create a website

An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks. (2020). Young, William A ; Younessinaki, Roohollah ; Weckman, Gary R ; Sadeghi, Azadeh.
In: Energies.
RePEc:gam:jeners:v:13:y:2020:i:3:p:571-:d:312867.

Full description at Econpapers || Download paper

Cited: 16

Citations received by this document

Cites: 39

References cited by this document

Cocites: 60

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. A novel ensemble machine learning approach for optimizing sustainability and green hydrogen production in hybrid renewable-based organic Rankine cycle-operated proton exchange membrane electrolyser system. (2025). Sanjay, K ; Karthik, Pavish A ; Kumar, Praveen G ; Prasath, Guru P ; Madhesh, K.
    In: Renewable Energy.
    RePEc:eee:renene:v:242:y:2025:i:c:s096014812500031x.

    Full description at Econpapers || Download paper

  2. Data-Driven Tools for Building Energy Consumption Prediction: A Review. (2023). Ganiyu, Sikiru ; Olu-Ajayi, Razak ; Akanbi, Lukman ; Owolabi, Hakeem ; Alaka, Hafiz.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:6:p:2574-:d:1091853.

    Full description at Econpapers || Download paper

  3. Prediction of Food Factory Energy Consumption Using MLP and SVR Algorithms. (2023). Gu, Jae-Hoi ; Lee, Hyungah ; Kim, Dongju.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2023:i:3:p:1550-:d:1057513.

    Full description at Econpapers || Download paper

  4. Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization. (2023). Aste, Niccolo ; Lavagna, Monica ; Toosi, Hashem Amini ; Leonforte, Fabrizio ; del Pero, Claudio.
    In: Applied Energy.
    RePEc:eee:appene:v:334:y:2023:i:c:s0306261923000120.

    Full description at Econpapers || Download paper

  5. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. (2022). Alqahtani, Talal ; Algarni, Salem ; Almutairi, Khalid ; Moayedi, Hossein ; Mosavi, Amir.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:10:p:5924-:d:814937.

    Full description at Econpapers || Download paper

  6. Machine Intelligence in Smart Buildings. (2022). Dounis, Anastasios I.
    In: Energies.
    RePEc:gam:jeners:v:16:y:2022:i:1:p:22-:d:1009198.

    Full description at Econpapers || Download paper

  7. Comparison of Hospital Building’s Energy Consumption Prediction Using Artificial Neural Networks, ANFIS, and LSTM Network. (2022). Panagiotou, Dimitrios K ; Dounis, Anastasios I.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:17:p:6453-:d:906048.

    Full description at Econpapers || Download paper

  8. Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics. (2021). Alghieth, Manal ; Chiclana, Francisco ; Ibrahim, Dina M ; Al-Shargabi, Amal A ; Almhafdy, Abdulbasit.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12442-:d:676562.

    Full description at Econpapers || Download paper

  9. Analyzing the Adoption Challenges of the Internet of Things (IoT) and Artificial Intelligence (AI) for Smart Cities in China. (2021). Li, Zhixing ; Zhao, Yafei ; Gangadhari, Rajan Kumar ; Wang, KE.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:19:p:10983-:d:649393.

    Full description at Econpapers || Download paper

  10. Improvement Effect of Green Remodeling and Building Value Assessment Criteria for Aging Public Buildings. (2021). Jun, Yong-Joon ; Ahn, Seung-Ho ; Park, Kyung-Soon.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:1200-:d:504312.

    Full description at Econpapers || Download paper

  11. Forecasting of Energy Demands for Smart Home Applications. (2021). Grabowska, Marlena ; Lis, Marcin ; Bhatt, Dhowmya ; Hariharasudan, A.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:4:p:1045-:d:500722.

    Full description at Econpapers || Download paper

  12. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. (2021). ben Haddou, Mohamed ; Qadir, Junaid ; Merabet, Ghezlane Halhoul ; Benhaddou, Driss ; Qolomany, Basheer ; Al-Fuqaha, Ala ; Anan, Muhammad ; Abid, Mohamed Riduan ; Essaaidi, Mohamed.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002616.

