Adebiyi A.A.; Adewumi A.O.; Ayo C.K. Comparison of ARIMA and artificial neural networks models for stock price prediction. J. Appl. Math. 2014, 2014, 614342.
- Ahn J.J.; Byun H.W.; Oh K.J.; Kim T.Y. Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Syst. Appl. 2012, 39, 8369-8379.
Paper not yet in RePEc: Add citation now
- Ahn J.J.; Kim Y.M.; Yoo K.; Park J.; Oh K.J. Using GA-Ridge regression to select hydro-geological parameters influencing groundwater pollution vulnerability. Environ. Monit. Assess. 2012, 184, 6637-6645.
Paper not yet in RePEc: Add citation now
Allen F.; Karjalainen R. Using genetic algorithms to find technical trading rules. J. Financ. Econ. 1999, 51, 245-271.
- Ariyo A.A.; Adewumi A.O.; Ayo C.K. Stock price prediction using the ARIMA model. Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK, 26–28 March 2014, ; pp. 106-112.
Paper not yet in RePEc: Add citation now
- Berndt D.J.; Clifford J. Using dynamic time warping to find patterns in time series. In KDD workshop 1994, 10, 359-370.
Paper not yet in RePEc: Add citation now
Białkowski J.; Darolles S.; Le Fol G. Improving VWAP strategies: A dynamic volume approach. J. Bank. Financ. 2008, 3, 1709-1722.
- Brailsford T.J. The empirical relationship between trading volume, returns and volatility. Account. Financ. 1996, 36, 89-111.
Paper not yet in RePEc: Add citation now
- Brooks C. Predicting stock index volatility: Can market volume help?. J. Forecast. 1998, 17, 59-80.
Paper not yet in RePEc: Add citation now
- Cartea Á.; Jaimungal S. A closed-form execution strategy to target volume weighted average price. SIAM J. Financ. Math. 2016, 7, 760-785. McCulloch J.; Kazakov V. Mean Variance Optimal VWAP Trading.
Paper not yet in RePEc: Add citation now
Chen T.L.; Cheng C.H.; Teoh H.J. Fuzzy time-series based on Fibonacci sequence for stock price forecasting. Phys. A Stat. Mech. Appl. 2007, 380, 377-390.
- Cheng C.H.; Chen T.L.; Wei L.Y. A hybrid model based on rough sets theory and genetic algorithms for stock price forecasting. Inf. Sci. 2010, 180, 1610-1629.
Paper not yet in RePEc: Add citation now
- Cheong D.; Kim Y.M.; Byun H.W.; Oh K.J.; Kim T.Y. Using genetic algorithm to support clustering-based portfolio optimization by investor information. Appl. Soft Comput. 2017, 61, 593-602.
Paper not yet in RePEc: Add citation now
- Coelho M.S. Patterns in Financial Markets: Dynamic Time Warping. Ph.D. Thesis; NSBE-UNL: Carcavelos, Portugal, 2012.
Paper not yet in RePEc: Add citation now
- Fuh C.D.; Teng H.W.; Wang R.H. On-line VWAP trading strategies. Seq. Anal. 2010, 29, 292-310.
Paper not yet in RePEc: Add citation now
Gwilym O.A.; McMillan D.; Speight A. The intraday relationship between volume and volatility in LIFFE futures markets. Appl. Financ. Econ. 1999, 9, 593-604.
- Hadavandi E.; Shavandi H.; Ghanbari A. Integration of genetic fuzzy systems and artificial neural networks for stock price forecasting. Knowl. Based Syst. 2010, 23, 800-808.
Paper not yet in RePEc: Add citation now
- Insights F. Marching up the Learning Curve: The Second Buy Side Algorithmic Trading Survey (Financial Insights Special Report); Bank of America: Charlotte, NC, USA, 2006.
Paper not yet in RePEc: Add citation now
- Kakade S.M.; Kearns M.; Mansour Y.; Ortiz L.E. Competitive algorithms for VWAP and limit order trading. Proceedings of the 5th ACM Conference on Electronic Commerce, New York, NY, USA, 17–20 May 2004, 2004; pp. 189-198.
Paper not yet in RePEc: Add citation now
- Keogh E.J.; Pazzani M.J. Derivative dynamic time warping. Proceedings of the 2001 SIAM International Conference on Data Mining, Chicago, IL, USA, 5–7 April 2001, 2001; pp. 1-11.
