create a website

Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market. (2021). Jeong, Seunghwan ; Oh, Kyong Joo ; Nam, Hyun ; Lee, Hee Soo.
In: Sustainability.
RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 42

References cited by this document

Cocites: 43

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Adebiyi A.A.; Adewumi A.O.; Ayo C.K. Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 2014, 614342.

  2. Ahn J.J.; Byun H.W.; Oh K.J.; Kim T.Y. Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Syst. Appl. 2012, 39, 8369-8379.
    Paper not yet in RePEc: Add citation now
  3. Ahn J.J.; Kim Y.M.; Yoo K.; Park J.; Oh K.J. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability. Environ. Monit. Assess. 2012, 184, 6637-6645.
    Paper not yet in RePEc: Add citation now
  4. Allen F.; Karjalainen R. Using genetic algorithms to find technical trading rules. J. Financ. Econ. 1999, 51, 245-271.

  5. Ariyo A.A.; Adewumi A.O.; Ayo C.K. Stock price prediction using the ARIMA model. Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014, ; pp. 106-112.
    Paper not yet in RePEc: Add citation now
  6. Berndt D.J.; Clifford J. Using dynamic time warping to find patterns in time series. In KDD workshop 1994, 10, 359-370.
    Paper not yet in RePEc: Add citation now
  7. Białkowski J.; Darolles S.; Le Fol G. Improving VWAP strategies: A dynamic volume approach. J. Bank. Financ. 2008, 3, 1709-1722.

  8. Brailsford T.J. The empirical relationship between trading volume, returns and volatility. Account. Financ. 1996, 36, 89-111.
    Paper not yet in RePEc: Add citation now
  9. Brooks C. Predicting stock index volatility: Can market volume help?. J. Forecast. 1998, 17, 59-80.
    Paper not yet in RePEc: Add citation now
  10. Cartea Á.; Jaimungal S. A closed-form execution strategy to target volume weighted average price. SIAM J. Financ. Math. 2016, 7, 760-785. McCulloch J.; Kazakov V. Mean Variance Optimal VWAP Trading.
    Paper not yet in RePEc: Add citation now
  11. Chen T.L.; Cheng C.H.; Teoh H.J. Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Phys. A Stat. Mech. Appl. 2007, 380, 377-390.

  12. Cheng C.H.; Chen T.L.; Wei L.Y. A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting. Inf. Sci. 2010, 180, 1610-1629.
    Paper not yet in RePEc: Add citation now
  13. Cheong D.; Kim Y.M.; Byun H.W.; Oh K.J.; Kim T.Y. Using genetic algorithm to support clustering-based portfolio optimization by investor information. Appl. Soft Comput. 2017, 61, 593-602.
    Paper not yet in RePEc: Add citation now
  14. Coelho M.S. Patterns in Financial Markets: Dynamic Time Warping. Ph.D. Thesis; NSBE-UNL: Carcavelos, Portugal, 2012.
    Paper not yet in RePEc: Add citation now
  15. Fuh C.D.; Teng H.W.; Wang R.H. On-line VWAP trading strategies. Seq. Anal. 2010, 29, 292-310.
    Paper not yet in RePEc: Add citation now
  16. Gwilym O.A.; McMillan D.; Speight A. The intraday relationship between volume and volatility in LIFFE futures markets. Appl. Financ. Econ. 1999, 9, 593-604.

  17. Hadavandi E.; Shavandi H.; Ghanbari A. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl. Based Syst. 2010, 23, 800-808.
    Paper not yet in RePEc: Add citation now
  18. Insights F. Marching up the Learning Curve: The Second Buy Side Algorithmic Trading Survey (Financial Insights Special Report); Bank of America: Charlotte, NC, USA, 2006.
    Paper not yet in RePEc: Add citation now
  19. Kakade S.M.; Kearns M.; Mansour Y.; Ortiz L.E. Competitive algorithms for VWAP and limit order trading. Proceedings of the 5th ACM Conference on Electronic Commerce, New York, NY, USA, 17–20 May 2004, 2004; pp. 189-198.
    Paper not yet in RePEc: Add citation now
  20. Keogh E.J.; Pazzani M.J. Derivative dynamic time warping. Proceedings of the 2001 SIAM International Conference on Data Mining, Chicago, IL, USA, 5–7 April 2001, 2001; pp. 1-11.
    Paper not yet in RePEc: Add citation now
  21. Kim J.; Shin S.; Lee H.S.; Oh K.J. A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory. Sustainability 2019, 11.

