- Ahmed A.; Srihari K.; Khasawneh M.T. Integrating Artificial Neural Networks and Cluster Analysis to Assess Energy Efficiency of Buildings. Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Montreal, QC, Canada, 31 May–3 June 2014, .
Paper not yet in RePEc: Add citation now
- Al-Rakhami M.; Gumaei A.; Alsanad A.; Alamri A.; Hassan M.M. An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access 2019, 7, 48328-48338.
Paper not yet in RePEc: Add citation now
- Alam A.G.; Baek C.; Han H. Prediction and Analysis of Building Energy Efficiency Using Artificial Neural Network and Design of Experiments Prediction and Analysis of Building Energy Efficiency using Artificial Neural Network and Design of Experiments. Appl. Mech. Mater. 2016, 819, 541-545.
Paper not yet in RePEc: Add citation now
- Ardjmand E.; Millie D.F.; Ghalehkhondabi I.; Ii W.A.Y.; Weckman G.R. A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks. Adv. Artif. Neural Syst. 2016, 2016, 2303181.
Paper not yet in RePEc: Add citation now
- Bache M.L.K. UCI Machine Learning Repository; University of California: Irvine, CA, USA, 2012.
Paper not yet in RePEc: Add citation now
Bagheri A.; Feldheim V.; Ioakimidis C. On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings. Energies 2018, 11.
Bouktif S.; Fiaz A.; Ouni A.; Serhani M. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11.
- Bourdeau M.; Nefzaoui E.; Guo X.; Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533.
Paper not yet in RePEc: Add citation now
- Cariboni J.; Gatelli D.; Liska R.; Saltelli A. The role of sensitivity analysis in ecological modelling. Ecol. Modell. 2006, 3, 167-182.
Paper not yet in RePEc: Add citation now
- Cheng M.; Cao M. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. J. 2014, 22, 178-188.
Paper not yet in RePEc: Add citation now
- Chou J.; Bui D. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437-446.
Paper not yet in RePEc: Add citation now
- Duarte G.R.; Vanessa P.; Capriles Z.; Celso A.; Lemonge D.C. Comparison of machine learning techniques for predicting energy loads in buildings. mbiente ConstruÃdo 2017, 17, 103-115.
Paper not yet in RePEc: Add citation now
- Energy Efficiency: Buildings; International Energy Agency (IEA): Paris, France, 2018.
Paper not yet in RePEc: Add citation now
- Fei Y.; Pengdong G.; Yongquan L. Evolving Resilient Back-Propagation Algorithm for Energy Efficiency. MATEC Web Conf. 2016, 77, 06016.
Paper not yet in RePEc: Add citation now
- Geletka V.; Sedlákováa A. Shape of buildings and energy consumption. Czas. Tech. Bud. 2012, 109, 124-129.
Paper not yet in RePEc: Add citation now
- Kavaklioglu K. Robust modeling of heating and cooling loads using partial least squares towards efficient residential building design. J. Build. Eng. 2018, 18, 467-475.
Paper not yet in RePEc: Add citation now
- Kumar S.; Pal S.K.; Pal R. Intra ELM variants ensemble based model to predict energy performance in residential buildings. Sustain. Energy Grids Netw. 2018, 16, 177-187.
Paper not yet in RePEc: Add citation now
- Millie D.F.; Weckman G.R.; Young W.A.; Ivey J.E.; Carrick H.J.; Fahnenstiel G.L. Environmental Modelling & Software Modeling microalgal abundance with artificial neural networks: Demonstration of a heuristic ‘Grey-Box’ to deconvolve and quantify environmental influences. Environ. Model. Softw. 2012, 38, 27-39.
Paper not yet in RePEc: Add citation now
Naji S.; Keivani A.; Shamshirband S.; Alengaram U.J.; Zamin M.; Lee M. Estimating building energy consumption using extreme learning machine method. Energy 2016, 97, 506-516.
Naji S.; Shamshirband S.; Basser H.; Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renew. Sustain. Energy Rev. 2016, 53, 1520-1528.
