create a website

Can Multimodal Large Language Models Enhance Performance Benefits Among Higher Education Students? An Investigation Based on the Task–Technology Fit Theory and the Artificial Intelligence Device Use Acceptance Model. (2024). Alismaiel, Omar ; Samir, Amira ; Drwish, Amr ; Nasr, Nermeen ; Youssif, Samia ; Al-Dokhny, Amany.
In: Sustainability.
RePEc:gam:jsusta:v:16:y:2024:i:23:p:10780-:d:1539744.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 103

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Abdekhoda, M.; Dehnad, A.; Zarei, J. Factors Influencing Adoption of E-Learning in Healthcare: Integration of UTAUT and TTF Model. BMC Med. Inform. Decis. Mak. 2022, 22, 327. [CrossRef]
    Paper not yet in RePEc: Add citation now
  2. Abumandil, M.S.S.; Al-Adwan, A.S. System Quality and Student’s Acceptance of the E-Learning System: The Serial Mediation of Perceived Usefulness and Intention to Use. Contemp. Educ. Technol. 2022, 14, ep350.
    Paper not yet in RePEc: Add citation now
  3. Al Abdullatif, A.; Al-Dokhny, A.; Drwish, A. Critical Factors Influencing Pre-Service Teachers’ Use of the Internet of Things (IoT) in Classrooms. Int. J. Interact. Mob. Technol. 2022, 16, 85. [CrossRef]
    Paper not yet in RePEc: Add citation now
  4. Al-Abdullatif, A.M.; Al-Dokhny, A.A.; Drwish, A.M. Implementing the Bashayer Chatbot in Saudi Higher Education: Measuring the Influence on Students’ Motivation and Learning Strategies. Front. Psychol. 2023, 14, 1129070. [CrossRef]
    Paper not yet in RePEc: Add citation now
  5. Al-Azawei, A.; Alowayr, A. Predicting the Intention to Use and Hedonic Motivation for Mobile Learning: A Comparative Study in Two Middle Eastern Countries. Technol. Soc. 2020, 62, 101325. [CrossRef]