    Full description at Econpapers || Download paper

  13. Big Data for Energy Management and Energy-Efficient Buildings. (2020). Marinakis, Vangelis.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:7:p:1555-:d:337630.

    Full description at Econpapers || Download paper

  14. Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery. (2020). Gumbarevi, Sanjin ; Gai, Mergim ; Dunovi, Ivana Burcar ; Milovanovi, Bojan.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:20:p:5519-:d:432381.

    Full description at Econpapers || Download paper

  15. How Pro-Environmental Legal Regulations Affect the Design Process and Management of Multi-Family Residential Buildings in Poland. (2020). Rutkowski, Radosaw ; Raczyski, Miosz.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:20:p:5449-:d:431087.

    Full description at Econpapers || Download paper

  16. Artificial Neural Network for the Thermal Comfort Index Prediction: Development of a New Simplified Algorithm. (2020). Nardi, Iole ; Palladino, Domenico ; Buratti, Cinzia.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4500-:d:406941.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Ahmed A.; Srihari K.; Khasawneh M.T. Integrating Artificial Neural Networks and Cluster Analysis to Assess Energy Efficiency of Buildings. Proceedings of the 2014 Industrial and Systems Engineering Research Conference, Montreal, QC, Canada, 31 May–3 June 2014, .
    Paper not yet in RePEc: Add citation now
  2. Al-Rakhami M.; Gumaei A.; Alsanad A.; Alamri A.; Hassan M.M. An Ensemble Learning Approach for Accurate Energy Load Prediction in Residential Buildings. IEEE Access 2019, 7, 48328-48338.
    Paper not yet in RePEc: Add citation now
  3. Alam A.G.; Baek C.; Han H. Prediction and Analysis of Building Energy Efficiency Using Artificial Neural Network and Design of Experiments Prediction and Analysis of Building Energy Efficiency using Artificial Neural Network and Design of Experiments. Appl. Mech. Mater. 2016, 819, 541-545.
    Paper not yet in RePEc: Add citation now
  4. Ardjmand E.; Millie D.F.; Ghalehkhondabi I.; Ii W.A.Y.; Weckman G.R. A State-Based Sensitivity Analysis for Distinguishing the Global Importance of Predictor Variables in Artificial Neural Networks. Adv. Artif. Neural Syst. 2016, 2016, 2303181.
    Paper not yet in RePEc: Add citation now
  5. Bache M.L.K. UCI Machine Learning Repository; University of California: Irvine, CA, USA, 2012.
    Paper not yet in RePEc: Add citation now
  6. Bagheri A.; Feldheim V.; Ioakimidis C. On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings. Energies 2018, 11.

