create a website

A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting. (2022). Masood, Zaki ; Choi, Yonghoon ; Gantassi, Rahma.
In: Energies.
RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 41

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Attention enhanced dual stream network with advanced feature selection for power forecasting. (2025). Khan, Taimoor ; Choi, Chang.
    In: Applied Energy.
    RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019470.

    Full description at Econpapers || Download paper

  2. Ultra short term power load forecasting based on the fusion of Seq2Seq BiLSTM and multi head attention mechanism. (2024). Guo, Cheng ; Gou, Yuanfang ; Qin, Risheng.
    In: PLOS ONE.
    RePEc:plo:pone00:0299632.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahsan, M.M.; Mahmud, M.; Saha, P.K.; Gupta, K.D.; Siddique, Z. Effect of data scaling methods on machine learning algorithms and model performance. Technologies 2021, 9, 52. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Anderson, D.R.; Burnham, K.P.; Thompson, W.L. Null hypothesis testing: Problems, prevalence, and an alternative. J. Wildl. Manag. 2000, 64, 912–923. [CrossRef]
    Paper not yet in RePEc: Add citation now
  3. Ayub, M.; El-Alfy, E.S.M. Impact of Normalization on BiLSTM Based Models for Energy Disaggregation. In Proceedings of the 2020 International Conference on Data Analytics for Business and Industry: Way Towards a Sustainable Economy (ICDABI), Sakheer, Bahrain, 26–27 October 2020; pp. 1–6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Bock, S.; Weiß, M. A proof of local convergence for the Adam optimizer. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]

  6. Chi, H.R.; Tsang, K.F.; Chui, K.T.; Chung, H.S.H.; Ling, B.W.K.; Lai, L.L. Interference-mitigated ZigBee-based advanced metering infrastructure. IEEE Trans. Ind. Inform. 2016, 12, 672–684. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Choi, H.; Ryu, S.; Kim, H. Short-term load forecasting based on ResNet and LSTM. In Proceedings of the 2018 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; pp. 1–6. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Daki, H.; El Hannani, A.; Aqqal, A.; Haidine, A.; Dahbi, A. Big Data management in smart grid: Concepts, requirements and implementation. J. Big Data 2017, 4, 1–19. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step short-term load forecasting. IEEE Access 2019, 7, 88058–88071. [CrossRef]
    Paper not yet in RePEc: Add citation now
  10. Desai, S.; Alhadad, R.; Chilamkurti, N.; Mahmood, A. A survey of privacy preserving schemes in IoE enabled smart grid advanced metering infrastructure. Clust. Comput. 2019, 22, 43–69. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Gantassi, R.; Ben Gouissem, B.; Cheikhrouhou, O.; El Khediri, S.; Hasnaoui, S. Optimizing quality of service of clustering protocols in large-scale wireless sensor networks with mobile data collector and machine learning. Sec. Commun. Netw. 2021, 2021, 5531185. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Gantassi, R.; Gouissem, B.B.; Othmen, J.B. Routing protocol LEACH-K using K-means algorithm in wireless sensor network. In Proceedings of the Workshops of the International Conference on Advanced Information Networking and Applications, Caserta, Italy, 15–17 April 2020; pp. 299–309. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Ghosal, A.; Conti, M. Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun. Surv. Tutor. 2019, 21, 2831–2848. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Hong, Y.; Zhou, Y.; Li, Q.; Xu, W.; Zheng, X. A deep learning method for short-term residential load forecasting in smart grid. IEEE Access 2020, 8, 55785–55797. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Izonin, I.; Tkachenko, R.; Kryvinska, N.; Tkachenko, P. Multiple linear regression based on coefficients identification using non-iterative SGTM neural-like structure. In Proceedings of the International Work-Conference on Artificial Neural Networks, Gran Canaria, Spain, 12–14 June 2019; pp. 467–479. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [CrossRef]

  17. Jeong, D.; Park, C.; Ko, Y.M. Short-term electric load forecasting for buildings using logistic mixture vector autoregressive model with curve registration. Appl. Energy 2021, 282, 116249. [CrossRef]

  18. Kim, S.H.; Lee, G.; Kwon, G.Y.; Kim, D.I.; Shin, Y.J. Deep learning based on multi-decomposition for short-term load forecasting. Energies 2018, 11, 3433. [CrossRef]

