create a website

Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting. (2022). Singh, Uday Pratap ; Jain, Sanjeev ; Kumar, Gourav.
In: Computational Economics.
RePEc:kap:compec:v:60:y:2022:i:3:d:10.1007_s10614-021-10176-9.

Full description at Econpapers || Download paper

Cited: 2

Citations received by this document

Cites: 88

References cited by this document

Cocites: 43

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Pioneering Technology Mining Research for New Technology Strategic Planning. (2024). Li, Ziyi ; Yu, Zhaoxu ; Tang, Yixin ; Kang, Xiaoqi ; Zhao, Wenjing ; Zheng, Lingling.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:15:p:6589-:d:1447857.

    Full description at Econpapers || Download paper

  2. Price, Complexity, and Mathematical Model. (2023). Ding, Xue ; Fu, NA ; Geng, Liyan ; Ma, Junhai.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:13:p:2883-:d:1180658.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014, 1–7.

  2. Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Stock price prediction using the ARIMA model. In UKSim-AMSS 16th international conference on computer modelling and simulation (pp. 106–112). IEEE.
    Paper not yet in RePEc: Add citation now
  3. Atsalakis, G. S., & Valavanis, K. P. (2009). Surveying stock market forecasting techniques–part II: Soft computing methods. Expert Systems with Applications, 36(3), 5932–5941.
    Paper not yet in RePEc: Add citation now
  4. Azadeh, A., Saberi, M., Ghaderi, S., Gitiforouz, A., & Ebrahimipour, V. (2008). Improved estimation of electricity demand function by integration of fuzzy system and data mining approach. Energy Conversion and Management, 49(8), 2165–2177.
    Paper not yet in RePEc: Add citation now
  5. Baldominos, A., Saez, Y., & Isasi, P. (2020). On the automated, evolutionary design of neural networks: Past, present, and future. In Neural computing and applications (pp. 1–27).
    Paper not yet in RePEc: Add citation now
  6. Basheer, I. A., & Hajmee, M. (2000). Artificial neural networks: Fundamentals, computing, design, and application. Journal of Microbiological Methods, 43(1), 3–31.
    Paper not yet in RePEc: Add citation now
  7. Bisoi, R., & Dash, P. K. (2014). A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Applied Soft Computing, 19, 41–56.
    Paper not yet in RePEc: Add citation now
  8. Botchkarev, A. (2018). Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology (pp. 1–37). arXiv preprint. https://arxiv.org/abs/1809.03006 .
    Paper not yet in RePEc: Add citation now
  9. Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control (5th ed.). Wiley.
    Paper not yet in RePEc: Add citation now
  10. Chiang, W. C., Enke, D., Wu, T., & Wang, R. (2016). An adaptive stock index trading decision support system. Expert Systems with Applications, 59, 195–207.
    Paper not yet in RePEc: Add citation now
  11. Darwish, A., Hassanien, A. E., & Das, S. (2020). A survey of swarm and evolutionary computing approaches for deep learning. Artificial Intelligence Review, 53(3), 1767–1812.
    Paper not yet in RePEc: Add citation now
  12. Elsken, T., Metzen, J. H., & Hutter, F. (2018). Efficient multi-objective neural architecture search via lamarckian evolution. arXiv preprint. https://arxiv.org/abs/1804.09081 .
    Paper not yet in RePEc: Add citation now
  13. Elsken, T., Metzen, J. H., & Hutter, F. (2018). Neural architecture search: A survey. arXiv preprint. https://arxiv.org/abs/1808.05377 .
    Paper not yet in RePEc: Add citation now
  14. Elsken, T., Metzen, J. H., Hutter, F. (2018). Neural architecture search: A survey. arXiv preprint. https://arxiv.org/abs/1808.05377 .
    Paper not yet in RePEc: Add citation now
  15. Fama, E. (1970). Efficient capital markets: A review of theory and empirical work. . R. Lowbridge (Module Leader).