  7. Bouktif S.; Fiaz A.; Ouni A.; Serhani M. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11.

  8. Bourdeau M.; Nefzaoui E.; Guo X.; Chatellier P. Modeling and forecasting building energy consumption: A review of data-driven techniques. Sustain. Cities Soc. 2019, 48, 101533.
    Paper not yet in RePEc: Add citation now
  9. Cariboni J.; Gatelli D.; Liska R.; Saltelli A. The role of sensitivity analysis in ecological modelling. Ecol. Modell. 2006, 3, 167-182.
    Paper not yet in RePEc: Add citation now
  10. Cheng M.; Cao M. Accurately predicting building energy performance using evolutionary multivariate adaptive regression splines. Appl. Soft Comput. J. 2014, 22, 178-188.
    Paper not yet in RePEc: Add citation now
  11. Chou J.; Bui D. Modeling heating and cooling loads by artificial intelligence for energy-efficient building design. Energy Build. 2014, 82, 437-446.
    Paper not yet in RePEc: Add citation now
  12. Duarte G.R.; Vanessa P.; Capriles Z.; Celso A.; Lemonge D.C. Comparison of machine learning techniques for predicting energy loads in buildings. mbiente Construído 2017, 17, 103-115.
    Paper not yet in RePEc: Add citation now
  13. Energy Efficiency: Buildings; International Energy Agency (IEA): Paris, France, 2018.
    Paper not yet in RePEc: Add citation now
  14. Fei Y.; Pengdong G.; Yongquan L. Evolving Resilient Back-Propagation Algorithm for Energy Efficiency. MATEC Web Conf. 2016, 77, 06016.
    Paper not yet in RePEc: Add citation now
  15. Geletka V.; Sedlákováa A. Shape of buildings and energy consumption. Czas. Tech. Bud. 2012, 109, 124-129.
    Paper not yet in RePEc: Add citation now
  16. Kavaklioglu K. Robust modeling of heating and cooling loads using partial least squares towards efficient residential building design. J. Build. Eng. 2018, 18, 467-475.
    Paper not yet in RePEc: Add citation now
  17. Kumar S.; Pal S.K.; Pal R. Intra ELM variants ensemble based model to predict energy performance in residential buildings. Sustain. Energy Grids Netw. 2018, 16, 177-187.
    Paper not yet in RePEc: Add citation now
  18. Millie D.F.; Weckman G.R.; Young W.A.; Ivey J.E.; Carrick H.J.; Fahnenstiel G.L. Environmental Modelling & Software Modeling microalgal abundance with artificial neural networks: Demonstration of a heuristic ‘Grey-Box’ to deconvolve and quantify environmental influences. Environ. Model. Softw. 2012, 38, 27-39.
    Paper not yet in RePEc: Add citation now
  19. Naji S.; Keivani A.; Shamshirband S.; Alengaram U.J.; Zamin M.; Lee M. Estimating building energy consumption using extreme learning machine method. Energy 2016, 97, 506-516.

  20. Naji S.; Shamshirband S.; Basser H.; Keivani A. Application of adaptive neuro-fuzzy methodology for estimating building energy consumption. Renew. Sustain. Energy Rev. 2016, 53, 1520-1528.

  21. Nilashi M.; Dalvi-esfahani M.; Ibrahim O.; Bagherifard K. A soft computing method for the prediction of energy performance of residential buildings. Measurement 2017, 109, 268-280.
    Paper not yet in RePEc: Add citation now
  22. Nwulu N.I. An artificial neural network model for predicting building heating and cooling loads. Proceedings of the 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya, Turkey, 16–17 September 2017, .
    Paper not yet in RePEc: Add citation now
  23. Park S.; Ryu S.; Choi Y.; Kim J.; Kim H. Data-Driven Baseline Estimation of Residential Buildings for Demand Response. Energies 2015, 8, 10239-10259.

