- Antonanzas, J. ; Osorio, N. ; Escobar, R. ; Urraca, R. ; Martinez-de-Pison, F.J. ; Antonanzas-Torres, F. Review of photovoltaic power forecasting. 2016 Sol. Energy. 136 78-111
Paper not yet in RePEc: Add citation now
Aslam, M. ; Lee, J.-M. ; Kim, H.-S. ; Lee, S.-J. ; Hong, S. Deep learning models for long-term solar radiation forecasting considering microgrid installation: a comparative study. 2019 Energies. 13 -
- B-K. Jeon and E-J. Kim, “Next-day prediction of hourly solar irradiance using local weather forecasts and LSTM trained with non-local data”, Energies, vol. 13, no. 20, doi: 10.3390/en13205258.
Paper not yet in RePEc: Add citation now
Bouktif, S. ; Fiaz, A. ; Ouni, A. ; Serhani, M.A. Optimal deep learning LSTM model for electric load forecasting using feature selection and genetic algorithm: comparison with machine learning approaches. 2018 Energies. 11 -
- Breiman, L. Random forests. 2001 Mach. Learn.. 45 5-32
Paper not yet in RePEc: Add citation now
- Chivers, B.D. ; Wallbank, J. ; Cole, S.J. ; Sebek, O. ; Stanley, S. ; Fry, M. ; Leontidis, G. Imputation of missing sub-hourly precipitation data in a large sensor network: a machine learning approach. 2020 J. Hydrol. 588 125126-
Paper not yet in RePEc: Add citation now
Despotovi, M. ; Nedic, V. ; Despotovic, D. ; Cvetanovic, S. Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. 2016 Renew. Sustain. Energy Rev.. 56 246-260
- Dhimish, M. ; Holmes, V. ; Mehrdadi, B. ; Dales, M. Comparing mamdani sugeno fuzzy logic and RBF ANN network for PV fault detection. 2018 Renew. Energy. 117 257-274
Paper not yet in RePEc: Add citation now
- Drucker, H. ; Surges, C.J.C. ; Kaufman, L. ; Smola, A. ; Vapnik, V. Support vector regression machines. 1997 Adv. Neural Inf. Process. Syst.. 1 155-161
Paper not yet in RePEc: Add citation now
- Duffie, J.A. ; Beckman, W.A. Solar Engineering of Thermal Processes. 2013 John Wiley & Sons.:
Paper not yet in RePEc: Add citation now
- Garniwa, P.M.P. ; Ramadhan, R.A.A. ; Lee, H.J. Application of semi-empirical models based on satellite images for estimating solar irradiance in Korea. 2021 Appl. Sci.. 11 3445-
Paper not yet in RePEc: Add citation now
- Garoudja, E. ; Chouder, A. ; Kara, K. ; Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. 2017 Energy Convers. Manag.. 151 496-513
Paper not yet in RePEc: Add citation now
- Geng, D. ; Zhang, H. ; Wu, H. Short-term wind speed prediction based on principal component analysis and LSTM. 2019 Appl. Sci.. 9 -
Paper not yet in RePEc: Add citation now
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. 2015 Nature. 521 452-459
- Gilman, P. ; Dobos, A. ; DiOrio, N. ; Freeman, J. ; Janzou, S. ; Ryberg, D. System Advisor Model (SAM ). 2018 NREL:
Paper not yet in RePEc: Add citation now
- Guyon, I. ; Elisseeff, A. An introduction to variable and feature selection. 2003 J. Mach. Learn. Res.. 3 1157-1182
Paper not yet in RePEc: Add citation now
- Heinemann, Alexandre Bryan ; Pepijn, A. ; van Oort, J. Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. 2012 Bragantia. 71 572-582
Paper not yet in RePEc: Add citation now
- Hochreiter, S. ; Schmidhuber, J. Long short-term memory. 1997 Neural Comput.. 9 1735-1780
Paper not yet in RePEc: Add citation now
Husein, M. ; Chung, I.-Y. Day-ahead solar irradiance forecasting for microgrids using a long short-term memory recurrent neural network: a deep learning approach. 2019 Energies. 12 -
- Inman, R.H. ; Pedro, H.T.C. ; Coimbra, C.F.M. Solar forecasting methods for renewable energy integration. 2013 Prog. Energy Combust. Sci.. 39 535-576
Paper not yet in RePEc: Add citation now
- K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," in proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), Doha, Qatar, 14–21 October 2014; pp. 1724–1734, doi: 10.3115/v1/d14-1179.