  6. Al-Dokhny, A.; Drwish, A.; Alyoussef, I.; Al-Abdullatif, A. Students’ Intentions to Use Distance Education Platforms: An Investigation into Expanding the Technology Acceptance Model Through Social Cognitive Theory. Electronics 2021, 10, 2992. [CrossRef]
    Paper not yet in RePEc: Add citation now
  7. Al-Dokhny, A.A.; Bukhamseen, A.M.; Drwish, A.M. Influence of Assistive Technology Applications on Dyslexic Students: The Case of Saudi Arabia During the COVID-19 Pandemic. Educ. Inf. Technol. 2022, 27, 12213–12249. [CrossRef]
    Paper not yet in RePEc: Add citation now
  8. Al-Maatouk, Q.; Othman, M.S.; Aldraiweesh, A.; Alturki, U.; Al-Rahmi, W.M.; Aljeraiwi, A.A. Task-Technology Fit and Technology Acceptance Model Application to Structure and Evaluate the Adoption of Social Media in Academia. IEEE Access 2020, 8, 78427–78440. [CrossRef]
    Paper not yet in RePEc: Add citation now
  9. Al-Maroof, R.S.; Alhumaid, K.; Alshaafi, A.; Akour, I.; Bettayeb, A.; Alfaisal, R.; Salloum, S.A. A Comparative Analysis of ChatGPT and Google in Educational Settings: Understanding the Influence of Mediators on Learning Platform Adoption. In Artificial Intelligence in Education: The Power and Dangers of ChatGPT in the Classroom; Al-Marzouqi, A., Salloum, S.A., Al-Saidat, M., Aburayya, A., Gupta, B., Eds.; Studies in Big Data; Springer: Cham, Switzerland, 2024; Volume 144, pp. 431–448.
    Paper not yet in RePEc: Add citation now
  10. Al-Momani, A.M.; Mahmoud, M.A.; Ahmad, M.S. A Review of Factors Influencing Customer Acceptance of Internet of Things Services. Int. J. Inf. Syst. Serv. Sect. 2019, 11, 54–67. [CrossRef]
    Paper not yet in RePEc: Add citation now
  11. Al-Rahmi, A.; Shamsuddin, A.; Alismaiel, O. Task-Technology Fit Model: The Factors Affecting Students’ Academic Performance in Higher Education. Univers. J. Educ. Res. 2020, 8, 6831–6843. [CrossRef]
    Paper not yet in RePEc: Add citation now
  12. Al-Rahmi, W.M.; Al-Adwan, A.S.; Al-Maatouk, Q.; Othman, M.S.; Alsaud, A.R.; Almogren, A.S.; Al-Rahmi, A.M. Integrating Communication and Task–Technology Fit Theories: The Adoption of Digital Media in Learning. Sustainability 2023, 15, 8144. [CrossRef]
    Paper not yet in RePEc: Add citation now
  13. Alamri, M.M.; Almaiah, M.A.; Al-Rahmi, W.M. The Role of Compatibility and Task-Technology Fit (TTF): On Social Networking Applications (SNAs) Usage as Sustainability in Higher Education. IEEE Access 2020, 8, 161668–161681. [CrossRef]
    Paper not yet in RePEc: Add citation now
  14. Alanazi, A.; Frey, B.; Niileksela, C.; Lee, S.; Nong, A.; Alharbi, F. The Role of Task Value and Technology Satisfaction in Student Performance in Graduate-Level Online Courses. TechTrends 2020, 64, 922–930. [CrossRef]
    Paper not yet in RePEc: Add citation now
  15. Ali, I.; Warraich, N. Use and Acceptance of Technology with Academic and Digital Libraries Context: A Meta-Analysis of UTAUT Model and Future Direction. J. Librariansh. Inf. Sci. 2023, 57, 158–177. [CrossRef]
    Paper not yet in RePEc: Add citation now
  16. Alkhawaja, M.I.; Halim, M.S.A.; Abuma Al-Rahmi, A.M.; Shamsuddin, A.; Wahab, E.; Al-Rahmi, W.M.; Alturki, U.; Aldraiweesh, A.; Almutairy, S. Integrating the Role of UTAUT and TTF Model to Evaluate Social Media Use for Teaching and Learning in Higher Education. Front. Public Health 2022, 10, 905968.