  22. Kim K.J.; Han I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 2000, 19, 125-132.
    Paper not yet in RePEc: Add citation now
  23. Kim S.H.; Lee H.S.; Ko H.J.; Jeong S.H.; Byun H.W.; Oh K.J. Pattern matching trading system based on the dynamic time warping algorithm. Sustainability 2018, 10.

  24. Kohara K.; Ishikawa T.; Fukuhara Y.; Nakamura Y. Stock price prediction using prior knowledge and neural networks. Intell. Syst. Account. Financ. Manag. 1997, 6, 11-22.

  25. Konishi H. Optimal slice of a VWAP trade. J. Financ. Mark. 2002, 5, 197-221.

  26. Le V.; Zurbruegg R. The role of trading volume in volatility forecasting. J. Int. Financ. Mark. Inst. Money 2010, 20, 533-555.

  27. McCulloch J.; Kazakov V. Optimal VWAP Trading Strategy and Relative Volume; University of Technology: Sydney, Australia, 2007.

  28. Mondal P.; Shit L.; Goswami S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. Int. J. Comput. Sci. Eng. Appl. 2014, 4, 13.
    Paper not yet in RePEc: Add citation now
  29. Müller M. Dynamic time warping. Information Retrieval for Music and Motion; Springer: Berlin, Germany, 2007; pp. 69-84.
    Paper not yet in RePEc: Add citation now
  30. Nakagawa K.; Imamura M.; Yoshida K. Stock Price Prediction with Fluctuation Patterns Using Indexing Dynamic Time Warping and k*-Nearest Neighbors. JSAI International Symposium on Artificial Intelligence; Springer: Cham, Switzerland, 2017; pp. 97-111.
    Paper not yet in RePEc: Add citation now
  31. Nedunchezian V.R. Analysis of on Balance Volume in MCX Energy. J. Appl. Manag. Res. 2014, 3, 15-23.
    Paper not yet in RePEc: Add citation now
  32. Oh K.J.; Kim K.J. Piecewise nonlinear model for financial time series forecasting with artificial neural networks. Intell. Data Anal. 2002, 6, 175-185.
    Paper not yet in RePEc: Add citation now
  33. Pai P.F.; Lin C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33, 497-505.

  34. Song H.; Han S.K.; Jeong S.H.; Lee H.S.; Oh K.J. Using Genetic Algorithms to Develop a Dynamic Guaranteed Option Hedge System. Sustainability 2019, 11.

  35. Szűcs B.Á. Forecasting intraday volume: Comparison of two early models. Financ. Res. Lett. 2017, 21, 249-258.
    Paper not yet in RePEc: Add citation now
  36. Tsai C.F.; Wang S.P. Stock price forecasting by hybrid machine learning techniques. Proceedings of the International Multiconference of Engineers and Computer Scientists (IMECS 2009), Hong Kong, China, 18–20 March 2009, .
    Paper not yet in RePEc: Add citation now
  37. Tsang W.W.H.; Chong T.T.L. Profitability of the on-balance volume indicator. Econ. Bull. 2009, 29, 2424-2431.

