020). Amraee, Turaj ; Kazemzadeh, Mohammad-Rasool ; Amjadian, Ali.
    In: Energy.
    RePEc:eee:energy:v:204:y:2020:i:c:s0360544220310550.

    Full description at Econpapers || Download paper

  52. Improving solar forecasting using Deep Learning and Portfolio Theory integration. (2020). , Paulo ; Anderson, Marcello ; Fernandez-Ramirez, Luis M.
    In: Energy.
    RePEc:eee:energy:v:195:y:2020:i:c:s0360544220301237.

    Full description at Econpapers || Download paper

  53. Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks. (2020). Garg, Vishal ; Rahman, Saifur ; Pipattanasomporn, Manisa ; Chitalia, Gopal.
    In: Applied Energy.
    RePEc:eee:appene:v:278:y:2020:i:c:s0306261920309223.

    Full description at Econpapers || Download paper

  54. Machine learning driven smart electric power systems: Current trends and new perspectives. (2020). Dong, Wei ; Yang, Qiang ; Ibrahim, Muhammad Sohail.
    In: Applied Energy.
    RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307492.

    Full description at Econpapers || Download paper

  55. Investigating the economics of the power sector under high penetration of variable renewable energies. (2020). Nagatomi, YU ; Matsuo, Yuhji ; Shibata, Yoshiaki ; Fujii, Yasumasa ; Endo, Seiya ; Komiyama, Ryoichi.
    In: Applied Energy.
    RePEc:eee:appene:v:267:y:2020:i:c:s0306261919316435.

    Full description at Econpapers || Download paper

  56. A novel improved model for building energy consumption prediction based on model integration. (2020). Feng, Wei ; Lu, Shilei ; Wang, Ran.
    In: Applied Energy.
    RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300738.

    Full description at Econpapers || Download paper

  57. Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption. (2020). Assimakopoulos, Vassilios ; Kourentzes, Nikolaos ; Petropoulos, Fotios ; Spiliotis, Evangelos.
    In: Applied Energy.
    RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320264.

    Full description at Econpapers || Download paper

  58. An Integrated Energy System Operating Scenarios Generator Based on Generative Adversarial Network. (2019). Hu, Zijian ; Zhong, Zhi ; Zhou, Suyang ; Jiang, Meng ; He, DI.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:23:p:6699-:d:291239.

    Full description at Econpapers || Download paper

  59. Development of an Improved Model to Predict Building Thermal Energy Consumption by Utilizing Feature Selection. (2019). Leigh, Seung-Bok ; Park, Kyungyong ; Lee, Joo Sang ; Jang, Jihoon ; Kim, Gahee ; Son, Eunjo.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:21:p:4187-:d:282965.

    Full description at Econpapers || Download paper

  60. Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks. (2019). Hwangbo, Soonho ; Li, Qian ; Nam, Kijeon ; Rashidi, Jouan ; Loy-Benitez, Jorge ; Yoo, Changkyoo.
    In: Energy.
    RePEc:eee:energy:v:178:y:2019:i:c:p:277-292.

    Full description at Econpapers || Download paper

  61. Deep learning for multi-scale smart energy forecasting. (2019). Ahmad, Tanveer ; Chen, Huanxin.
    In: Energy.
    RePEc:eee:energy:v:175:y:2019:i:c:p:98-112.

    Full description at Econpapers || Download paper

  62. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 04:49:30 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.