    Paper not yet in RePEc: Add citation now
  17. Alkhwaldi, A.; Alobidyeen, B.; Abdulmuhsin, A.; Al-Okaily, M. Investigating the Antecedents of HRIS Adoption in Public Sector Organizations: Integration of UTAUT and TTF. Int. J. Organ. Anal. 2022, 31, 3251–3274. [CrossRef]
    Paper not yet in RePEc: Add citation now
  18. Almogren, A.S.; Al-Rahmi, W.M.; Dahri, N.A. Exploring Factors Influencing the Acceptance of ChatGPT in Higher Education: A Smart Education Perspective. Heliyon 2024, 10, e14315. [CrossRef]
    Paper not yet in RePEc: Add citation now
  19. Alqahtani, T.; Badreldin, H.A.; Alrashed, M.; Alshaya, A.I.; Alghamdi, S.S.; bin Saleh, K.; Alowais, S.A.; Alshaya, O.A.; Rahman, I.; Al Yami, M.S.; et al. The Emergent Role of Artificial Intelligence, Natural Language Processing, and Large Language Models in Higher Education and Research. Res. Soc. Adm. Pharm. 2023, 19, 1236–1242. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  20. Alyoussef, I.Y. Acceptance of E-Learning in Higher Education: The Role of Task-Technology Fit with the Information Systems Success Model. Heliyon 2023, 9, e13751. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  21. Alyoussef, I.Y. E-Learning Acceptance: The Role of Task–Technology Fit as Sustainability in Higher Education. Sustainability 2021, 13, 6450. [CrossRef]
    Paper not yet in RePEc: Add citation now
  22. Alyoussef, I.Y. Massive Open Online Course (MOOCs) Acceptance: The Role of Task-Technology Fit (TTF) for Higher Education Sustainability. Sustainability 2021, 13, 7374. [CrossRef] Sustainability 2024, 16, 10780 25 of 28

  23. Baabdullah, A.; Alalwan, A.; Rana, N.; Kizgin, H.; Patil, P. Consumer Use of Mobile Banking (m-Banking) in Saudi Arabia: Towards an Integrated Model. Int. J. Inf. Manag. 2019, 44, 38–52. [CrossRef]
    Paper not yet in RePEc: Add citation now
  24. Baidoo-Anu, D.; Ansah, L.O. Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. J. AI 2023, 7, 52–62. [CrossRef]
    Paper not yet in RePEc: Add citation now
  25. Bewersdorff, A.; Hartmann, C.; Hornberger, M.; Seßler, K.; Bannert, M.; Kasneci, E.; Kasneci, G.; Zhai, X.; Nerdel, C. Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education. arXiv 2024, arXiv:2401.00832.
    Paper not yet in RePEc: Add citation now
  26. Butt, S.; Mahmood, A.; Saleem, S.; Rashid, T.; Ikram, A. Students’ Performance in Online Learning Environment: The Role of Task Technology Fit and Actual Usage of System During COVID-19. Front. Psychol. 2021, 12, 759227. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  27. Byrne, B.M. Structural Equation Modeling with Mplus: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2013.
    Paper not yet in RePEc: Add citation now
  28. Cai, J.; Li, Z.; Dou, Y.; Li, T. Investigating Adoption of High Prefabrication Level Technologies for Enterprises: An Integrated Model. Build. Res. Inf. 2023, 51, 648–666. [CrossRef]
    Paper not yet in RePEc: Add citation now
  29. Camilleri, M.A. Factors Affecting Performance Expectancy and Intentions to Use ChatGPT: Using SmartPLS to Advance an Information Technology Acceptance Framework. Technol. Forecast. Soc. Change 2024, 201, 123247. [CrossRef]