  16. Gao, S., Zhou, M., Wang, Y., Cheng, J., Yachi, H., & Wang, J. (2018). Dendritic neuron model with effective learning algorithms for classification, approximation, and prediction. IEEE Transactions on Neural Networks and Learning Systems, 30(2), 601–614.
    Paper not yet in RePEc: Add citation now
  17. Gocken, M., Ozcalici, M., Boru, A., & Dosdogru, A. T. (2016). Integrating metaheuristics and artificial neural networks for improved stock price prediction. Expert Systems with Applications, 44, 320–331.
    Paper not yet in RePEc: Add citation now
  18. Gocken, M., Ozcalici, M., Boru, A., & Dosdogru, A. T. (2019). Stock price prediction using hybrid soft computing models incorporating parameter tuning and input variable selection. Neural Computing and Applications, 31(2), 577–592.
    Paper not yet in RePEc: Add citation now
  19. Goh, A. T. (1995). Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9(3), 143–151.
    Paper not yet in RePEc: Add citation now
  20. Gong, Z., Chen, H., Yuan, B., & Yao, X. (2018). Multiobjective learning in the model space for time series classification. IEEE Transactions on Cybernetics, 49(3), 918–932.
    Paper not yet in RePEc: Add citation now
  21. Guresen, E., Gulgun, K., & Daim, T. U. (2011a). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389–10397.
    Paper not yet in RePEc: Add citation now
  22. Guresen, E., Kayakutlu, G., & Daim, T. U. (2011b). Using artificial neural network models in stock market index prediction. Expert Systems with Applications, 38(8), 10389–10397.
    Paper not yet in RePEc: Add citation now
  23. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3, 1157–1182.
    Paper not yet in RePEc: Add citation now
  24. Hagan, M. T., & Menhaj, M. B. (1994). Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993.
    Paper not yet in RePEc: Add citation now
  25. Haleh, H., Moghaddam, B. A., & Ebrahimijam, S. (2011). A new approach to forecasting stock price with EKF data fusion. International Journal of Trade, Economics and Finance, 2(2), 109–114.
    Paper not yet in RePEc: Add citation now
  26. Han, H. G., Lu, W., Hou, Y., & Qiao, J. F. (2016). An adaptive-PSO-based self-organizing RBF neural network. IEEE Transactions on Neural Networks and Learning Systems, 29(1), 104–117.
    Paper not yet in RePEc: Add citation now
  27. Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (pp. 51–56). Wiley.
    Paper not yet in RePEc: Add citation now
  28. Haykin, S. (1999). Neural network: A comprehensive foundation (2nd ed.). Prentice Hall.
    Paper not yet in RePEc: Add citation now
  29. Holland, J. H. (1975). Adaptation in natural and artificial systems. University of Michigan Press.
    Paper not yet in RePEc: Add citation now
  30. Hu, H., Ao, Y., Bai, Y., Cheng, R., & Xu, T. (2020). An improved Harris’s Hawks optimization for SAR target recognition and stock market index prediction. IEEE Access, 8, 65891–65910.
    Paper not yet in RePEc: Add citation now
  31. Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188–195.
    Paper not yet in RePEc: Add citation now
  32. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of Forecasting, 22(4), 679–688.

  33. Ibrahim, D. (2016). An overview of soft computing. Procedia Computer Science, 102, 34–38.
    Paper not yet in RePEc: Add citation now
  34. Inthachot, M., Boonjing, V., & Intakosum, S. (2016). Artificial neural network and genetic algorithm hybrid intelligence for predicting Thai stock price index trend. Computational Intelligence and Neuroscience, 2016, 1–8.
    Paper not yet in RePEc: Add citation now
  35. Jang, J. S. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665–685.
    Paper not yet in RePEc: Add citation now
  36. Kapanova, K. G., Dimov, I., & Sellier, J. M. (2018). A genetic approach to automatic neural network architecture optimization. Neural Computing and Applications, 29(5), 1481–1492.
    Paper not yet in RePEc: Add citation now
  37. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942–1948). IEEE.
    Paper not yet in RePEc: Add citation now
  38. Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. In IEEE international conference on systems, man, and cybernetics. Computational cybernetics and simulation (Vol. 5, pp. 4104–4108).
    Paper not yet in RePEc: Add citation now
  39. Kim, K. J. (2006). Artificial neural networks with evolutionary instance selection for financial forecasting. Expert Systems with Applications, 30(3), 519–526.
    Paper not yet in RePEc: Add citation now
  40. Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679.