  24. Regina G.; Capriles P. Prediction of energy load of buildings using machine learning methods database and machine learnig methods. Proceedings of the Conference of Computational Interdisciplinary Science, São José dos Campos, Barzil, 7–10 November 2016, .
    Paper not yet in RePEc: Add citation now
  25. Roy S.S.; Roy R.; Balas V.E. Estimating heating load in buildings using multivariate adaptive regression splines, extreme learning machine, a hybrid model of MARS and ELM. Renew. Sustain. Energy Rev. 2018, 82, 4256-4268.
    Paper not yet in RePEc: Add citation now
  26. Saltelli A.; Ratto M.; Andres T.; Campolongo F.; Cariboni J.; Saisana M. Global Sensitivity Analysis: The Primer; John Wiley & Sons: Hoboken, NJ, USA, 2008.
    Paper not yet in RePEc: Add citation now
  27. Saltelli A.; Tarantola S.; Campolongo F.; Ratto M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models; Wiley: Chichester, UK, 2004.
    Paper not yet in RePEc: Add citation now
  28. Saxena A.; Agarwal N.; Srivastava G. Energy savings parameters in households of Uttar Pradesh, India. TERI Inf. Dig. Energy Environ. 2012, 11, 179-188.
    Paper not yet in RePEc: Add citation now
  29. Schunn C.D.; Wallach D. Evaluating Goodness-of-Fit in Comparison of Models to Data. Psychol. Kognit. Reden Vor. Anlässlich Emeritierung Werner Tack 2005, 1, 115-135.
    Paper not yet in RePEc: Add citation now
  30. Sekhar S.; Pijush R.; Ishan S.; Hemant N.; Vishal J. Forecasting heating and cooling loads of buildings: A comparative performance analysis. J. Ambient Intell. Humaniz. Comput. 2019, 1-12.
    Paper not yet in RePEc: Add citation now
  31. Seyedzadeh S.; Rahimian F.P.; Glesk I.; Roper M. Machine learning for estimation of building energy consumption and performance: A review. Vis. Eng. 2018, 6, 5.
    Paper not yet in RePEc: Add citation now
  32. Sharizatul W.; Rashdi S.W.M.; Embi M.R. Analysing Optimum Building Form in Relation to Lower Cooling Load. Procedia Soc. Behav. Sci. 2016, 222, 782-790.
    Paper not yet in RePEc: Add citation now
  33. Sonmez Y.; Guvenc U.; Kahraman H.T.; Yilmaz C. A Comperative Study on Novel Machine Learning Algorithms for Estimation of Energy Performance of Residential Buildings. Proceedings of the 2015 3rd International Istanbul Smart Grid Congress and Fair (ICSG), Istanbul, Turkey, 29–30 April 2015, ; pp. 1-7.
    Paper not yet in RePEc: Add citation now
  34. Transition to Sustainable Buildings; International Energy Agency (IEA): Paris, France, 2013; ISBN 978-92-64-20241-2.
    Paper not yet in RePEc: Add citation now
  35. Tsanas A.; Xifara A. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build. 2012, 49, 560-567.
    Paper not yet in RePEc: Add citation now
  36. Weckman G.R.; Millie D.F.; Ganduri C.; Rangwala M.; Young W.; Rinder M.; Fahnenstiel G.L. Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring Knowledge Extraction from the Neural ‘Black Box’ in Ecological Monitoring. Int. J. Ind. Syst. Eng. 2009, 3, 38-55.
    Paper not yet in RePEc: Add citation now
  37. Yeung D.S.; Cloete I.; Shi D.; Ng W.W.Y. Sensitivity Analysis for Neural Networks; Springer: Berlin/Heidelberg, Germany, 2010.
    Paper not yet in RePEc: Add citation now
  38. Yezioro A.; Dong B.; Leite F. An applied artificial intelligence approach towards assessing building performance simulation tools. Energy Build. 2008, 40, 612-620.
    Paper not yet in RePEc: Add citation now
  39. Yu W.; Li B.; Lei Y.; Liu M. Analysis of a Residential Building Energy Consumption Demand Model. Energies 2011, 4, 475-487.

Cocites

Documents in RePEc which have cited the same bibliography

  1. A state-of-the-art review of solar-induced ventilation technology for built environment regulation: Classification, modeling, evaluation, potential and challenges. (2024). Shu, Zheng-Yu ; Cai, Yang ; Zhao, Fu-Yun ; Huang, Kai-Liang ; Cheng, Yuan-Da ; Li, Yong-Cai.
    In: Energy.
    RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037277.

    Full description at Econpapers || Download paper

  2. Neuro-Cybernetic System for Forecasting Electricity Consumption in the Bulgarian National Power System. (2022). Cheresharov, Stoyan ; Hadzhikoleva, Stanka ; Yotov, Kostadin.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:17:p:11074-:d:907460.

    Full description at Econpapers || Download paper

  3. Highlighting the Probabilistic Behavior of Occupants’ Preferences in Energy Consumption by Integrating a Thermal Comfort Controller in a Tropical Climate. (2022). Austin, Miguel Chen ; Ballestero, Luis ; Aversa, Alejandra.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:15:p:9591-:d:880329.

    Full description at Econpapers || Download paper

  4. Handling Load Uncertainty during On-Peak Time via Dual ESS and LSTM with Load Data Augmentation. (2022). Kim, Jung-Su ; Hwang, Jin Sol ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:9:p:3001-:d:797751.

    Full description at Econpapers || Download paper

  5. A Multi-Step Time-Series Clustering-Based Seq2Seq LSTM Learning for a Single Household Electricity Load Forecasting. (2022). Masood, Zaki ; Choi, Yonghoon ; Gantassi, Rahma.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2623-:d:786419.