  38. Tsinaslanidis P.E. Subsequence dynamic time warping for charting: Bullish and bearish class predictions for NYSE stocks. Expert Syst. Appl. 2018, 94, 193-204.
    Paper not yet in RePEc: Add citation now
  39. Tsinaslanidis P.E.; Kugiumtzis D. A prediction scheme using perceptually important points and dynamic time warping. Expert Syst. Appl. 2014, 41, 6848-6860.
    Paper not yet in RePEc: Add citation now
  40. Tsoukalas L.H.; Uhrig R.E. Fuzzy and Neural Approaches in Engineering; Wiley: Hoboken, NJ, USA, 1997.
    Paper not yet in RePEc: Add citation now
  41. Wang J.H.; Leu J.Y. Stock market trend prediction using ARIMA-based neural networks. Proceedings of the International Conference on Neural Networks, Washington, DC, USA, 3–6 June 1996, ; pp. 2160-2165.
    Paper not yet in RePEc: Add citation now
  42. Yoon Y.; Swales G. Predicting stock price performance: A neural network approach. Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 8–11 January 1991, ; pp. 156-162.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Modelling with Neural Networks and Time-Series Forecasting Inventory Control and Cost Reduction in Supply Chain Process. (2025). Kuppulakshmi, V ; Sugapriya, C ; Kanchana, A ; Nagarajan, D.
    In: SN Operations Research Forum.
    RePEc:spr:snopef:v:6:y:2025:i:2:d:10.1007_s43069-025-00466-5.

    Full description at Econpapers || Download paper

  2. Multi-Modal Temporal Dynamic Graph Construction for Stock Rank Prediction. (2025). Chen, Long ; Guan, Ziyu ; Xu, Cai ; Wei, Zengyu ; Liu, Ying.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:5:p:845-:d:1604527.

    Full description at Econpapers || Download paper

  3. A Framework for Gold Price Prediction Combining Classical and Intelligent Methods with Financial, Economic, and Sentiment Data Fusion. (2025). Taneva-Angelova, Gergana ; Raychev, Stefan ; Ilieva, Galina.
    In: IJFS.
    RePEc:gam:jijfss:v:13:y:2025:i:2:p:102-:d:1671850.

    Full description at Econpapers || Download paper

  4. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China. (2024). Shu, Jun ; Liu, Bin ; Pan, KE ; He, Zuli ; Han, Suyue ; Xia, Xinyu.
    In: PLOS ONE.
    RePEc:plo:pone00:0302558.

    Full description at Econpapers || Download paper

  5. Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach. (2023). Kebede, Belete ; Abebe, Alebachew ; Temesgen, Aboma.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00241-0.

    Full description at Econpapers || Download paper

  6. Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms. (2023). Shaikh, Parvez Ahmed ; Khan, Farman Ullah.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00200-9.

    Full description at Econpapers || Download paper

  7. Dynamic and context-dependent stock price prediction using attention modules and news sentiment. (2023). Knigstein, Nicole.
    In: Digital Finance.
    RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00089-7.

    Full description at Econpapers || Download paper

  8. A comparative study on effect of news sentiment on stock price prediction with deep learning architecture. (2023). Pokhrel, Nawa Raj ; Dahal, Keshab Raj ; Joshi, Jeorge ; Banjade, Huta R ; Gupta, Ankrit ; Mahatara, Sharad ; Gaire, Santosh.
    In: PLOS ONE.
    RePEc:plo:pone00:0284695.

    Full description at Econpapers || Download paper

  9. Predict Stock Prices Using Supervised Learning Algorithms and Particle Swarm Optimization Algorithm. (2023). Hosseini, Soodeh ; Bazrkar, Mohammad Javad.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10273-3.

    Full description at Econpapers || Download paper

  10. Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model. (2023). Song, Han-Suck ; Axelsson, Birger.
    In: Working Paper Series.
    RePEc:hhs:kthrec:2023_010.

    Full description at Econpapers || Download paper

  11. Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools. (2023). Murshed, Muntasir ; Abduvaxitovna, Shamansurova Zilola ; Manigandan, Palanisamy ; Alam, Md Shabbir ; Pachiyappan, Duraisamy.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000508.

    Full description at Econpapers || Download paper

  12. Data vs. information: Using clustering techniques to enhance stock returns forecasting. (2023). Fernandez Bariviera, Aurelio ; Saenz, Javier Vasquez ; Quiroga, Facundo Manuel.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:88:y:2023:i:c:s1057521923001734.

    Full description at Econpapers || Download paper

  13. The optimal forecast model for consumer price index of Puntland State, Somalia. (2022). Mohamed, Jama ; Ali, Abdullahi Osman.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:56:y:2022:i:6:d:10.1007_s11135-022-01328-6.