  19. Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [CrossRef]

  20. Kotsiopoulos, T.; Sarigiannidis, P.; Ioannidis, D.; Tzovaras, D. Machine Learning and Deep Learning in Smart Manufacturing: The Smart Grid Paradigm. Comput. Sci. Rev. 2021, 40, 100341. [CrossRef]
    Paper not yet in RePEc: Add citation now
  21. Li, N.; Wang, L.; Li, X.; Zhu, Q. An effective deep learning neural network model for short-term load forecasting. Concurr. Comput. Pract. Exp. 2020, 32, e5595. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Masood, Z.; Ardiansyah; Choi, Y. Energy-Efficient Optimal Power Allocation for SWIPT Based IoT-Enabled Smart Meter. Sensors 2021, 21, 7857. [CrossRef]
    Paper not yet in RePEc: Add citation now
  23. Masum, S.; Liu, Y.; Chiverton, J. Multi-step time series forecasting of electric load using machine learning models. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 3–7 June 2018; pp. 148–159. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Memarzadeh, G.; Keynia, F. Short-term electricity load and price forecasting by a new optimal LSTM-NN based prediction algorithm. Electr. Power Syst. Res. 2021, 192, 106995. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Mohammad, F.; Kim, Y.C. Energy load forecasting model based on deep neural networks for smart grids. Int. J. Syst. Assur. Eng. Manag. 2020, 11, 824–834. [CrossRef]

  26. Mughees, N.; Mohsin, S.A.; Mughees, A.; Mughees, A. Deep sequence to sequence Bi-LSTM neural networks for day-ahead peak load forecasting. Expert Syst. Appl. 2021, 175, 114844. [CrossRef]
    Paper not yet in RePEc: Add citation now
  27. Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; García, .L.; Heredia, I.; Malík, P.; Hluchỳ, L. Machine learning and deep learning frameworks and libraries for large-scale data mining: A survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]
    Paper not yet in RePEc: Add citation now
  28. Nugraha, G.D.; Musa, A.; Cho, J.; Park, K.; Choi, D. Lambda-based data processing architecture for two-level load forecasting in residential buildings. Energies 2018, 11, 772. [CrossRef]

  29. Ribeiro, M.H.D.M.; Stefenon, S.F.; de Lima, J.D.; Nied, A.; Mariani, V.C.; Coelho, L.d.S. Electricity price forecasting based on self-adaptive decomposition and heterogeneous ensemble learning. Energies 2020, 13, 5190. [CrossRef]

  30. Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [CrossRef]
    Paper not yet in RePEc: Add citation now
  31. Shin, C.; Lee, E.; Han, J.; Yim, J.; Rhee, W.; Lee, H. The ENERTALK dataset, 15 Hz electricity consumption data from 22 houses in Korea. Sci. Data 2019, 6, 1–13. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  32. Shobol, A.; Ali, M.H.; Wadi, M.; TüR, M.R. Overview of big data in smart grid. In Proceedings of the 2019 8th International Conference on Renewable Energy Research and Applications (ICRERA), Brasov, Romania, 3–6 November 2019; pp. 1022–1025. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
    Paper not yet in RePEc: Add citation now
  34. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. Adv. Neural Inform. Process. Syst. 2014, 27, 1–9.
    Paper not yet in RePEc: Add citation now
  35. Syed, D.; Abu-Rub, H.; Ghrayeb, A.; Refaat, S.S.; Houchati, M.; Bouhali, O.; Bañales, S. Deep learning-based short-term load forecasting approach in smart grid with clustering and consumption pattern recognition. IEEE Access 2021, 9, 54992–55008. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Tkachenko, R.; Izonin, I. Model and principles for the implementation of neural-like structures based on geometric data transformations. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Kiev, Ukraine, 18–20 January 2018; pp. 578–587. [CrossRef]
    Paper not yet in RePEc: Add citation now
  37. Veeramsetty, V.; Reddy, K.R.; Santhosh, M.; Mohnot, A.; Singal, G. Short-term electric power load forecasting using random forest and gated recurrent unit. Electr. Eng. 2022, 104, 307–329. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Yang, Y.; Shang, Z.; Chen, Y.; Chen, Y. Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting. Energies 2020, 13, 532. [CrossRef]