  30. Chen, J.; Zhuo, Z.; Lin, J. Does ChatGPT Play a Double-Edged Sword Role in the Field of Higher Education? An In-Depth Exploration of the Factors Affecting Student Performance. Sustainability 2023, 15, 16928. [CrossRef]

  31. Chin, W.W. The Partial Least Squares Approach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336.
    Paper not yet in RePEc: Add citation now
  32. Chuyen, N.T.H. An Empirical Analysis of Predictors of AI-Powered Design Tool Adoption. TEM J. 2023, 12, 1482. [CrossRef]
    Paper not yet in RePEc: Add citation now
  33. Cooper, G. Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. J. Sci. Educ. Technol. 2023, 32, 444–452. [CrossRef]
    Paper not yet in RePEc: Add citation now
  34. Davis, F.; Bagozzi, R.P.; Warshaw, P.R. Extrinsic and Intrinsic Motivation to Use Computers in the Workplace. J. Appl. Soc. Psychol. 1992, 22, 1111–1132. [CrossRef]
    Paper not yet in RePEc: Add citation now
  35. Drwish, A.M.; Al-Dokhny, A.A.; Al-Abdullatif, A.M.; Aladsani, H.K. A Sustainable Quality Model for Mobile Learning in Post-Pandemic Higher Education: A Structural Equation Modeling-Based Investigation. Sustainability 2023, 15, 7420. [CrossRef]
    Paper not yet in RePEc: Add citation now
  36. Du, Y.; Watkins, O.; Wang, Z.; Colas, C.; Darrell, T.; Abbeel, P.; Gupta, A.; Andreas, J. Guiding Pretraining in Reinforcement Learning with Large Language Models. In Proceedings of the International Conference on Machine Learning (ICML), Honolulu, HI, USA, 23–29 July 2023; PMLR: New York, NY, USA, 2023; pp. 8657–8677.
    Paper not yet in RePEc: Add citation now
  37. Eldokhny, A.A.; Drwish, A.M. Effectiveness of Augmented Reality in Online Distance Learning at the Time of the COVID-19 Pandemic. Int. J. Emerg. Technol. Learn. 2021, 16, 198. [CrossRef]
    Paper not yet in RePEc: Add citation now
  38. Emon, M.M.H.; Hassan, F.; Nahid, M.H.; Rattanawiboonsom, V. Predicting Adoption Intention of Artificial Intelligence. AIUB J. Sci. Eng. (AJSE) 2023, 22, 189–199. [CrossRef]
    Paper not yet in RePEc: Add citation now
  39. Goodhue, D.L.; Thompson, R.L. Task-Technology Fit and Individual Performance. MIS Q. Manag. Inf. Syst. 1995, 19, 213–233. [CrossRef]
    Paper not yet in RePEc: Add citation now
  40. Gursoy, D.; Chi, O.H.; Lu, L.; Nunkoo, R. Consumers Acceptance of Artificially Intelligent (AI) Device Use in Service Delivery. Int. J. Inf. Manag. 2019, 49, 157–169. [CrossRef]
    Paper not yet in RePEc: Add citation now
  41. Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook; Springer Nature: The Hague, The Netherlands, 2021.
    Paper not yet in RePEc: Add citation now
  42. Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Pearson: Upper Saddle River, NJ, USA, 2019.
    Paper not yet in RePEc: Add citation now
  43. Hair, J.F.; Hult, G.T.M.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); SAGE Publications: Thousand Oaks, CA, USA, 2016. Sustainability 2024, 16, 10780 28 of 28
    Paper not yet in RePEc: Add citation now
  44. Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [CrossRef]
    Paper not yet in RePEc: Add citation now
  45. Hengxuan, O.; Gürsoy, D.; Christina, G. Tourists’ Attitudes Toward the Use of Artificially Intelligent (AI) Devices in Tourism Service Delivery: Moderating Role of Service Value Seeking. J. Travel Res. 2020, 61, 170–185.
    Paper not yet in RePEc: Add citation now
  46. Howard, M.; Rose, J. Refining and Extending Task-Technology Fit Theory: Creation of Two Task-Technology Fit Scales and Empirical Clarification of the Construct. Inf. Manag. 2019, 56, 103–134. [CrossRef] Sustainability 2024, 16, 10780 27 of 28
    Paper not yet in RePEc: Add citation now
  47. Hu, L.; Bentler, P.M. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [CrossRef]
    Paper not yet in RePEc: Add citation now
  48. Huang, H.; Zheng, O.; Wang, D.; Yin, J.; Wang, Z.; Ding, S.; Yin, H.; Xu, C.; Yang, R.; Zheng, Q.; et al. ChatGPT for Shaping the Future of Dentistry: The Potential of Multi-Modal Large Language Model. Int. J. Oral Sci. 2023, 15, 29. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  49. Ilyoubi, B.; Yamin, M. The Impact of Task Technology Fit on Employee Job Performance. Mark. Manag. Innov. 2019, 9, 43–56.
    Paper not yet in RePEc: Add citation now
  50. Ivanashko, O.; Kozak, A.; Knysh, T.; Honchar, K. The Role of Artificial Intelligence in Shaping the Future of Education: Opportunities and Challenges. Futur. Educ. 2024, 4, 126–146.
    Paper not yet in RePEc: Add citation now
  51. Jain, R.; Garg, N.; Khera, S.N. Adoption of AI-Enabled Tools in Social Development Organizations in India: An Extension of UTAUT Model. Front. Psychol. 2022, 13, 893691. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  52. Jho, H.; Ha, M. Towards Effective Argumentation: Design and Implementation of a Generative AI-Based Evaluation and Feedback System. J. Balt. Sci. Educ. 2024, 23, 280–291. [CrossRef]
    Paper not yet in RePEc: Add citation now
  53. Jin, K.; Wang, C.Y.; Pham, H.V.; Hemmati, H. Can ChatGPT Support Developers? An Empirical Evaluation of Large Language Models for Code Generation. In Proceedings of the 2024 IEEE/ACM 21st International Conference on Mining Software Repositories (MSR), Lisbon, Portugal, 15–16 April 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 167–171.