    Full description at Econpapers || Download paper

  14. Artificial Neural Network for Modeling the Economic Performance: A New Perspective. (2022). Mohamed, Ahmed.
    In: Journal of Quantitative Economics.
    RePEc:spr:jqecon:v:20:y:2022:i:3:d:10.1007_s40953-022-00297-9.

    Full description at Econpapers || Download paper

  15. Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting. (2022). Singh, Uday Pratap ; Jain, Sanjeev ; Kumar, Gourav.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:3:d:10.1007_s10614-021-10176-9.

    Full description at Econpapers || Download paper

  16. Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction. (2022). Das, Subhranginee ; Nayak, Sarat Chandra ; Sahoo, Biswajit.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9.

    Full description at Econpapers || Download paper

  17. Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix. (2022). Song, Yoojeong ; Lee, Jong Woo.
    In: Computational Economics.
    RePEc:kap:compec:v:59:y:2022:i:1:d:10.1007_s10614-020-10066-6.

    Full description at Econpapers || Download paper

  18. Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning. (2022). Han, Chulwoo.
    In: Management Science.
    RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7701-7741.

    Full description at Econpapers || Download paper

  19. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. (2022). Ser, Yee Chee ; Gerogiannis, Vassilis C ; Thong, Pham Huy ; Tuan, Nguyen Trung ; Li, Madeline Hui ; Son, Le Hoang ; Cuong, LE ; Selvachandran, Ganeshsree.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:8:p:1329-:d:795708.

    Full description at Econpapers || Download paper

  20. Dynamic and Context-Dependent Stock Price Prediction Using Attention Modules and News Sentiment. (2022). Koenigstein, Nicole.
    In: Papers.
    RePEc:arx:papers:2205.01639.

    Full description at Econpapers || Download paper

  21. Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend Prediction. (2022). Yin, Yilong ; Nie, Xiushan ; Li, Xiaojie ; Wang, Meng ; Du, Juan ; Zhang, Chunyun ; Cui, Chaoran.
    In: Papers.
    RePEc:arx:papers:2107.14033.

    Full description at Econpapers || Download paper

  22. Analysis of Romanian Air Quality using Machine Learning Techniques. (2022). Niculae, Andreea-Mihaela.
    In: Database Systems Journal.
    RePEc:aes:dbjour:v:13:y:2022:i:1:p:1-10.

    Full description at Econpapers || Download paper

  23. The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model. (2021). Ma, Ying ; Wang, Xiaowen ; Li, Wen.
    In: SAGE Open.
    RePEc:sae:sagope:v:11:y:2021:i:1:p:21582440211001866.

    Full description at Econpapers || Download paper

  24. Accuracies of Model Risks in Finance using Machine Learning. (2021). SADEFO KAMDEM, Jules ; Osei, Salomey ; Fadugba, Jeremiah ; Mpinda, Berthine Nyunga.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03191437.

    Full description at Econpapers || Download paper

  25. Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market. (2021). Jeong, Seunghwan ; Oh, Kyong Joo ; Nam, Hyun ; Lee, Hee Soo.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338.

    Full description at Econpapers || Download paper

  26. Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda. (2021). Sharma, Gagan ; Chopra, Ritika.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:526-:d:672223.

    Full description at Econpapers || Download paper

  27. A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed. (2021). Elsaraiti, Meftah ; Merabet, Adel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:20:p:6782-:d:658694.

    Full description at Econpapers || Download paper

  28. Climate Finance: Mapping Air Pollution and Finance Market in Time Series. (2021). Fang, Zheng ; Wang, Sheng ; Peng, Ruiming ; Xie, Jian Ying.
    In: Econometrics.
    RePEc:gam:jecnmx:v:9:y:2021:i:4:p:43-:d:694969.

    Full description at Econpapers || Download paper

  29. Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms. (2021). Duan, Yunlong ; Chin, Tachia ; Fang, Qifeng ; Yang, Meng ; Zhou, LI ; Mu, Chang ; Deng, Zhiqing.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:242:y:2021:i:c:s0925527321002693.

    Full description at Econpapers || Download paper

  30. Forecasting stock index price using the CEEMDAN-LSTM model. (2021). Lin, YU ; Liao, Ying ; Yan, Yan ; Xu, Jiali ; Ma, Feng.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:57:y:2021:i:c:s1062940821000553.

