- Al-Musaylh M.S.; Deo R.C.; Adamowski J.F.; Li Y. Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia. Adv. Eng. Inf. 2018, 35, 1-16.
Paper not yet in RePEc: Add citation now
Al-Musaylh M.S.; Deo R.C.; Li Y. Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting. Appl. Energy 2018, 217, 422-439.
An Y.; Zhou Y.; Li R. Forecasting India’s Electricity Demand Using a Range of Probabilistic Methods. Energies 2019, 12.
- Bartz-Beielstein T.; Limbourg P.; Mehnen J. Particle Swarm Optimizers for Pareto Optimization with Enhanced Archiving Techniques. Proceedings of the 2003 Congress on Evolutionary Computation (CEC’03 IEEE), Canberra, Australia, 8–12 December 2003, ; pp. 1780-1787.
Paper not yet in RePEc: Add citation now
Bedi J.; Toshniwal D. Deep learning framework to forecast electricity demand. Appl. Energy 2019, 238, 1312-1326.
Bento P.M.R.; Pombo J.A.N.; Calado M.R.A. A bat optimized neural network and wavelet transform approach for short-term price forecasting. Appl. Energy 2018, 210, 88-97.
- Ceci M.; Corizzo R.; Malerba D. Spatial autocorrelation and entropy for renewable energy forecasting. Data Min. Knowl. Discov. 2019, 33, 698-729.
Paper not yet in RePEc: Add citation now
- Coello C.A.C.; Pulido G.T.; Lechuga M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 2004, 8, 256-279.
Paper not yet in RePEc: Add citation now
- Corizzo R.; Pio G.; Ceci M. DENCAST: Distributed density-based clustering for multi-target regression. J. Big Data 2019, 6, 43.
Paper not yet in RePEc: Add citation now
- Eseye A.T.; Lehtonen M.; Tukia T. Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems. IEEE Access 2019, 7, 91463-91475.
Paper not yet in RePEc: Add citation now
Foley A.M.; Leahy P.G.; Marvuglia A. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1-8.
- Hatori T.; Sato-Ilic M. A Fuzzy Clustering Method Using the Relative Structure of the Belongingness of Objects to Clusters. Procedia Comput. Sci. 2014, 35, 994-1002.
Paper not yet in RePEc: Add citation now
- Jin Y.; Sendhoff B. Pareto-based multiobjective machine learning: An overview and case studies. IEEE Trans. Syst. Man Cybern. Part C 2008, 38, 397-415.
Paper not yet in RePEc: Add citation now
- Johannesen N.J.; Kolhe M.; Goodwin M. Relative evaluation of regression tools for urban area electrical energy demand forecasting. J. Clean. Prod. 2019, 218, 555-564.
Paper not yet in RePEc: Add citation now
- Koroglu S.; Sergeant P.; Umurkan N. Comparison of Analytical, Finite Element and Neural Network Methods to Study Magnetic Shielding. Simul. Model. Pract. Theory 2010, 18, 206-216.
Paper not yet in RePEc: Add citation now
- La Rosa M.; Rabinovich M.I.; Huerta R. Slow regularization through chaotic oscillation transfer in an unidirectional chain of Hindmarsh–Rose models. Phys. Lett. A 2000, 266, 88-93.
Paper not yet in RePEc: Add citation now
- Li S.; Wang P.; Goel L. Short-term load forecasting by wavelet transform and evolutionary extreme learning machine. Electr. Power Syst. Res. 2015, 122, 96-103.
Paper not yet in RePEc: Add citation now
Liu P.; Zheng P.; Chen Z. Deep Learning with Stacked Denoising Auto-Encoder for Short-Term Electric Load Forecasting. Energies 2019, 12.
Liu T.; Jin Y.; Gao Y. A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization. Energies 2019, 12.
- Majkowski A.; Kołodziej M.; Rak R.J. Joint Time-Frequency and Wavelet Analysis—An Introduction. Metrol. Meas. Syst. 2014, 21, 741-758.
Paper not yet in RePEc: Add citation now
Meng M.; Wang L.; Shang W. Decomposition and forecasting analysis of China’s household electricity consumption using three-dimensional decomposition and hybrid trend extrapolation models. Energy 2018, 165, 143-152.
- Moore J. Application of Particle Swarm to Multiobjective Optimization; Technical Report; Department of Computer Science and Software Engineering, Auburn University: Auburn, AL, USA, 1999.
Paper not yet in RePEc: Add citation now
- Pelleg D.; Moore A. X-Means: Extending K-Means with Efficient Estimation of the Number of Clusters; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2000.
Paper not yet in RePEc: Add citation now
- Pulido G.T.; Coello C.A.C. Using Clustering Techniques to Improve the Performance of a Multi-Objective Particle Swarm Optimizer. Genetic and Evolutionary Computation Conference; Springer: Berlin/Heidelberg, Germany, 2004; pp. 225-237.
Paper not yet in RePEc: Add citation now
Shah I.; Iftikhar H.; Ali S.; Wang D. Short-Term Electricity Demand Forecasting Using Components Estimation Technique. Energies 2019, 12.
Shi J.; Guo J.; Zheng S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew. Sustain. Energy Rev. 2012, 16, 3471-3480.
Singh S.; Yassine A. Big data mining of energy time series for behavioral analytics and energy consumption forecasting. Energies 2018, 11.
Tian C.; Hao Y. A novel nonlinear combined forecasting system for short-term load forecasting. Energies 2018, 11.
Trull Ó.; GarcÃa-DÃaz J.C.; Troncoso A. Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies 2019, 12.
- Velsink H. Time Series Analysis of 3D Coordinates Using Nonstochastic Observations. J. Appl. Geod. 2016, 10, 5-16.
Paper not yet in RePEc: Add citation now
- Verma A.; Karan A.; Mathur A.; Chethan S. Analysis of time-series method for demand forecasting. J. Eng. Appl. Sci. 2017, 12, 3102-3107.
Paper not yet in RePEc: Add citation now
Wang J.; Zhu S.; Zhang W. Combined modeling for electric load forecasting with adaptive particle swarm optimization. Energy 2010, 35, 1671-1678.
- Werbos P.J. Backpropagation through time: What it does and how to do it. Proc. IEEE 1990, 78, 1550-1560.
Paper not yet in RePEc: Add citation now
Xiao L.; Wang J.; Hou R. A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting. Energy 2015, 82, 524-549.
- Yang A.; Li W.; Yang X. Short-term electricity load forecasting based on feature selection and Least Squares Support Vector Machines. Knowl. Based Syst. 2019, 163, 159-173.
Paper not yet in RePEc: Add citation now
- Yixian L.I.U.; Roberts M.C.; Sioshansi R. A vector autoregression weather model for electricity supply and demand modeling. J. Mod. Power Syst. Clean Energy 2018, 6, 763-776.
Paper not yet in RePEc: Add citation now
- Yunishafira A. Determining the Appropriate Demand Forecasting Using Time Series Method: Study Case at Garment Industry in Indonesia. KnE Soc. Sci. 2018, 3, 553-564.
Paper not yet in RePEc: Add citation now
Zhang J.; Wei Y.M.; Li D.; Tan Z.; Zhou J. Short term electricity load forecasting using a hybrid model. Energy 2018, 158, 774-781.
- Zhang X.; Wang J.; Zhang K. Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270-285.
Paper not yet in RePEc: Add citation now
Zhang Y.; Wang J.; Lu H. Research and Application of a Novel Combined Model Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting. Energies 2019, 12.