    Paper not yet in RePEc: Add citation now
  54. Kang, S. The Effects of Metaverse Service Characteristics on Continuance Use Intention: A Task-Technology Fit Perspective. J. Korean Soc. Cult. Converg. 2022, 44, 87–98. [CrossRef]
    Paper not yet in RePEc: Add citation now
  55. Kasneci, E.; Seßler, K.; Küchemann, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Kasneci, G. ChatGPT for Good? On Opportunities and Challenges of Large Language Models for Education. Learn. Individ. Differ. 2023, 103, 102274. [CrossRef]
    Paper not yet in RePEc: Add citation now
  56. Khan, A.K.; Quratulain, S. An Examination of Antecedents and Consequences of Technostress Among University Students: Task-Technology Fit Perspective. In Proceedings of the 36th Bled eConference, BLED 2023, Bled, Slovenia, 25–28 June 2023; University of Maribor Press: Maribor, Slovenia, 2023; pp. 827–834.
    Paper not yet in RePEc: Add citation now
  57. Kurniawati, D.; Aryati, A.; Masyhuri. Task Technology Fit and Corporate Entrepreneurship in Islamic Banking: Post-Merger Perspective. Int. J. Res. Bus. Soc. Sci. 2023, 12, 2910. [CrossRef]
    Paper not yet in RePEc: Add citation now
  58. Lazarus, R.S. Cognition and Motivation in Emotion. Am. Psychol. 1991, 46, 352. [CrossRef]
    Paper not yet in RePEc: Add citation now
  59. Lazarus, R.S. Progress on a Cognitive-Motivational-Relational Theory of Emotion. Am. Psychol. 1991, 46, 819. [CrossRef]
    Paper not yet in RePEc: Add citation now
  60. Lei, M.; Lomax, R.G. The Effect of Varying Degrees of Non-Normality in Structural Equation Modeling. Struct. Equ. Model. 2005, 12, 1–27. [CrossRef]
    Paper not yet in RePEc: Add citation now
  61. Li, H.; Wang, S.X.; Shang, F.; Niu, K.; Song, R. Applications of Large Language Models in Cloud Computing: An Empirical Study Using Real-World Data. Int. J. Innov. Res. Comput. Sci. Technol. 2024, 12, 59–69. [CrossRef]
    Paper not yet in RePEc: Add citation now
  62. Libunao, M.A.D. Adoption of Artificial Intelligence in the Games and Amusements Board: A Stepwise Multiple Linear Regression Analysis. Int. J. Bus. Technol. 2023, 5, 30–48.
    Paper not yet in RePEc: Add citation now
  63. Lin, C.-T.; Huang, C.; Tseng, T.-C. Impact of Task-Technology Fit on Improving the Performance of Meituan Application. Sci. Soc. Res. 2022, 4, 134–138. [CrossRef]
    Paper not yet in RePEc: Add citation now
  64. Lin, H.; Chi, O.; Gursoy, D. Antecedents of Customers’ Acceptance of Artificially Intelligent Robotic Device Use in Hospitality Services. J. Hosp. Mark. Manag. 2020, 29, 530–549. [CrossRef]
    Paper not yet in RePEc: Add citation now
  65. Lo Presti, A.; De Rosa, A.; Viceconte, E. I Want to Learn More! Integrating Technology Acceptance and Task–Technology Fit Models for Predicting Behavioural and Future Learning Intentions. J. Workplace Learn. 2021, 33, 591–605. [CrossRef]
    Paper not yet in RePEc: Add citation now
  66. Lu, V.N.; Wirtz, J.; Kunz, W.H.; Paluch, S.; Gruber, T.; Martins, A.; Patterson, P.G. Service Robots, Customers, and Service Employees: What Can We Learn from the Academic Literature and Where Are the Gaps? J. Serv. Theory Pract. 2020, 30, 361–391. [CrossRef]
    Paper not yet in RePEc: Add citation now
  67. Ma, X.; Huo, Y. Are Users Willing to Embrace ChatGPT? Exploring the Factors on the Acceptance of Chatbots from the Perspective of AIDUA Framework. Technol. Soc. 2023, 75, 102362. [CrossRef] Sustainability 2024, 16, 10780 26 of 28
    Paper not yet in RePEc: Add citation now
  68. Marvin, G.; Hellen, N.; Jjingo, D.; Nakatumba-Nabende, J. Prompt Engineering in Large Language Models. In International Conference on Data Intelligence and Cognitive Informatics 2023; Springer Nature Singapore: Singapore, 2023; pp. 387–402.
    Paper not yet in RePEc: Add citation now
  69. McTear, M.; Ashurkina, M. Transforming Conversational AI: Exploring the Power of Large Language Models in Interactive Conversational Agents; Springer: Cham, Switzerland, 2024; pp. 1–256.
    Paper not yet in RePEc: Add citation now
  70. Menon, D.; Shilpa, K. “Chatting with ChatGPT”: Analyzing the factors influencing users’ intention to use the Open AI’s ChatGPT using the UTAUT model. Heliyon 2023, 9, e20962. [CrossRef]
    Paper not yet in RePEc: Add citation now
  71. Michel-Villarreal, R.; Vilalta-Perdomo, E.; Salinas-Navarro, D.E.; Thierry-Aguilera, R.; Gerardou, F.S. Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT. Educ. Sci. 2023, 13, 856. [CrossRef]
    Paper not yet in RePEc: Add citation now
  72. Mishra, U. Individual Performance and Mobile Banking: Role of Task Technology Fit Model. J. Knowl. Innov. 2023, 9, 18–27. [CrossRef]
    Paper not yet in RePEc: Add citation now
  73. Muchenje, G.; Seppänen, M. Unpacking task-technology fit to explore the business value of big data analytics. Int. J. Inf. Manag. 2023, 69, 102619. [CrossRef]
    Paper not yet in RePEc: Add citation now
  74. Navarro, M.M.; Prasetyo, Y.T.; Young, M.N.; Nadlifatin, R.; Redi, A.A.N.P. The Perceived Satisfaction in Utilizing Learning Management System among Engineering Students during the COVID-19 Pandemic: Integrating Task Technology Fit and Extended Technology Acceptance Model. Sustainability 2021, 13, 10669. [CrossRef]