  41. Kohonen, T. (1988). An introduction to neural computing. Neural Networks, 1(1), 3–16.
    Paper not yet in RePEc: Add citation now
  42. Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting framework integrating GARCH, artificial neural network, technical analysis and principal components analysis. Expert Systems with Applications, 109, 1–11.
    Paper not yet in RePEc: Add citation now
  43. Kumar, D., Meghwani, S. S., & Thakur, M. (2016). Proximal support vector machine based hybrid prediction models for trend forecasting in financial markets. Journal of Computational Science, 17, 1–13.
    Paper not yet in RePEc: Add citation now
  44. Kumar, G., Jain, S., & Singh, U. P. (2020). Stock market forecasting using computational intelligence: A survey. Archives of Computational Methods in Engineering 1–33.
    Paper not yet in RePEc: Add citation now
  45. Kumar, S. (2004). Neural networks: A classical approach (2nd ed., pp. 61–65). Tata McGraw-Hill Education.
    Paper not yet in RePEc: Add citation now
  46. Lin, C. S., Chiu, S. H., & Lin, T. Y. (2012). Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting. Economic Modelling, 29(6), 2583–2590.

  47. Liu, C., Barret, Z., Maxim, N., Jonathon, S., Wei, H., Li-Jia, L., Li, F. F., Alan, Y., Jonathan, H., & Kevin, M. (2018). Progressive neural architecture search. In Proceedings of the European conference on computer vision (ECCV) (pp. 19–34).
    Paper not yet in RePEc: Add citation now
  48. Liu, F., & Wang, J. (2012). Fluctuation predictions of stock market index by Legendre neural network with random time strength function. Neurocomputing, 83, 12–21.
    Paper not yet in RePEc: Add citation now
  49. Lu, C. J., Lee, T. S., & Chiu, C. C. (2009). Financial time series forecasting using independent component analysis and support vector regression. Decision Support Systems, 47(2), 115–125.
    Paper not yet in RePEc: Add citation now
  50. Mandziuk, J., & Jaruszewicz, M. (2011). Neuro-genetic system for stock index prediction. Journal of Intelligent and Fuzzy Systems, 22(2), 93–123.
    Paper not yet in RePEc: Add citation now
  51. Menkhoff, L. (1997). Examining the use of technical currency analysis. International Journal of Finance and Economics, 2(4), 307–318.

  52. Mirjalili, S., & Lewis, A. (2013). S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm and Evolutionary Computation, 9, 1–14.
    Paper not yet in RePEc: Add citation now
  53. More, J. J. (1978). The Levenberg-Marquardt algorithm: Implementation and theory. In Numerical analysis (pp. 105–116). Springer.
    Paper not yet in RePEc: Add citation now
  54. Nassirtoussi, A. K., Wah, T. Y., & Ling, D. N. C. (2011). A novel FOREX prediction methodology based on fundamental data. African Journal of Business Management, 5(20), 8322–8330.
    Paper not yet in RePEc: Add citation now
  55. Nayak, S. C., Kumar, K. V., & Jilla, K. (2020). ACRRFLN: Artificial chemical reaction of recurrent functional link networks for improved stock market prediction. In Computational intelligence in data mining (pp. 311–325). Springer.
    Paper not yet in RePEc: Add citation now
  56. Nayak, S. C., Misra, B. B., & Behera, H. S. (2019). ACFLN: Artificial chemical functional link network for prediction of stock market index. Evolving Systems, 10(4), 567–592.
    Paper not yet in RePEc: Add citation now
  57. Pradeepkumar, D., & Ravi, V. (2017). Forecasting financial time series volatility using particle swarm optimization trained quantile regression neural network. Applied Soft Computing, 58, 35–52.
    Paper not yet in RePEc: Add citation now
  58. Qiu, M. Y., Song, Y., & Akagi, F. (2016). Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market. Chaos, Solitons and Fractals, 85, 1–7.