Paper not yet in RePEc: Add citation now
Kim J.; Shin S.; Lee H.S.; Oh K.J. A Machine Learning Portfolio Allocation System for IPOs in Korean Markets Using GA-Rough Set Theory. Sustainability 2019, 11.
- Kim K.J.; Han I. Genetic algorithms approach to feature discretization in artificial neural networks for the prediction of stock price index. Expert Syst. Appl. 2000, 19, 125-132.
Paper not yet in RePEc: Add citation now
Kim S.H.; Lee H.S.; Ko H.J.; Jeong S.H.; Byun H.W.; Oh K.J. Pattern matching trading system based on the dynamic time warping algorithm. Sustainability 2018, 10.
Kohara K.; Ishikawa T.; Fukuhara Y.; Nakamura Y. Stock price prediction using prior knowledge and neural networks. Intell. Syst. Account. Financ. Manag. 1997, 6, 11-22.
Konishi H. Optimal slice of a VWAP trade. J. Financ. Mark. 2002, 5, 197-221.
Le V.; Zurbruegg R. The role of trading volume in volatility forecasting. J. Int. Financ. Mark. Inst. Money 2010, 20, 533-555.
McCulloch J.; Kazakov V. Optimal VWAP Trading Strategy and Relative Volume; University of Technology: Sydney, Australia, 2007.
- Mondal P.; Shit L.; Goswami S. Study of effectiveness of time series modeling (ARIMA) in forecasting stock prices. Int. J. Comput. Sci. Eng. Appl. 2014, 4, 13.
Paper not yet in RePEc: Add citation now
- Müller M. Dynamic time warping. Information Retrieval for Music and Motion; Springer: Berlin, Germany, 2007; pp. 69-84.
Paper not yet in RePEc: Add citation now
- Nakagawa K.; Imamura M.; Yoshida K. Stock Price Prediction with Fluctuation Patterns Using Indexing Dynamic Time Warping and k*-Nearest Neighbors. JSAI International Symposium on Artificial Intelligence; Springer: Cham, Switzerland, 2017; pp. 97-111.
Paper not yet in RePEc: Add citation now
- Nedunchezian V.R. Analysis of on Balance Volume in MCX Energy. J. Appl. Manag. Res. 2014, 3, 15-23.
Paper not yet in RePEc: Add citation now
- Oh K.J.; Kim K.J. Piecewise nonlinear model for financial time series forecasting with artificial neural networks. Intell. Data Anal. 2002, 6, 175-185.
Paper not yet in RePEc: Add citation now
Pai P.F.; Lin C.S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33, 497-505.
Song H.; Han S.K.; Jeong S.H.; Lee H.S.; Oh K.J. Using Genetic Algorithms to Develop a Dynamic Guaranteed Option Hedge System. Sustainability 2019, 11.
- Szűcs B.Á. Forecasting intraday volume: Comparison of two early models. Financ. Res. Lett. 2017, 21, 249-258.
Paper not yet in RePEc: Add citation now
- Tsai C.F.; Wang S.P. Stock price forecasting by hybrid machine learning techniques. Proceedings of the International Multiconference of Engineers and Computer Scientists (IMECS 2009), Hong Kong, China, 18–20 March 2009, .
Paper not yet in RePEc: Add citation now
Tsang W.W.H.; Chong T.T.L. Profitability of the on-balance volume indicator. Econ. Bull. 2009, 29, 2424-2431.
- Tsinaslanidis P.E. Subsequence dynamic time warping for charting: Bullish and bearish class predictions for NYSE stocks. Expert Syst. Appl. 2018, 94, 193-204.
Paper not yet in RePEc: Add citation now
- Tsinaslanidis P.E.; Kugiumtzis D. A prediction scheme using perceptually important points and dynamic time warping. Expert Syst. Appl. 2014, 41, 6848-6860.
Paper not yet in RePEc: Add citation now
- Tsoukalas L.H.; Uhrig R.E. Fuzzy and Neural Approaches in Engineering; Wiley: Hoboken, NJ, USA, 1997.
Paper not yet in RePEc: Add citation now
- Wang J.H.; Leu J.Y. Stock market trend prediction using ARIMA-based neural networks. Proceedings of the International Conference on Neural Networks, Washington, DC, USA, 3–6 June 1996, ; pp. 2160-2165.
Paper not yet in RePEc: Add citation now
- Yoon Y.; Swales G. Predicting stock price performance: A neural network approach. Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences, Kauai, HI, USA, 8–11 January 1991, ; pp. 156-162.
Paper not yet in RePEc: Add citation now