  75. Padiyath, A.; Hou, X.; Pang, A.; Viramontes Vargas, D.; Gu, X.; Nelson-Fromm, T.; Wu, Z.; Guzdial, M.; Ericson, B. Insights from Social Shaping Theory: The Appropriation of Large Language Models in an Undergraduate Programming Course. In Proceedings of the 2024 ACM Conference on International Computing Education Research, Dunedin, New Zealand, 7–10 August 2024; ACM: New York, NY, USA, 2024; pp. 114–130.
    Paper not yet in RePEc: Add citation now
  76. Perkins, M. Academic Integrity Considerations of AI Large Language Models in the Post-Pandemic Era: ChatGPT and Beyond. J. Univ. Teach. Learn. Pract. 2023, 20. [CrossRef]
    Paper not yet in RePEc: Add citation now
  77. Rai, R.; Selnes, F. Conceptualizing Task-Technology Fit and the Effect on Adoption: A Case Study of a Digital Textbook Service. Inf. Manag. 2019, 56, 103–161. [CrossRef]
    Paper not yet in RePEc: Add citation now
  78. Rakic, S.; Tasic, N.; Marjanovic, U.; Softic, S.; Lüftenegger, E.; Turcin, I. Student Performance on an E-Learning Platform: Mixed Method Approach. Int. J. Emerg. Technol. Learn. 2020, 15, 187–203. [CrossRef]
    Paper not yet in RePEc: Add citation now
  79. Raza, S.A.; Qazi, W.; Khan, K.A.; Salam, J. Social Isolation and Acceptance of the Learning Management System (LMS) in the Time of COVID-19 Pandemic: An Expansion of the UTAUT Model. J. Educ. Comput. Res. 2021, 59, 183–208. [CrossRef]
    Paper not yet in RePEc: Add citation now
  80. Ribeiro, M.; Gürsoy, D.; Chi, O.H. Customer Acceptance of Autonomous Vehicles in Travel and Tourism. J. Travel Res. 2021, 61, 620–636. [CrossRef]
    Paper not yet in RePEc: Add citation now
  81. Rizkalla, N.; Tannady, H.; Bernando, R. Analysis of the Influence of Performance Expectancy, Effort Expectancy, Social Influence, and Attitude Toward Behavior on Intention to Adopt live.on. Multidiscip. Rev. 2023, 6, 2023spe017. [CrossRef]
    Paper not yet in RePEc: Add citation now
  82. Roy, P.; Ramaprasad, B.S.; Chakraborty, M.; Prabhu, N.; Rao, S. Customer Acceptance of Use of Artificial Intelligence in Hospitality Services: An Indian Hospitality Sector Perspective. Glob. Bus. Rev. 2024, 25, 832–851. [CrossRef]
    Paper not yet in RePEc: Add citation now
  83. Sahoo, O. An Empirical Investigation on Mobile Payment Adoption in India. Doctoral Dissertation, BITS Pilani, Pilani, Rajasthan, 2022.
    Paper not yet in RePEc: Add citation now
  84. Sebastián, M.; Guede, J.; Antonovica, A. Application and Extension of the UTAUT2 Model for Determining Behavioral Intention Factors in Use of the Artificial Intelligence Virtual Assistants. Front. Psychol. 2022, 13, 993935.
    Paper not yet in RePEc: Add citation now
  85. Sequeiros, H.; Oliveira, T.; Thomas, M. The Impact of IoT Smart Home Services on Psychological Well-Being. Inf. Syst. Front. 2021, 24, 1009–1026. [CrossRef]
    Paper not yet in RePEc: Add citation now
  86. Sharma, S.; Islam, N.; Singh, G.; Dhir, A. Why Do Retail Customers Adopt Artificial Intelligence (AI) Based Autonomous Decision-Making Systems? IEEE Trans. Eng. Manag. 2022, 71, 1846–1861. [CrossRef]
    Paper not yet in RePEc: Add citation now
  87. Sheng, H.; Wang, J.; Xu, Z. Factors Influencing Users’ Intention to Adopt Intelligent Customer Service: A Task-Technology Fit Perspective. In Proceedings of the 2022 International Conference on Computer Engineering and Artificial Intelligence (ICCEAI), Sanya, China, 16–18 December 2022; IEEE: New York, NY, USA, 2022; pp. 668–670.
    Paper not yet in RePEc: Add citation now
  88. Shin, A.; Song, H.D. The Effects of Basic Psychological Needs, Task–Technology Fit, and Student Engagement on MOOC Learners’ Continuance Intention to Use. Hum. Behav. Emerg. Technol. 2022, 1, 6444509. [CrossRef]
    Paper not yet in RePEc: Add citation now
  89. Sitar-Tăut, D.A. Mobile Learning Acceptance in Social Distancing during the COVID-19 Outbreak: The Mediation Effect of Hedonic Motivation. Hum. Behav. Emerg. Technol. 2021, 3, 366–378. [CrossRef]