  39. Yildiz, B.; Bilbao, J.I.; Dore, J.; Sproul, A. Household electricity load forecasting using historical smart meter data with clustering and classification techniques. In Proceedings of the 2018 IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), Singapore, 22–25 May 2018; pp. 873–879. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Zainab, A.; Ghrayeb, A.; Syed, D.; Abu-Rub, H.; Refaat, S.S.; Bouhali, O. Big data management in smart grids: Technologies and challenges. IEEE Access 2021, 9, 73046–73059. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Zhou, B.; Meng, Y.; Huang, W.; Wang, H.; Deng, L.; Huang, S.; Wei, J. Multi-energy net load forecasting for integrated local energy systems with heterogeneous prosumers. Int. J. Electr. Power Energy Syst. 2021, 126, 106542. [CrossRef] Energies 2022, 15, 2623 11 of 11
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System. (2022). Cheresharov, Stoyan ; Hadzhikoleva, Stanka ; Yotov, Kostadin.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:11074-:d:907460.

    Full description at Econpapers || Download paper

  2. Handling Load Uncertainty during On-Peak Time via Dual ESS and LSTM with Load Data Augmentation. (2022). Kim, Jung-Su ; Hwang, Jin Sol ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3001-:d:797751.

    Full description at Econpapers || Download paper

  3. A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting. (2022). Masood, Zaki ; Choi, Yonghoon ; Gantassi, Rahma.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419.

    Full description at Econpapers || Download paper

  4. Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective Electrical Energy Savings: An Overview. (2022). Lazarova-Molnar, Sanja ; Bouktif, Salah ; Ouni, Ali.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1741-:d:759035.

    Full description at Econpapers || Download paper

  5. Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. (2022). Torres, J F ; Martinez-Alvarez, F ; Hadjout, D ; Troncoso, A ; Sebaa, A.
    In: Energy.
    RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090.

    Full description at Econpapers || Download paper

  6. Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation. (2022). Kraft, Markus ; Hofmeister, Markus ; Hammacher, Jorg ; Rohrig, Gerd ; Dorr, Christoph ; Bhave, Amit ; Flegel, Volker ; Mosbach, Sebastian ; Blum, Martin.
    In: Applied Energy.
    RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011958.

    Full description at Econpapers || Download paper

  7. Policyholder cluster divergence based differential premium in diabetes insurance. (2021). Qin, Yifang ; Tang, Qing ; Bashir, Muhammad Farhan ; Ma, Benjiang.
    In: Managerial and Decision Economics.
    RePEc:wly:mgtdec:v:42:y:2021:i:7:p:1793-1807.

    Full description at Econpapers || Download paper

  8. An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal. (2021). Zhao, Zhen ; Li, Kun ; Tian, Huixin ; Ren, Daixu.
    In: Journal of Intelligent Manufacturing.
    RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3.

    Full description at Econpapers || Download paper

  9. Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network. (2021). Bae, Sungwoo ; Chang, Munseok ; Yoo, Jaehyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:24:p:13783-:d:701865.

    Full description at Econpapers || Download paper

  10. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. (2021). Farooq, Umer ; Haider, Syed Irtaza ; Aslam, Shahzad ; Bukhsh, Rasool ; Ayub, Nasir ; Alvi, Muhammad Junaid ; Rukh, Gul ; Albogamy, Fahad R ; Azar, Ahmad Taher.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12653-:d:680508.

    Full description at Econpapers || Download paper

  11. Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea. (2021). Yum, Kyung-Taek ; Jun, Kyung-Soo ; Han, Kuk-Heon ; Koo, Kang-Min ; Kim, Jung-Sik ; Lee, Gyumin.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:11:p:6056-:d:563769.

    Full description at Econpapers || Download paper

  12. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. (2021). Bai, Yu-Ting ; Jin, Xue-Bo ; Wang, Xiao-Yi ; Zheng, Wei-Zhen ; Su, Ting-Li ; Lin, Seng ; Kong, Jian-Lei.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:6:p:1596-:d:516332.