  59. Ren, G., Cao, Y., Wen, S., Huang, T., & Zeng, Z. (2018). A modified Elman neural network with a new learning rate scheme. Neurocomputing, 286, 11–18.
    Paper not yet in RePEc: Add citation now
  60. Reza, H., Shahrabi, J., & Hadavandi, E. (2015). A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price. Applied Soft Computing, 29, 196–210.
    Paper not yet in RePEc: Add citation now
  61. Rout, M., & Koudjonou, K. M. (2020). An evolutionary algorithm based hybrid parallel framework for Asia foreign exchange rate prediction. In Nature inspired computing for data science (pp. 279–295). Springer.
    Paper not yet in RePEc: Add citation now
  62. Sahoo, S., & Mohanty, M. N. (2020). Stock market price prediction employing artificial neural network optimized by Gray Wolf optimization. In New paradigm in decision science and management (pp. 77–87). Springer.
    Paper not yet in RePEc: Add citation now
  63. Sakshi, S., & Kumar, R. (2019). A neuro-genetic technique for pruning and optimization of ANN weights. Applied Artificial Intelligence, 33(1), 1–26.
    Paper not yet in RePEc: Add citation now
  64. Sands, T. M., Tayal, D., Morris, M. E., & Monteiro, S. T. (2015). Robust stock value prediction using support vector machines with particle swarm optimization. In IEEE congress on evolutionary computation (CEC) (pp. 3327–3331). IEEE.
    Paper not yet in RePEc: Add citation now
  65. Senapati, M. R., Das, S., & Mishra, S. (2018). A novel model for stock price prediction using hybrid neural network. Journal of the Institution of Engineers (india): Series B, 99(6), 555–563.
    Paper not yet in RePEc: Add citation now
  66. Shynkevich, Y., McGinnity, T. M., Coleman, S. A., Belatreche, A., & Li, Y. (2017). Forecasting price movement using technical indicators: Investing the impact of varying window length. Neurocomputing, 264, 71–88.
    Paper not yet in RePEc: Add citation now
  67. Si, Y. W., & Yin, J. (2013). OBST-based segmentation approach to financial time series. Engineering Applications of Artificial Intelligence, 26(10), 2581–2596.
    Paper not yet in RePEc: Add citation now
  68. Technical analysis library in python. [Online]. Retrieved from https://technical-analysis-library-inpython.readthedocs.io/en/latest/ta.html . Accessed May 30, 2020.
    Paper not yet in RePEc: Add citation now
  69. Technical analysis. [Online]. Retrieved from https://www.investopedia.com/technical-analysis-4689657 . Accessed March 20, 2020.
    Paper not yet in RePEc: Add citation now
  70. Technical indicators. [Online]. Retrieved from https://school.stockcharts.com/doku.php?id=technicalindicators . Accessed March 30, 2020.
    Paper not yet in RePEc: Add citation now
  71. Theil, H. (1966). Applied economic forecasting. North-Holland Pub. Co.
    Paper not yet in RePEc: Add citation now
  72. Ulke, V., Sahin, A., & Subasi, A. (2018). A comparison of time series and machine learning models for inflation forecasting: Empirical evidence from the USA. Neural Computing and Applications, 30(5), 1519–1527.
    Paper not yet in RePEc: Add citation now
  73. Vaisla, K. S., & Bhatt, A. K. (2010). Ananalysis of the performance of artificial neural network technique for stock market forecasting. International Journal on Computer Science and Engineering, 2(6), 2104–2109.
    Paper not yet in RePEc: Add citation now
  74. Wang, J. J., Wang, J. Z., Zhang, Z. G., & Guo, S. P. (2012). Stock index forecasting based on a hybrid model. Omega, 40(6), 758–766.