Paper not yet in RePEc: Add citation now
- Kasten, F. ; Czeplak, G. Solar and terrestrial radiation dependent on the amount and type of cloud. 1980 Sol. Energy. 24 177-189
Paper not yet in RePEc: Add citation now
- King, D.L. ; Boyson, W.E. ; Kratochvil, J.A. Photovoltaic array performance model. 2004 Sandia Rep. 8 1-19
Paper not yet in RePEc: Add citation now
- Lave, M. ; Hayes, W. ; Pohl, A. ; Hansen, C.W. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States. 2015 IEEE J. Photovoltaics. 5 597-606
Paper not yet in RePEc: Add citation now
Lee, H.J. ; Kim, S.Y. ; Yun, C.Y. Comparison of solar radiation models to estimate direct normal irradiance for Korea. 2017 Energies. 10 1-12
Lee, K. ; Yoo, H. ; Levermore, G.J. Quality control and estimation hourly solar irradiation on inclined surfaces in South Korea. 2013 Renew. Energy. 57 190-199
- Liu, B.Y.H. ; Jordan, R.C. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. 1960 Sol. Energy. 4 1-19
Paper not yet in RePEc: Add citation now
- Maxwell, E.L. A quasi-physical model for converting hourly global horizontal to direct normal insolation. 1987 Sol. Energy Res. Inst.:
Paper not yet in RePEc: Add citation now
- Pan, X.-Y. ; Shen, H.-B. Robust prediction of B-factor profile from sequence using two-stage SVR based on random forest feature selection. 2009 Protein Pept. Lett.. 16 1447-1454
Paper not yet in RePEc: Add citation now
- Paola, J.D. ; Schowngerdt, R.A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. 1995 Int. J. Rem. Sens.. 16 3033-3058
Paper not yet in RePEc: Add citation now
- Perez, R. ; Ineichen, P. ; Maxwell, E.L. ; Seals, R.D. ; Zelenka, A. Dynamic global-to-direct irradiance conversion models. 1992 ASHRAE Trans. 98 354-369
Paper not yet in RePEc: Add citation now
- Perez, R. ; Seals, R. ; Ineichen, P. ; Stewart, R. ; Menicucci, D. A new simplified version of the Perez diffuse irradiance model for tilted surfaces. 1987 Sol. Energy. 39 221-231
Paper not yet in RePEc: Add citation now
Rajagukguk, R.A. ; Ramadhan, R.A.A. ; Lee, H.J. A Review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. 2020 Energies. 13 24-
- Ruiz-Arias, J.A. ; Gueymard, C.A. Worldwide inter-comparison of clear-sky solar radiation models: consensus-based review of direct and global irradiance components simulated at the earth surface. 2018 Sol. Energy. 168 10-29
Paper not yet in RePEc: Add citation now
- Rumelhart, D.E. ; Hinton, G.E. ; Williams, R.J. Learning representations by back-propagating errors. 1986 Nature. 323 533-536
Paper not yet in RePEc: Add citation now
Sengupta, M. ; Xie, Y. ; Lopez, A. ; Habte, A. ; Maclaurin, G. ; Shelby, J. The national solar radiation data base (NSRDB). 2018 Renew. Sustain. Energy Rev.. 89 51-60
- Seo, D. ; Ihm, P. Comparative solar models performance analysis for typical meteorological year development of Korea. 2010 J. Archit. Inst. Korea. 5752 147-154
Paper not yet in RePEc: Add citation now
- Sobri, S. ; Koohi-Kamali, S. ; Rahim, N.A. Solar photovoltaic generation forecasting methods: a review. 2018 Energy Convers. Manag.. 156 459-497
Paper not yet in RePEc: Add citation now
- Wang, F. ; Yu, Y. ; Zhang, Z. ; Li, J. ; Zhen, Z. ; Li, K. Wavelet decomposition and convolutional LSTM networks based improved deep learning model for solar irradiance forecasting. 2018 Appl. Sci.. 8 -
Paper not yet in RePEc: Add citation now
Wang, Y. ; Liao, W. ; Chang, Y. Gated recurrent unit network-based short-term photovoltaic forecasting. 2018 Energies. 11 -
- Weiss, K. ; Khoshgoftaar, T.M. ; Wang, D.D. . 2016 Springer International Publishing:
Paper not yet in RePEc: Add citation now
Wen, L. ; Zhou, K. ; Yang, S. ; Lu, X. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. 2019 Energy. 171 1053-1065
- Xie, Y. ; Sengupta, M. ; Dudhia, J. A fast all-sky radiation model for solar applications (FARMS): algorithm and performance evaluation. 2016 Sol. Energy. 135 435-445
Paper not yet in RePEc: Add citation now
- Yeom, J.M. ; Park, S. ; Chae, T. ; Kim, J.Y. ; Lee, C.S. Spatial assessment of solar radiation by machine learning and deep neural network models using data provided by the COMS MI geostationary satellite: a case study in South Korea. 2019 Sensors. 19 -
Paper not yet in RePEc: Add citation now
- Yoo, H.-C. ; Lee, K.-H. ; Park, S.-H. Analysis of data and calculation of global solar radiation based on cloud data for major cities in Korea. 2008 J. Korean Sol. Energy Soc.. 28 17-24
Paper not yet in RePEc: Add citation now
- Yoo, H.-C. ; Lee, K.-H. ; Park, S.-H. Analysis of data and calculation of global solar radiation based on cloud data for major cities in Korea. 2008 J. Korean Sol. Energy Soc.. 28 17-24
Paper not yet in RePEc: Add citation now
- Zhang, Q. ; Huang, J. ; Siwei, L. Development of typical year weather data for Chinese locations. 2002 ASHRAE Trans. 108 1063-1075
Paper not yet in RePEc: Add citation now
- Zhou, S. ; Zhou, L. ; Mao, M. ; Xi, X. Transfer learning for photovoltaic power forecasting with long short-term memory neural network”. 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). 125-132
Paper not yet in RePEc: Add citation now
- Zhuang, F. ; Luo, P. ; Xiong, H. ; Xiong, Y. ; He, Q. ; Shi, Z. Cross-domain learning from multiple sources: a consensus regularization perspective. 2010 IEEE Trans. Knowl. Data Eng.. 22 1664-1678
Paper not yet in RePEc: Add citation now