    Full description at Econpapers || Download paper

  13. Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms. (2021). Sawadogo, Windmanagda ; Schneiders, Thorsten ; Meilinger, Stefanie ; Rummeny, Silvan ; Chaaraoui, Samer ; Bebber, Matthias ; Kunstmann, Harald.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:2:p:409-:d:479449.

    Full description at Econpapers || Download paper

  14. Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction. (2021). Prava, Venkat ; Barta, Gergo ; Pasztor, Benedek.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:22:p:7794-:d:684578.

    Full description at Econpapers || Download paper

  15. Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption. (2021). Senchilo, Nikita Dmitrievich ; Ustinov, Denis Anatolievich.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7098-:d:669182.

    Full description at Econpapers || Download paper

  16. Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings. (2021). Fakhri, Youssef ; Hadri, Sarah ; el Arroussi, Mohamed ; Bakhouya, Mohamed ; Najib, Mehdi.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5831-:d:636032.

    Full description at Econpapers || Download paper

  17. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. (2021). Javed, Umar ; Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Ijaz, Khalid ; Ansari, Ejaz A.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657.

    Full description at Econpapers || Download paper

  18. A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV. (2021). Steens, Thomas ; Grottke, Matthias ; von Maydell, Karsten ; Telle, Jan-Simon ; di Modica, Gian-Luca ; Agert, Carsten ; Engel, Bernd ; Hanke, Benedikt.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3576-:d:575802.

    Full description at Econpapers || Download paper

  19. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. (2021). Barja-Martinez, Sara ; Villafafila-Robles, Roberto ; Lloret-Gallego, Pau ; Aragues-Pealba, Monica ; Munne-Collado, Ingrid ; Bullich-Massague, Eduard.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007413.

    Full description at Econpapers || Download paper

  20. Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power. (2021). , Yosca ; Tan, Sek F ; Lee, Hyun-Jin.
    In: Renewable Energy.
    RePEc:eee:renene:v:178:y:2021:i:c:p:1006-1019.

    Full description at Econpapers || Download paper

  21. Energy consumption prediction model with deep inception residual network inspiration and LSTM. (2021). Salam, Abdulwahed ; el Hibaoui, Abdelaaziz.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:97-109.

    Full description at Econpapers || Download paper

  22. An improved self-organizing incremental neural network model for short-term time-series load prediction. (2021). Wong, Yee Wan ; Rajkumar, Rajprasad Kumar ; Chong, Lee Wai ; Begam, Kasim Mumtaj.
    In: Applied Energy.
    RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003949.

    Full description at Econpapers || Download paper

  23. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. (2021). Sharma, Vinay ; Fekri, Mohammad Navid ; Grolinger, Katarina ; Patel, Harsh.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315804.

    Full description at Econpapers || Download paper

  24. Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network. (2020). Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2020:i:1:p:104-:d:467643.

    Full description at Econpapers || Download paper

  25. A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus. (2020). Solyali, Davut.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:9:p:3612-:d:352230.

    Full description at Econpapers || Download paper

  26. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. (2020). Baysal, Mustafa ; Yaprakdal, Fatma ; Yilmaz, Berkay M ; Anvari-Moghaddam, Amjad.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1653-:d:324095.

    Full description at Econpapers || Download paper

  27. Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs. (2020). Dadarlat, Vasile Teodor ; Cioara, Tudor ; Antal, Marcel ; Anghel, Ionut ; Salomie, Ioan ; Pop, Claudia ; Iancu, Bogdan ; Vesa, Andreea Valeria.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1417-:d:320667.

    Full description at Econpapers || Download paper

  28. Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms. (2020). Zakeri, Sahar ; Shoaran, Maryam ; Mohammadi, Fazel ; Mohammadi-Ivatloo, Behnam ; Moradzadeh, Arash.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:17:p:7076-:d:406243.

    Full description at Econpapers || Download paper

  29. Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management. (2020). Hwang, Seung-June ; Kim, Jongsoo ; Noh, Ji Seong ; Park, Hyun-Ji.
    In: Mathematics.
    RePEc:gam:jmathe:v:8:y:2020:i:4:p:565-:d:344368.

    Full description at Econpapers || Download paper

  30. Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid. (2020). Kim, Yunsun ; Son, Heung-Gu.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2377-:d:355978.