    Full description at Econpapers || Download paper

  6. Towards a Rigorous Consideration of Occupant Behaviours of Residential Households for Effective Electrical Energy Savings: An Overview. (2022). Lazarova-Molnar, Sanja ; Bouktif, Salah ; Ouni, Ali.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:5:p:1741-:d:759035.

    Full description at Econpapers || Download paper

  7. Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives. (2022). Amirat, Yassine ; Benbouzid, Mohamed ; Beddiar, Karim ; Boodi, Abhinandana.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:4:p:1328-:d:747469.

    Full description at Econpapers || Download paper

  8. Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building. (2022). Michalak, Piotr.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:10:p:3709-:d:818754.

    Full description at Econpapers || Download paper

  9. Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market. (2022). Torres, J F ; Martinez-Alvarez, F ; Hadjout, D ; Troncoso, A ; Sebaa, A.
    In: Energy.
    RePEc:eee:energy:v:243:y:2022:i:c:s0360544221033090.

    Full description at Econpapers || Download paper

  10. Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation. (2022). Kraft, Markus ; Hofmeister, Markus ; Hammacher, Jorg ; Rohrig, Gerd ; Dorr, Christoph ; Bhave, Amit ; Flegel, Volker ; Mosbach, Sebastian ; Blum, Martin.
    In: Applied Energy.
    RePEc:eee:appene:v:305:y:2022:i:c:s0306261921011958.

    Full description at Econpapers || Download paper

  11. Policyholder cluster divergence based differential premium in diabetes insurance. (2021). Qin, Yifang ; Tang, Qing ; Bashir, Muhammad Farhan ; Ma, Benjiang.
    In: Managerial and Decision Economics.
    RePEc:wly:mgtdec:v:42:y:2021:i:7:p:1793-1807.

    Full description at Econpapers || Download paper

  12. An adaptive update model based on improved Long Short Term Memory for online prediction of vibration signal. (2021). Zhao, Zhen ; Li, Kun ; Tian, Huixin ; Ren, Daixu.
    In: Journal of Intelligent Manufacturing.
    RePEc:spr:joinma:v:32:y:2021:i:1:d:10.1007_s10845-020-01556-3.

    Full description at Econpapers || Download paper

  13. Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network. (2021). Bae, Sungwoo ; Chang, Munseok ; Yoo, Jaehyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:24:p:13783-:d:701865.

    Full description at Econpapers || Download paper

  14. Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid. (2021). Farooq, Umer ; Haider, Syed Irtaza ; Aslam, Shahzad ; Bukhsh, Rasool ; Ayub, Nasir ; Alvi, Muhammad Junaid ; Rukh, Gul ; Albogamy, Fahad R ; Azar, Ahmad Taher.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:22:p:12653-:d:680508.

    Full description at Econpapers || Download paper

  15. Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea. (2021). Yum, Kyung-Taek ; Jun, Kyung-Soo ; Han, Kuk-Heon ; Koo, Kang-Min ; Kim, Jung-Sik ; Lee, Gyumin.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:11:p:6056-:d:563769.

    Full description at Econpapers || Download paper

  16. Deep-Learning Forecasting Method for Electric Power Load via Attention-Based Encoder-Decoder with Bayesian Optimization. (2021). Bai, Yu-Ting ; Jin, Xue-Bo ; Wang, Xiao-Yi ; Zheng, Wei-Zhen ; Su, Ting-Li ; Lin, Seng ; Kong, Jian-Lei.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:6:p:1596-:d:516332.

    Full description at Econpapers || Download paper

  17. Sensitivity Analysis of 4R3C Model Parameters with Respect to Structure and Geometric Characteristics of Buildings. (2021). Feldheim, Veronique ; Genikomsakis, Konstantinos N ; Ioakimidis, Christos S ; Bagheri, Ali.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:3:p:657-:d:488515.