  75. Wang, J., & Kumbasar, T. (2019). Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods. IEEE/CAA Journal of Automatica Sinica, 6(1), 247–257.
    Paper not yet in RePEc: Add citation now
  76. Wang, J., & Wang, J. (2015). Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing, 156, 68–78.
    Paper not yet in RePEc: Add citation now
  77. Webb, A. R. (2003). Statistical pattern recognition (pp. 307–352). Wiley.
    Paper not yet in RePEc: Add citation now
  78. Wright, A. H. (1991) Genetic algorithms for real parameter optimization. In Foundations of genetic algorithms (Vol. 1, pp. 205–218).
    Paper not yet in RePEc: Add citation now
  79. Xiong, T., Bao, Y., Hu, Z., & Chiong, R. (2015). Forecasting interval time series using a fully complex-valued RBF neural network with DPSO and PSO algorithms. Information Sciences, 305, 77–92.
    Paper not yet in RePEc: Add citation now
  80. Yan, W. (2012). Toward automatic time-series forecasting using neural networks. IEEE Transactions on Neural Networks and Learning Systems, 23(7), 1028–1039.
    Paper not yet in RePEc: Add citation now
  81. Yang, F., Chen, Z., Li, J., & Tang, L. (2019). A novel hybrid stock selection method with stock prediction. Applied Soft Computing, 80, 820–831.
    Paper not yet in RePEc: Add citation now
  82. Yao, J., Tan, C. L., & Poh, H. L. (1999). Neural networks for technical analysis: A study on KLCI. International Journal of Theoretical and Applied Finance, 2(2), 221–241.

  83. Yao, X. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9), 1423–1447.
    Paper not yet in RePEc: Add citation now
  84. Yeh, W. C. (2009). A two-stage discrete particle swarm optimization for the problem of multiple multi-level redundancy allocation in series systems. Expert System Application, 36, 9192–9200.
    Paper not yet in RePEc: Add citation now
  85. Yu, L., & Liu, H. (2003). Feature selection for high-dimensional data: A fast correlation-based filter solution. In Proceedings of the 20th international conference on machine learning (pp. 856–863).
    Paper not yet in RePEc: Add citation now
  86. Zhang, D. Y., Song, H. W., & Chen, P. (2008). Stock market forecasting model based on a hybrid ARMA and support vector machines. In International conference on management science and engineering 15th annual conference proceedings (pp. 1312–1317). IEEE.
    Paper not yet in RePEc: Add citation now
  87. Zhong, X., & Enke, D. (2017). Forecasting daily stock market return using dimensionality reduction. Expert Systems with Applications, 67, 126–139.
    Paper not yet in RePEc: Add citation now
  88. Zhou, T., Gao, S., Wang, J., Chu, C., Todo, Y., & Tang, Z. (2016). Financial time series prediction using a dendritic neuron model. Knowledge-Based Systems, 105, 214–224.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Modelling with Neural Networks and Time-Series Forecasting Inventory Control and Cost Reduction in Supply Chain Process. (2025). Kuppulakshmi, V ; Sugapriya, C ; Kanchana, A ; Nagarajan, D.
    In: SN Operations Research Forum.
    RePEc:spr:snopef:v:6:y:2025:i:2:d:10.1007_s43069-025-00466-5.

    Full description at Econpapers || Download paper

  2. Multi-Modal Temporal Dynamic Graph Construction for Stock Rank Prediction. (2025). Chen, Long ; Guan, Ziyu ; Xu, Cai ; Wei, Zengyu ; Liu, Ying.
    In: Mathematics.
    RePEc:gam:jmathe:v:13:y:2025:i:5:p:845-:d:1604527.