    Paper not yet in RePEc: Add citation now
  90. Strzelecki, A. To Use or Not to Use ChatGPT in Higher Education? A Study of Students’ Acceptance and Use of Technology. Interact. Learn. Environ. 2023, 32, 5142–5155. [CrossRef]
    Paper not yet in RePEc: Add citation now
  91. Tamilmani, K.; Rana, N.; Prakasam, N.; Dwivedi, Y. The Battle of Brain vs. Heart: A Literature Review and Meta-Analysis of “Hedonic Motivation” Use in UTAUT2. Int. J. Inf. Manag. 2019, 46, 222–235. [CrossRef]
    Paper not yet in RePEc: Add citation now
  92. Tran, A.Q.; Nguyen, L.H.; Nguyen, H.S.A.; Nguyen, C.T.; Vu, L.G.; Zhang, M.; Vu, T.M.T.; Nguyen, S.H.; Tran, B.X.; Latkin, C.A.; et al. Determinants of Intention to Use Artificial Intelligence-Based Diagnosis Support System among Prospective Physicians. Front. Public Health 2021, 9, 755644. [CrossRef] [PubMed]
    Paper not yet in RePEc: Add citation now
  93. Valaei, N.; Nikhashemi, S.; Bressolles, G.; Jin, H. A(n) (a)symmetric perspective towards task-technology-performance fit in mobile app industry. J. Enterp. Inf. Manag. 2019, 32, 887–912. [CrossRef]
    Paper not yet in RePEc: Add citation now
  94. Wang, H.; Tao, D.; Yu, N.; Qu, X. Understanding Consumer Acceptance of Healthcare Wearable Devices: An Integrated Model of UTAUT and TTF. Int. J. Med. Inform. 2020, 139, 104–156. [CrossRef]
    Paper not yet in RePEc: Add citation now
  95. Wang, L.; Ma, C.; Feng, X.; Zhang, Z.; Yang, H.; Zhang, J.; Chen, Z.; Tang, J.; Chen, X.; Lin, Y.; et al. A Survey on Large Language Model Based Autonomous Agents. Front. Comput. Sci. 2024, 18, 186345. [CrossRef]
    Paper not yet in RePEc: Add citation now
  96. Wang, W.; Qiao, H.; Li, X.; Wang, J. User Willingness to Use Generative Artificial Intelligence Based on AIDUA Framework. J. Libr. Inf. Sci. Agric. 2024, 36, 36.
    Paper not yet in RePEc: Add citation now
  97. Wang, W.; Sari, M. Examining the Effect of the Task-Technology Fit of Game Mechanisms on Learning Outcomes in Online Gamification Platforms. J. Educ. Comput. Res. 2023, 61, 32–59. [CrossRef]
    Paper not yet in RePEc: Add citation now
  98. Wanti, L.P.; Insan, H.F.M.; Prasetya, N.W.A. End User Satisfaction for Location Health Service Application with Analysis of Task Technology Fit. Lontar Komput. J. Ilm. Teknol. Inf. 2020, 11, 76. [CrossRef]
    Paper not yet in RePEc: Add citation now
  99. Weisberg, H.F.; Krosnick, J.A.; Bowen, B.D. An Introduction to Survey Research and Data Analysis; Sage Publications: Thousand Oaks, CA, USA, 1977.
    Paper not yet in RePEc: Add citation now
  100. Wongwatkit, C.; Panjaburee, P.; Srisawasdi, N.; Seprum, P. Moderating Effects of Gender Differences on the Relationships Between Perceived Learning Support, Intention to Use, and Learning Performance in a Personalized E-Learning. J. Comput. Educ. 2020, 7, 229–255. [CrossRef]
    Paper not yet in RePEc: Add citation now
  101. Zaremohzzabieh, Z.; Roslan, S.; Mohamad, Z.; Ismail, I.; Jalil, H.; Ahrari, S. Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis. Sustainability 2022, 14, 8268. [CrossRef]
    Paper not yet in RePEc: Add citation now
  102. Zhang, X.; Jiang, H.; Qiao, Z.; Li, P. Students’ Response to ChatGPT: An Adaptive Technology-To-Performance Model. J. Comput. Inf. Syst. 2024, 1–18. [CrossRef]
    Paper not yet in RePEc: Add citation now
  103. Zhou, Y.; Muresanu, A.I.; Han, Z.; Paster, K.; Pitis, S.; Chan, H.; Ba, J. Large Language Models Are Human-Level Prompt Engineers. arXiv 2022, arXiv:2211.01910.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. An Exploration of Key Success Factors for Enterprises Implementing Online Education Training Based on the Unified Theory of Acceptance and Use of Technology. (2024). Chuang, Li-Min ; Liu, Hsiu-Hao.
    In: Advances in Management and Applied Economics.
    RePEc:spt:admaec:v:14:y:2024:i:2:f:14_2_1.