    Full description at Econpapers || Download paper

  31. Design and Analysis of Robust Deep Learning Models for Stock Price Prediction. (2021). Sen, Jaydip ; Mehtab, Sidra.
    In: Papers.
    RePEc:arx:papers:2106.09664.

    Full description at Econpapers || Download paper

  32. The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR. (2020). Liao, Zhewen ; Jin, Zhenni ; Sun, YI ; Lai, Lin ; Guo, Kun.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:7:p:1166-1178.

    Full description at Econpapers || Download paper

  33. Forecasting Monthly Prices of Gold Using Artificial Neural Network. (2020). Okezie, Uche-Ikonne ; Bright, Oiorha ; Maxwell, Obubu ; Chukwudike, Nwokike ; Henry, Ukomah ; Ala, Ugo.
    In: Journal of Statistical and Econometric Methods.
    RePEc:spt:stecon:v:9:y:2020:i:3:f:9_3_2.

    Full description at Econpapers || Download paper

  34. Predictive power of ARIMA models in forecasting equity returns: a sliding window method. (2020). Guo, Xiaomin ; Hu, Ruizhi ; Dong, Huijian ; Reichgelt, Han.
    In: Journal of Asset Management.
    RePEc:pal:assmgt:v:21:y:2020:i:6:d:10.1057_s41260-020-00184-z.

    Full description at Econpapers || Download paper

  35. Comparing Weighted Markov Chain and Auto-Regressive Integrated Moving Average in the Prediction of Under-5 Mortality Annual Closing Rates in Nigeria. (2020). Obasohan, Phillips Edomwonyi.
    In: International Journal of Statistics and Probability.
    RePEc:ibn:ijspjl:v:9:y:2020:i:3:p:13.

    Full description at Econpapers || Download paper

  36. An R-based forecasting approach for efficient demand response strategies in autonomous micro-grids. (2019). .
    In: Energy & Environment.
    RePEc:sae:engenv:v:30:y:2019:i:1:p:63-80.

    Full description at Econpapers || Download paper

  37. HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. (2019). Lee, Sang Hoon ; Kim, Raehyun ; Jeong, Minbyul ; Kang, Jaewoo ; Ho, Chan.
    In: Papers.
    RePEc:arx:papers:1908.07999.

    Full description at Econpapers || Download paper

  38. Enhancing Stock Movement Prediction with Adversarial Training. (2019). He, Xiangnan ; Chua, Tat-Seng ; Sun, Maosong ; Ding, JI ; Chen, Huimin ; Feng, Fuli.
    In: Papers.
    RePEc:arx:papers:1810.09936.

    Full description at Econpapers || Download paper

  39. Temporal Relational Ranking for Stock Prediction. (2019). Liu, Yiqun ; Wang, Xiang ; He, Xiangnan ; Chua, Tat-Seng ; Feng, Fuli ; Luo, Cheng.
    In: Papers.
    RePEc:arx:papers:1809.09441.

    Full description at Econpapers || Download paper

  40. Adaptive Market Hypothesis and Artificial Neural Networks: Evidence from Pakistan. (2019). Ayub, Usman ; Kayani, Sehrish ; Jadoon, Imran Abbas.
    In: Global Regional Review.
    RePEc:aaw:grrjrn:v:4:y:2019:i:2:p:190-203.

    Full description at Econpapers || Download paper

  41. A Thick ANN Model for Forecasting Inflation. (2018). Iqbal, Javed ; Hanif, Muhammad ; Mughal, Khurrum S.
    In: SBP Working Paper Series.
    RePEc:sbp:wpaper:99.

    Full description at Econpapers || Download paper

  42. Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network. (2018). Liu, Huicheng.
    In: Papers.
    RePEc:arx:papers:1811.06173.

    Full description at Econpapers || Download paper

  43. Evaluating the Performance of Inflation Forecasting Models of Pakistan. (2015). Malik, Muhammad Jahanzeb ; Hanif, Muhammad.
    In: SBP Research Bulletin.
    RePEc:sbp:journl:66.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-21 03:44:32 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.