    Full description at Econpapers || Download paper

  31. Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models. (2020). Casaca, Wallace ; Dias, Mauricio Araujo ; Colnago, Marilaine ; Leme, Joo Vitor.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:6:p:1407-:d:333831.

    Full description at Econpapers || Download paper

  32. An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks. (2020). Young, William A ; Younessinaki, Roohollah ; Weckman, Gary R ; Sadeghi, Azadeh.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:571-:d:312867.

    Full description at Econpapers || Download paper

  33. Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. (2020). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:2:p:391-:d:308290.

    Full description at Econpapers || Download paper

  34. Applying Deep Learning to the Heat Production Planning Problem in a District Heating System. (2020). Yoon, Seok Mann ; Song, Sang Hwa ; Kim, Kwanho ; Lee, Jae Seung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6641-:d:463123.

    Full description at Econpapers || Download paper

  35. Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach. (2020). Otto, Marc-Oliver ; Hwang, Junhwa ; Suh, Dongjun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5885-:d:443383.

    Full description at Econpapers || Download paper

  36. Optimal ESS Scheduling for Peak Shaving of Building Energy Using Accuracy-Enhanced Load Forecast. (2020). Kim, Jung-Su ; Hwang, Jin Sol ; Fitri, Ismi Rosyiana ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5633-:d:435920.

    Full description at Econpapers || Download paper

  37. Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption. (2020). Cho, Sung-Bae ; Bu, Seok-Jun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4722-:d:411730.

    Full description at Econpapers || Download paper

  38. A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning. (2020). Kim, Jun-Hyeok ; Lee, Byung-Sung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4358-:d:403158.

    Full description at Econpapers || Download paper

  39. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. (2020). Wang, Yanan ; Kang, LE ; Pang, Jinbo ; Peng, Fei ; Zhou, Yanting.
    In: Applied Energy.
    RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318562.

    Full description at Econpapers || Download paper

  40. Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation. (2019). Kuang, Liang ; Zhu, Erxi ; Pi, Dechang ; Hua, Chi.
    In: International Journal of Distributed Sensor Networks.
    RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719883134.

    Full description at Econpapers || Download paper

  41. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. (2019). Wadud, Zahid ; Mujeeb, Sana ; Javaid, Nadeem ; Afzal, Muhammad Khalil ; Ilahi, Manzoor ; Ishmanov, Farruh.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:4:p:987-:d:205948.

    Full description at Econpapers || Download paper

  42. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. (2019). Haider, Syed Irtaza ; Alhussein, Musaed ; Aurangzeb, Khursheed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:8:p:1487-:d:224240.

    Full description at Econpapers || Download paper

  43. Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting. (2019). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:1:p:149-:d:194483.

    Full description at Econpapers || Download paper

  44. Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation. (2019). Wi, Young-Min ; Acharya, Shree Krishna ; Lee, Jaehee.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3560-:d:268046.

    Full description at Econpapers || Download paper

  45. Long-Term Demand Forecasting in a Scenario of Energy Transition. (2019). Sanchez-Duran, Rafael ; Barbancho, Julio ; Luque, Joaquin.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:16:p:3095-:d:256899.

    Full description at Econpapers || Download paper

  46. Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches. (2019). Yang, Zhile ; Guo, Yuanjun ; Zhou, Yimin ; Wei, Yanjie ; Chang, Yan ; Feng, Shengzhong ; Mourshed, Monjur ; Zhu, Juncheng.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:14:p:2692-:d:248158.

    Full description at Econpapers || Download paper

  47. District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model. (2019). Wang, Zhipan ; Pan, YU ; Lin, Tao ; Song, Jiancai ; Xue, Guixiang ; Qi, Chengying.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:11:p:2122-:d:236771.

    Full description at Econpapers || Download paper

  48. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. (2018). Zhan, Panpan ; Ma, Jian ; Zhang, Chunhong ; Tian, Chujie.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3493-:d:190634.

    Full description at Econpapers || Download paper

  49. Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting. (2018). Shin, Yong-June ; Kim, Seon Hyeog ; Lee, Gyul ; Kwon, Gu-Young.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3433-:d:188862.

    Full description at Econpapers || Download paper

  50. Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain. (2018). Carutasu, George ; Cruau, George ; Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2623-:d:173257.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 20:33:23 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.