- Nilashi M.; Dalvi-esfahani M.; Ibrahim O.; Bagherifard K. A soft computing method for the prediction of energy performance of residential buildings. Measurement 2017, 109, 268-280.
Paper not yet in RePEc: Add citation now
- Nwulu N.I. An artificial neural network model for predicting building heating and cooling loads. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017, .
Paper not yet in RePEc: Add citation now
Park S.; Ryu S.; Choi Y.; Kim J.; Kim H. Data-Driven Baseline Estimation of Residential Buildings for Demand Response. Energies 2015, 8, 10239-10259.
- Regina G.; Capriles P. Prediction of energy load of buildings using machine learning methods database and machine learnig methods. Proceedings of the Conference of Computational Interdisciplinary Science, São José dos Campos, Barzil, 7–10 November 2016, .
Paper not yet in RePEc: Add citation now
- Roy S.S.; Roy R.; Balas V.E. Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energy Rev. 2018, 82, 4256-4268.
Paper not yet in RePEc: Add citation now
- Saltelli A.; Ratto M.; Andres T.; Campolongo F.; Cariboni J.; Saisana M. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008.
Paper not yet in RePEc: Add citation now
- Saltelli A.; Tarantola S.; Campolongo F.; Ratto M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley: Chichester, UK, 2004.
Paper not yet in RePEc: Add citation now
- Saxena A.; Agarwal N.; Srivastava G. Energy savings parameters in households of Uttar Pradesh, India. TERI Inf. Dig. Energy Environ. 2012, 11, 179-188.
Paper not yet in RePEc: Add citation now
- Schunn C.D.; Wallach D. Evaluating Goodness-of-Fit in Comparison of Models to Data. Psychol. Kognit. Reden Vor. Anlässlich Emeritierung Werner Tack 2005, 1, 115-135.
Paper not yet in RePEc: Add citation now
- Sekhar S.; Pijush R.; Ishan S.; Hemant N.; Vishal J. Forecasting heating and cooling loads of buildings: A comparative performance analysis. J. Ambient Intell. Humaniz. Comput. 2019, 1-12.
Paper not yet in RePEc: Add citation now
- Seyedzadeh S.; Rahimian F.P.; Glesk I.; Roper M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5.
Paper not yet in RePEc: Add citation now
- Sharizatul W.; Rashdi S.W.M.; Embi M.R. Analysing Optimum Building Form in Relation to Lower Cooling Load. Procedia Soc. Behav. Sci. 2016, 222, 782-790.
Paper not yet in RePEc: Add citation now
- Sonmez Y.; Guvenc U.; Kahraman H.T.; Yilmaz C. A Comperative Study on Novel Machine Learning Algorithms for Estimation of Energy Performance of Residential Buildings. Proceedings of the 2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 29–30 April 2015, ; pp. 1-7.
Paper not yet in RePEc: Add citation now
- Transition to Sustainable Buildings; International Energy Agency (IEA): Paris, France, 2013; ISBN 978-92-64-20241-2.
Paper not yet in RePEc: Add citation now
- Tsanas A.; Xifara A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49, 560-567.
Paper not yet in RePEc: Add citation now
- Weckman G.R.; Millie D.F.; Ganduri C.; Rangwala M.; Young W.; Rinder M.; Fahnenstiel G.L. Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring. Int. J. Ind. Syst. Eng. 2009, 3, 38-55.
Paper not yet in RePEc: Add citation now
- Yeung D.S.; Cloete I.; Shi D.; Ng W.W.Y. Sensitivity Analysis for Neural Networks; Springer: Berlin/Heidelberg, Germany, 2010.
Paper not yet in RePEc: Add citation now
- Yezioro A.; Dong B.; Leite F. An applied artificial intelligence approach towards assessing building performance simulation tools. Energy Build. 2008, 40, 612-620.
Paper not yet in RePEc: Add citation now
Yu W.; Li B.; Lei Y.; Liu M. Analysis of a Residential Building Energy Consumption Demand Model. Energies 2011, 4, 475-487.