    Full description at Econpapers || Download paper

  18. Day-Ahead Electric Load Forecast for a Ghanaian Health Facility Using Different Algorithms. (2021). Sawadogo, Windmanagda ; Schneiders, Thorsten ; Meilinger, Stefanie ; Rummeny, Silvan ; Chaaraoui, Samer ; Bebber, Matthias ; Kunstmann, Harald.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:2:p:409-:d:479449.

    Full description at Econpapers || Download paper

  19. Optimized Charge Controller Schedule in Hybrid Solar-Battery Farms for Peak Load Reduction. (2021). Prava, Venkat ; Barta, Gergo ; Pasztor, Benedek.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:22:p:7794-:d:684578.

    Full description at Econpapers || Download paper

  20. Method for Determining the Optimal Capacity of Energy Storage Systems with a Long-Term Forecast of Power Consumption. (2021). Senchilo, Nikita Dmitrievich ; Ustinov, Denis Anatolievich.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:21:p:7098-:d:669182.

    Full description at Econpapers || Download paper

  21. Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings. (2021). Fakhri, Youssef ; Hadri, Sarah ; el Arroussi, Mohamed ; Bakhouya, Mohamed ; Najib, Mehdi.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:18:p:5831-:d:636032.

    Full description at Econpapers || Download paper

  22. Exploratory Data Analysis Based Short-Term Electrical Load Forecasting: A Comprehensive Analysis. (2021). Javed, Umar ; Husev, Oleksandr ; Shabbir, Noman ; Jawad, Muhammad ; Kutt, Lauri ; Ijaz, Khalid ; Ansari, Ejaz A.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:17:p:5510-:d:628657.

    Full description at Econpapers || Download paper

  23. A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV. (2021). Steens, Thomas ; Grottke, Matthias ; von Maydell, Karsten ; Telle, Jan-Simon ; di Modica, Gian-Luca ; Agert, Carsten ; Engel, Bernd ; Hanke, Benedikt.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:12:p:3576-:d:575802.

    Full description at Econpapers || Download paper

  24. Artificial intelligence techniques for enabling Big Data services in distribution networks: A review. (2021). Barja-Martinez, Sara ; Villafafila-Robles, Roberto ; Lloret-Gallego, Pau ; Aragues-Pealba, Monica ; Munne-Collado, Ingrid ; Bullich-Massague, Eduard.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:150:y:2021:i:c:s1364032121007413.

    Full description at Econpapers || Download paper

  25. Comparison of physical and machine learning models for estimating solar irradiance and photovoltaic power. (2021). , Yosca ; Tan, Sek F ; Lee, Hyun-Jin.
    In: Renewable Energy.
    RePEc:eee:renene:v:178:y:2021:i:c:p:1006-1019.

    Full description at Econpapers || Download paper

  26. Energy consumption prediction model with deep inception residual network inspiration and LSTM. (2021). Salam, Abdulwahed ; el Hibaoui, Abdelaaziz.
    In: Mathematics and Computers in Simulation (MATCOM).
    RePEc:eee:matcom:v:190:y:2021:i:c:p:97-109.

    Full description at Econpapers || Download paper

  27. An improved self-organizing incremental neural network model for short-term time-series load prediction. (2021). Wong, Yee Wan ; Rajkumar, Rajprasad Kumar ; Chong, Lee Wai ; Begam, Kasim Mumtaj.
    In: Applied Energy.
    RePEc:eee:appene:v:292:y:2021:i:c:s0306261921003949.

    Full description at Econpapers || Download paper

  28. Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. (2021). Sharma, Vinay ; Fekri, Mohammad Navid ; Grolinger, Katarina ; Patel, Harsh.
    In: Applied Energy.
    RePEc:eee:appene:v:282:y:2021:i:pa:s0306261920315804.

    Full description at Econpapers || Download paper

  29. Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network. (2020). Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2020:i:1:p:104-:d:467643.

    Full description at Econpapers || Download paper

  30. A Comparative Analysis of Machine Learning Approaches for Short-/Long-Term Electricity Load Forecasting in Cyprus. (2020). Solyali, Davut.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:9:p:3612-:d:352230.

