- Ahsan, M.M.; Mahmud, M.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [CrossRef]
Paper not yet in RePEc: Add citation now
- Anderson, D.R.; Burnham, K.P.; Thompson, W.L. Null hypothesis testing: Problems, prevalence, and an alternative. J. Wildl. Manag. 2000, 64, 912â923. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ayub, M.; El-Alfy, E.S.M. Impact of Normalization on BiLSTM Based Models for Energy Disaggregation. In Proceedings of the 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain, 26â27 October 2020; pp. 1â6. [CrossRef]
Paper not yet in RePEc: Add citation now
- Bock, S.; WeiÃ, M. A proof of local convergence for the Adam optimizer. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14â19 July 2019; pp. 1â8. [CrossRef]
Paper not yet in RePEc: Add citation now
Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]
- Chi, H.R.; Tsang, K.F.; Chui, K.T.; Chung, H.S.H.; Ling, B.W.K.; Lai, L.L. Interference-mitigated ZigBee-based advanced metering infrastructure. IEEE Trans. Ind. Inform. 2016, 12, 672â684. [CrossRef]
Paper not yet in RePEc: Add citation now
- Choi, H.; Ryu, S.; Kim, H. Short-term load forecasting based on ResNet and LSTM. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29â31 October 2018; pp. 1â6. [CrossRef]
Paper not yet in RePEc: Add citation now
- Daki, H.; El Hannani, A.; Aqqal, A.; Haidine, A.; Dahbi, A. Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 2017, 4, 1â19. [CrossRef]
Paper not yet in RePEc: Add citation now
- Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058â88071. [CrossRef]
Paper not yet in RePEc: Add citation now
- Desai, S.; Alhadad, R.; Chilamkurti, N.; Mahmood, A. A survey of privacy preserving schemes in IoE enabled smart grid advanced metering infrastructure. Clust. Comput. 2019, 22, 43â69. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gantassi, R.; Ben Gouissem, B.; Cheikhrouhou, O.; El Khediri, S.; Hasnaoui, S. Optimizing quality of service of clustering protocols in large-scale wireless sensor networks with mobile data collector and machine learning. Sec. Commun. Netw. 2021, 2021, 5531185. [CrossRef]
Paper not yet in RePEc: Add citation now
- Gantassi, R.; Gouissem, B.B.; Othmen, J.B. Routing protocol LEACH-K using K-means algorithm in wireless sensor network. In Proceedings of the Workshops of the International Conference on Advanced Information Networking and Applications, Caserta, Italy, 15â17 April 2020; pp. 299â309. [CrossRef]
Paper not yet in RePEc: Add citation now
- Ghosal, A.; Conti, M. Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2831â2848. [CrossRef]
Paper not yet in RePEc: Add citation now
- Hong, Y.; Zhou, Y.; Li, Q.; Xu, W.; Zheng, X. A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 2020, 8, 55785â55797. [CrossRef]
Paper not yet in RePEc: Add citation now
- Izonin, I.; Tkachenko, R.; Kryvinska, N.; Tkachenko, P. Multiple linear regression based on coefficients identification using non-iterative SGTM neural-like structure. In Proceedings of the International Work-Conference on Artificial Neural Networks, Gran Canaria, Spain, 12â14 June 2019; pp. 467â479. [CrossRef]
Paper not yet in RePEc: Add citation now
Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685â695. [CrossRef]
Jeong, D.; Park, C.; Ko, Y.M. Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration. Appl. Energy 2021, 282, 116249. [CrossRef]
Kim, S.H.; Lee, G.; Kwon, G.Y.; Kim, D.I.; Shin, Y.J. Deep learning based on multi-decomposition for short-term load forecasting. Energies 2018, 11, 3433. [CrossRef]
Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72â81. [CrossRef]
- Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in Smart Manufacturing: The Smart Grid Paradigm. Comput. Sci. Rev. 2021, 40, 100341. [CrossRef]
Paper not yet in RePEc: Add citation now
- Li, N.; Wang, L.; Li, X.; Zhu, Q. An effective deep learning neural network model for short-term load forecasting. Concurr. Comput. Pract. Exp. 2020, 32, e5595. [CrossRef]
Paper not yet in RePEc: Add citation now