    Full description at Econpapers || Download paper

  3. A Framework for Gold Price Prediction Combining Classical and Intelligent Methods with Financial, Economic, and Sentiment Data Fusion. (2025). Taneva-Angelova, Gergana ; Raychev, Stefan ; Ilieva, Galina.
    In: IJFS.
    RePEc:gam:jijfss:v:13:y:2025:i:2:p:102-:d:1671850.

    Full description at Econpapers || Download paper

  4. Long-term water demand forecasting using artificial intelligence models in the Tuojiang River basin, China. (2024). Shu, Jun ; Liu, Bin ; Pan, KE ; He, Zuli ; Han, Suyue ; Xia, Xinyu.
    In: PLOS ONE.
    RePEc:plo:pone00:0302558.

    Full description at Econpapers || Download paper

  5. Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach. (2023). Kebede, Belete ; Abebe, Alebachew ; Temesgen, Aboma.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00241-0.

    Full description at Econpapers || Download paper

  6. Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms. (2023). Shaikh, Parvez Ahmed ; Khan, Farman Ullah.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00200-9.

    Full description at Econpapers || Download paper

  7. Dynamic and context-dependent stock price prediction using attention modules and news sentiment. (2023). Knigstein, Nicole.
    In: Digital Finance.
    RePEc:spr:digfin:v:5:y:2023:i:3:d:10.1007_s42521-023-00089-7.

    Full description at Econpapers || Download paper

  8. A comparative study on effect of news sentiment on stock price prediction with deep learning architecture. (2023). Pokhrel, Nawa Raj ; Dahal, Keshab Raj ; Joshi, Jeorge ; Banjade, Huta R ; Gupta, Ankrit ; Mahatara, Sharad ; Gaire, Santosh.
    In: PLOS ONE.
    RePEc:plo:pone00:0284695.

    Full description at Econpapers || Download paper

  9. Predict Stock Prices Using Supervised Learning Algorithms and Particle Swarm Optimization Algorithm. (2023). Hosseini, Soodeh ; Bazrkar, Mohammad Javad.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10273-3.

    Full description at Econpapers || Download paper

  10. Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model. (2023). Song, Han-Suck ; Axelsson, Birger.
    In: Working Paper Series.
    RePEc:hhs:kthrec:2023_010.

    Full description at Econpapers || Download paper

  11. Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools. (2023). Murshed, Muntasir ; Abduvaxitovna, Shamansurova Zilola ; Manigandan, Palanisamy ; Alam, Md Shabbir ; Pachiyappan, Duraisamy.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000508.

    Full description at Econpapers || Download paper

  12. Data vs. information: Using clustering techniques to enhance stock returns forecasting. (2023). Fernandez Bariviera, Aurelio ; Saenz, Javier Vasquez ; Quiroga, Facundo Manuel.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:88:y:2023:i:c:s1057521923001734.

    Full description at Econpapers || Download paper

  13. The optimal forecast model for consumer price index of Puntland State, Somalia. (2022). Mohamed, Jama ; Ali, Abdullahi Osman.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:56:y:2022:i:6:d:10.1007_s11135-022-01328-6.

    Full description at Econpapers || Download paper

  14. Artificial Neural Network for Modeling the Economic Performance: A New Perspective. (2022). Mohamed, Ahmed.
    In: Journal of Quantitative Economics.
    RePEc:spr:jqecon:v:20:y:2022:i:3:d:10.1007_s40953-022-00297-9.

    Full description at Econpapers || Download paper

  15. Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting. (2022). Singh, Uday Pratap ; Jain, Sanjeev ; Kumar, Gourav.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:3:d:10.1007_s10614-021-10176-9.

    Full description at Econpapers || Download paper

  16. Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction. (2022). Das, Subhranginee ; Nayak, Sarat Chandra ; Sahoo, Biswajit.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9.