    Full description at Econpapers || Download paper

  31. A Deep Neural Network-Assisted Approach to Enhance Short-Term Optimal Operational Scheduling of a Microgrid. (2020). Baysal, Mustafa ; Yaprakdal, Fatma ; Yilmaz, Berkay M ; Anvari-Moghaddam, Amjad.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1653-:d:324095.

    Full description at Econpapers || Download paper

  32. Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs. (2020). Dadarlat, Vasile Teodor ; Cioara, Tudor ; Antal, Marcel ; Anghel, Ionut ; Salomie, Ioan ; Pop, Claudia ; Iancu, Bogdan ; Vesa, Andreea Valeria.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:4:p:1417-:d:320667.

    Full description at Econpapers || Download paper

  33. Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms. (2020). Zakeri, Sahar ; Shoaran, Maryam ; Mohammadi, Fazel ; Mohammadi-Ivatloo, Behnam ; Moradzadeh, Arash.
    In: Sustainability.
    RePEc:gam:jsusta:v:12:y:2020:i:17:p:7076-:d:406243.

    Full description at Econpapers || Download paper

  34. Gated Recurrent Unit with Genetic Algorithm for Product Demand Forecasting in Supply Chain Management. (2020). Hwang, Seung-June ; Kim, Jongsoo ; Noh, Ji Seong ; Park, Hyun-Ji.
    In: Mathematics.
    RePEc:gam:jmathe:v:8:y:2020:i:4:p:565-:d:344368.

    Full description at Econpapers || Download paper

  35. Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid. (2020). Kim, Yunsun ; Son, Heung-Gu.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:9:p:2377-:d:355978.

    Full description at Econpapers || Download paper

  36. An Online Grey-Box Model Based on Unscented Kalman Filter to Predict Temperature Profiles in Smart Buildings. (2020). Massano, Marco ; Bottaccioli, Lorenzo ; Macii, Enrico ; Patti, Edoardo ; Acquaviva, Andrea.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:8:p:2097-:d:349048.

    Full description at Econpapers || Download paper

  37. Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models. (2020). Casaca, Wallace ; Dias, Mauricio Araujo ; Colnago, Marilaine ; Leme, Joo Vitor.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:6:p:1407-:d:333831.

    Full description at Econpapers || Download paper

  38. An Intelligent Model to Predict Energy Performances of Residential Buildings Based on Deep Neural Networks. (2020). Young, William A ; Younessinaki, Roohollah ; Weckman, Gary R ; Sadeghi, Azadeh.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:3:p:571-:d:312867.

    Full description at Econpapers || Download paper

  39. Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. (2020). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:2:p:391-:d:308290.

    Full description at Econpapers || Download paper

  40. Applying Deep Learning to the Heat Production Planning Problem in a District Heating System. (2020). Yoon, Seok Mann ; Song, Sang Hwa ; Kim, Kwanho ; Lee, Jae Seung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:24:p:6641-:d:463123.

    Full description at Econpapers || Download paper

  41. Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach. (2020). Otto, Marc-Oliver ; Hwang, Junhwa ; Suh, Dongjun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:22:p:5885-:d:443383.

    Full description at Econpapers || Download paper

  42. Optimal ESS Scheduling for Peak Shaving of Building Energy Using Accuracy-Enhanced Load Forecast. (2020). Kim, Jung-Su ; Hwang, Jin Sol ; Fitri, Ismi Rosyiana ; Song, Hwachang.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:21:p:5633-:d:435920.

    Full description at Econpapers || Download paper

  43. Time Series Forecasting with Multi-Headed Attention-Based Deep Learning for Residential Energy Consumption. (2020). Cho, Sung-Bae ; Bu, Seok-Jun.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:18:p:4722-:d:411730.

    Full description at Econpapers || Download paper

  44. A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning. (2020). Kim, Jun-Hyeok ; Lee, Byung-Sung.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:17:p:4358-:d:403158.

    Full description at Econpapers || Download paper

  45. Performance Assessment of Data-Driven and Physical-Based Models to Predict Building Energy Demand in Model Predictive Controls. (2020). Coccia, Gianluca ; Polonara, Fabio ; Mugnini, Alice ; Arteconi, Alessia.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:12:p:3125-:d:372392.