- Masood, Z.; Ardiansyah; Choi, Y. Energy-Efficient Optimal Power Allocation for SWIPT Based IoT-Enabled Smart Meter. Sensors 2021, 21, 7857. [CrossRef]
Paper not yet in RePEc: Add citation now
- Masum, S.; Liu, Y.; Chiverton, J. Multi-step time series forecasting of electric load using machine learning models. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 3â7 June 2018; pp. 148â159. [CrossRef]
Paper not yet in RePEc: Add citation now
- Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995. [CrossRef]
Paper not yet in RePEc: Add citation now
Mohammad, F.; Kim, Y.C. Energy load forecasting model based on deep neural networks for smart grids. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 824â834. [CrossRef]
- Mughees, N.; Mohsin, S.A.; Mughees, A.; Mughees, A. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting. Expert Syst. Appl. 2021, 175, 114844. [CrossRef]
Paper not yet in RePEc: Add citation now
- Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; GarcÃa, .L.; Heredia, I.; MalÃk, P.; HluchyÌ, L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77â124. [CrossRef]
Paper not yet in RePEc: Add citation now
Nugraha, G.D.; Musa, A.; Cho, J.; Park, K.; Choi, D. Lambda-based data processing architecture for two-level load forecasting in residential buildings. Energies 2018, 11, 772. [CrossRef]
Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Mariani, V.C.; Coelho, L.d.S. Electricity price forecasting based on self-adaptive decomposition and heterogeneous ensemble learning. Energies 2020, 13, 5190. [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
Paper not yet in RePEc: Add citation now
- Shin, C.; Lee, E.; Han, J.; Yim, J.; Rhee, W.; Lee, H. The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Sci. Data 2019, 6, 1â13. [CrossRef] [PubMed]
Paper not yet in RePEc: Add citation now
- Shobol, A.; Ali, M.H.; Wadi, M.; TüR, M.R. Overview of big data in smart grid. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3â6 November 2019; pp. 1022â1025. [CrossRef]
Paper not yet in RePEc: Add citation now
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929â1958.
Paper not yet in RePEc: Add citation now
- Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inform. Process. Syst. 2014, 27, 1â9.
Paper not yet in RePEc: Add citation now
- Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Bañales, S. Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 2021, 9, 54992â55008. [CrossRef]
Paper not yet in RePEc: Add citation now
- Tkachenko, R.; Izonin, I. Model and principles for the implementation of neural-like structures based on geometric data transformations. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Kiev, Ukraine, 18â20 January 2018; pp. 578â587. [CrossRef]
Paper not yet in RePEc: Add citation now
- Veeramsetty, V.; Reddy, K.R.; Santhosh, M.; Mohnot, A.; Singal, G. Short-term electric power load forecasting using random forest and gated recurrent unit. Electr. Eng. 2022, 104, 307â329. [CrossRef]
Paper not yet in RePEc: Add citation now
Yang, Y.; Shang, Z.; Chen, Y.; Chen, Y. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting. Energies 2020, 13, 532. [CrossRef]
- Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A. Household electricity load forecasting using historical smart meter data with clustering and classification techniques. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22â25 May 2018; pp. 873â879. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zainab, A.; Ghrayeb, A.; Syed, D.; Abu-Rub, H.; Refaat, S.S.; Bouhali, O. Big data management in smart grids: Technologies and challenges. IEEE Access 2021, 9, 73046â73059. [CrossRef]
Paper not yet in RePEc: Add citation now
- Zhou, B.; Meng, Y.; Huang, W.; Wang, H.; Deng, L.; Huang, S.; Wei, J. Multi-energy net load forecasting for integrated local energy systems with heterogeneous prosumers. Int. J. Electr. Power Energy Syst. 2021, 126, 106542. [CrossRef] Energies 2022, 15, 2623 11 of 11
Paper not yet in RePEc: Add citation now