    Full description at Econpapers || Download paper

  17. Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix. (2022). Song, Yoojeong ; Lee, Jong Woo.
    In: Computational Economics.
    RePEc:kap:compec:v:59:y:2022:i:1:d:10.1007_s10614-020-10066-6.

    Full description at Econpapers || Download paper

  18. Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning. (2022). Han, Chulwoo.
    In: Management Science.
    RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7701-7741.

    Full description at Econpapers || Download paper

  19. A Comparative Study of Forecasting Electricity Consumption Using Machine Learning Models. (2022). Ser, Yee Chee ; Gerogiannis, Vassilis C ; Thong, Pham Huy ; Tuan, Nguyen Trung ; Li, Madeline Hui ; Son, Le Hoang ; Cuong, LE ; Selvachandran, Ganeshsree.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:8:p:1329-:d:795708.

    Full description at Econpapers || Download paper

  20. Dynamic and Context-Dependent Stock Price Prediction Using Attention Modules and News Sentiment. (2022). Koenigstein, Nicole.
    In: Papers.
    RePEc:arx:papers:2205.01639.

    Full description at Econpapers || Download paper

  21. Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend Prediction. (2022). Yin, Yilong ; Nie, Xiushan ; Li, Xiaojie ; Wang, Meng ; Du, Juan ; Zhang, Chunyun ; Cui, Chaoran.
    In: Papers.
    RePEc:arx:papers:2107.14033.

    Full description at Econpapers || Download paper

  22. Analysis of Romanian Air Quality using Machine Learning Techniques. (2022). Niculae, Andreea-Mihaela.
    In: Database Systems Journal.
    RePEc:aes:dbjour:v:13:y:2022:i:1:p:1-10.

    Full description at Econpapers || Download paper

  23. The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model. (2021). Ma, Ying ; Wang, Xiaowen ; Li, Wen.
    In: SAGE Open.
    RePEc:sae:sagope:v:11:y:2021:i:1:p:21582440211001866.

    Full description at Econpapers || Download paper

  24. Accuracies of Model Risks in Finance using Machine Learning. (2021). SADEFO KAMDEM, Jules ; Osei, Salomey ; Fadugba, Jeremiah ; Mpinda, Berthine Nyunga.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03191437.

    Full description at Econpapers || Download paper

  25. Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market. (2021). Jeong, Seunghwan ; Oh, Kyong Joo ; Nam, Hyun ; Lee, Hee Soo.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338.

    Full description at Econpapers || Download paper

  26. Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda. (2021). Sharma, Gagan ; Chopra, Ritika.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:526-:d:672223.

    Full description at Econpapers || Download paper

  27. A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed. (2021). Elsaraiti, Meftah ; Merabet, Adel.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:20:p:6782-:d:658694.

    Full description at Econpapers || Download paper

  28. Climate Finance: Mapping Air Pollution and Finance Market in Time Series. (2021). Fang, Zheng ; Wang, Sheng ; Peng, Ruiming ; Xie, Jian Ying.
    In: Econometrics.
    RePEc:gam:jecnmx:v:9:y:2021:i:4:p:43-:d:694969.

    Full description at Econpapers || Download paper

  29. Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms. (2021). Duan, Yunlong ; Chin, Tachia ; Fang, Qifeng ; Yang, Meng ; Zhou, LI ; Mu, Chang ; Deng, Zhiqing.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:242:y:2021:i:c:s0925527321002693.

    Full description at Econpapers || Download paper

  30. Forecasting stock index price using the CEEMDAN-LSTM model. (2021). Lin, YU ; Liao, Ying ; Yan, Yan ; Xu, Jiali ; Ma, Feng.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:57:y:2021:i:c:s1062940821000553.

    Full description at Econpapers || Download paper

  31. Design and Analysis of Robust Deep Learning Models for Stock Price Prediction. (2021). Sen, Jaydip ; Mehtab, Sidra.
    In: Papers.
    RePEc:arx:papers:2106.09664.