    Full description at Econpapers || Download paper

  46. Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors. (2020). Wang, Yanan ; Kang, LE ; Pang, Jinbo ; Peng, Fei ; Zhou, Yanting.
    In: Applied Energy.
    RePEc:eee:appene:v:260:y:2020:i:c:s0306261919318562.

    Full description at Econpapers || Download paper

  47. Short-term power prediction of photovoltaic power station based on long short-term memory-back-propagation. (2019). Kuang, Liang ; Zhu, Erxi ; Pi, Dechang ; Hua, Chi.
    In: International Journal of Distributed Sensor Networks.
    RePEc:sae:intdis:v:15:y:2019:i:10:p:1550147719883134.

    Full description at Econpapers || Download paper

  48. Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities. (2019). Wadud, Zahid ; Mujeeb, Sana ; Javaid, Nadeem ; Afzal, Muhammad Khalil ; Ilahi, Manzoor ; Ishmanov, Farruh.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2019:i:4:p:987-:d:205948.

    Full description at Econpapers || Download paper

  49. Microgrid-Level Energy Management Approach Based on Short-Term Forecasting of Wind Speed and Solar Irradiance. (2019). Haider, Syed Irtaza ; Alhussein, Musaed ; Aurangzeb, Khursheed.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:8:p:1487-:d:224240.

    Full description at Econpapers || Download paper

  50. Assessing the Energy Performance of Solar Thermal Energy for Heat Production in Urban Areas: A Case Study. (2019). Oimoan, Teodora Melania ; Moga, Ligia Mihaela ; Danku, Gelu ; Manea, Daniela Lucia ; Czil, Aurica.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:6:p:1088-:d:215902.

    Full description at Econpapers || Download paper

  51. Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting. (2019). Bouktif, Salah ; Serhani, Mohamed Adel ; Ouni, Ali ; Fiaz, Ali.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:1:p:149-:d:194483.

    Full description at Econpapers || Download paper

  52. Short-Term Load Forecasting for a Single Household Based on Convolution Neural Networks Using Data Augmentation. (2019). Wi, Young-Min ; Acharya, Shree Krishna ; Lee, Jaehee.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:18:p:3560-:d:268046.

    Full description at Econpapers || Download paper

  53. Long-Term Demand Forecasting in a Scenario of Energy Transition. (2019). Sanchez-Duran, Rafael ; Barbancho, Julio ; Luque, Joaquin.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:16:p:3095-:d:256899.

    Full description at Econpapers || Download paper

  54. Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches. (2019). Yang, Zhile ; Guo, Yuanjun ; Zhou, Yimin ; Wei, Yanjie ; Chang, Yan ; Feng, Shengzhong ; Mourshed, Monjur ; Zhu, Juncheng.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:14:p:2692-:d:248158.

    Full description at Econpapers || Download paper

  55. District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model. (2019). Wang, Zhipan ; Pan, YU ; Lin, Tao ; Song, Jiancai ; Xue, Guixiang ; Qi, Chengying.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:11:p:2122-:d:236771.

    Full description at Econpapers || Download paper

  56. Review of in situ methods for assessing the thermal transmittance of walls. (2019). Fresco-Contreras, Rafael ; Moyano, Juan ; Marin, David ; Bienvenido-Huertas, David.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:102:y:2019:i:c:p:356-371.

    Full description at Econpapers || Download paper

  57. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. (2018). Zhan, Panpan ; Ma, Jian ; Zhang, Chunhong ; Tian, Chujie.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3493-:d:190634.

    Full description at Econpapers || Download paper

  58. Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting. (2018). Shin, Yong-June ; Kim, Seon Hyeog ; Lee, Gyul ; Kwon, Gu-Young.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:12:p:3433-:d:188862.

    Full description at Econpapers || Download paper

  59. Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain. (2018). Carutasu, George ; Cruau, George ; Petroanu, Dana-Mihaela ; Pirjan, Alexandru.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:10:p:2623-:d:173257.

    Full description at Econpapers || Download paper

  60. Too much cocited documents. This list is not complete

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 22:25:01 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.