    Full description at Econpapers || Download paper

  32. The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR. (2020). Liao, Zhewen ; Jin, Zhenni ; Sun, YI ; Lai, Lin ; Guo, Kun.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:7:p:1166-1178.

    Full description at Econpapers || Download paper

  33. Forecasting Monthly Prices of Gold Using Artificial Neural Network. (2020). Okezie, Uche-Ikonne ; Bright, Oiorha ; Maxwell, Obubu ; Chukwudike, Nwokike ; Henry, Ukomah ; Ala, Ugo.
    In: Journal of Statistical and Econometric Methods.
    RePEc:spt:stecon:v:9:y:2020:i:3:f:9_3_2.

    Full description at Econpapers || Download paper

  34. Predictive power of ARIMA models in forecasting equity returns: a sliding window method. (2020). Guo, Xiaomin ; Hu, Ruizhi ; Dong, Huijian ; Reichgelt, Han.
    In: Journal of Asset Management.
    RePEc:pal:assmgt:v:21:y:2020:i:6:d:10.1057_s41260-020-00184-z.

    Full description at Econpapers || Download paper

  35. Comparing Weighted Markov Chain and Auto-Regressive Integrated Moving Average in the Prediction of Under-5 Mortality Annual Closing Rates in Nigeria. (2020). Obasohan, Phillips Edomwonyi.
    In: International Journal of Statistics and Probability.
    RePEc:ibn:ijspjl:v:9:y:2020:i:3:p:13.

    Full description at Econpapers || Download paper

  36. An R-based forecasting approach for efficient demand response strategies in autonomous micro-grids. (2019). .
    In: Energy & Environment.
    RePEc:sae:engenv:v:30:y:2019:i:1:p:63-80.

    Full description at Econpapers || Download paper

  37. HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. (2019). Lee, Sang Hoon ; Kim, Raehyun ; Jeong, Minbyul ; Kang, Jaewoo ; Ho, Chan.
    In: Papers.
    RePEc:arx:papers:1908.07999.

    Full description at Econpapers || Download paper

  38. Enhancing Stock Movement Prediction with Adversarial Training. (2019). He, Xiangnan ; Chua, Tat-Seng ; Sun, Maosong ; Ding, JI ; Chen, Huimin ; Feng, Fuli.
    In: Papers.
    RePEc:arx:papers:1810.09936.

    Full description at Econpapers || Download paper

  39. Temporal Relational Ranking for Stock Prediction. (2019). Liu, Yiqun ; Wang, Xiang ; He, Xiangnan ; Chua, Tat-Seng ; Feng, Fuli ; Luo, Cheng.
    In: Papers.
    RePEc:arx:papers:1809.09441.

    Full description at Econpapers || Download paper

  40. Adaptive Market Hypothesis and Artificial Neural Networks: Evidence from Pakistan. (2019). Ayub, Usman ; Kayani, Sehrish ; Jadoon, Imran Abbas.
    In: Global Regional Review.
    RePEc:aaw:grrjrn:v:4:y:2019:i:2:p:190-203.

    Full description at Econpapers || Download paper

  41. A Thick ANN Model for Forecasting Inflation. (2018). Iqbal, Javed ; Hanif, Muhammad ; Mughal, Khurrum S.
    In: SBP Working Paper Series.
    RePEc:sbp:wpaper:99.

    Full description at Econpapers || Download paper

  42. Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network. (2018). Liu, Huicheng.
    In: Papers.
    RePEc:arx:papers:1811.06173.

    Full description at Econpapers || Download paper

  43. Evaluating the Performance of Inflation Forecasting Models of Pakistan. (2015). Malik, Muhammad Jahanzeb ; Hanif, Muhammad.
    In: SBP Research Bulletin.
    RePEc:sbp:journl:66.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-22 11:20:21 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.