    Full description at Econpapers || Download paper

  2. Exploring factors influencing university students’ intentions to use ChatGPT: analysing task-technology fit theory to enhance behavioural intentions in higher education. (2024). Al-Mamary, Yaser Hasan ; Alfalah, Adel Abdulmohsen ; Alshammari, Mohammad Mulayh ; Abubakar, Aliyu Alhaji.
    In: Future Business Journal.
    RePEc:spr:futbus:v:10:y:2024:i:1:d:10.1186_s43093-024-00406-5.

    Full description at Econpapers || Download paper

  3. The Unified Theory of Acceptance and Use of Technology (UTAUT) in Higher Education: A Systematic Review. (2024). Ouyang, Sha ; Rashid, Abdullah Mat ; Xue, Liangyong.
    In: SAGE Open.
    RePEc:sae:sagope:v:14:y:2024:i:1:p:21582440241229570.

    Full description at Econpapers || Download paper

  4. Can Multimodal Large Language Models Enhance Performance Benefits Among Higher Education Students? An Investigation Based on the Task–Technology Fit Theory and the Artificial Intelligence Device Use Acceptance Model. (2024). Alismaiel, Omar ; Samir, Amira ; Drwish, Amr ; Nasr, Nermeen ; Youssif, Samia ; Al-Dokhny, Amany.
    In: Sustainability.
    RePEc:gam:jsusta:v:16:y:2024:i:23:p:10780-:d:1539744.

    Full description at Econpapers || Download paper

  5. Remedying driving range and refueling challenges in electric mobility: Consumer adoption of battery-swappable electric vehicles. (2024). Song, Huaming ; Adu-Gyamfi, Gibbson ; Nketiah, Emmanuel ; Obuobi, Bright ; Djanie, Ammishaddai Kotey.
    In: Technology in Society.
    RePEc:eee:teinso:v:78:y:2024:i:c:s0160791x24002094.

    Full description at Econpapers || Download paper

  6. Assessing the usage of ChatGPT on life satisfaction among higher education students: The moderating role of subjective health. (2024). Behera, Rajat Kumar ; Islam, Md Saiful ; Abbasi, Faraz Ahmad ; Imtiaz, Asma ; Ur, Anis.
    In: Technology in Society.
    RePEc:eee:teinso:v:78:y:2024:i:c:s0160791x24002033.

    Full description at Econpapers || Download paper

  7. Applying the extended UTAUT-2 to assess the factors contributing to consumers€™ usage intention towards over-the-top video streaming platforms. (2024). Tsai, Pei-Hsuan ; Ou, Mei-Ling ; Tang, Jia-Wei.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:81:y:2024:i:c:s0969698924002911.

    Full description at Econpapers || Download paper

  8. Examining Factors That Influence Learner Retention in MOOCs During the COVID-19 Pandemic Time. (2023). Yu, Zhonggen.
    In: SAGE Open.
    RePEc:sae:sagope:v:13:y:2023:i:2:p:21582440231175371.

    Full description at Econpapers || Download paper

  9. How E-Government Can Help Societies during a Crisis: Implications of UTAUT Model in Lebanon. (2023). Zargar, Pouya ; Karadas, Georgiana ; el Hajj, Bassel.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:6:p:5368-:d:1100295.

    Full description at Econpapers || Download paper

  10. Reducing waste management challenges: Empirical assessment of waste sorting intention among corporate employees in Ghana. (2023). Adu-Gyamfi, Gibbson ; Nketiah, Emmanuel ; Cudjoe, Dan ; Obuobi, Bright ; Zhu, Bangzhu ; Asamoah, Ama Nyarko ; Adjei, Mavis.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:72:y:2023:i:c:s0969698923000085.

    Full description at Econpapers || Download paper

  11. The Dark Side of Mobile Learning via Social Media: How Bad Can It Get?. (2022). Loh, Xiu-Ming ; Lee, Voon-Hsien ; Ooi, Keng-Boon ; Tan, Garry Wei-Han ; Dwivedi, Yogesh K.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:24:y:2022:i:6:d:10.1007_s10796-021-10202-z.

    Full description at Econpapers || Download paper

  12. Learners’ Continuous Use Intention of Blended Learning: TAM-SET Model. (2022). Wu, Yenchun Jim ; Chen, Xiulan ; Xu, Xiaofei ; Pok, Wei Fong.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:24:p:16428-:d:997407.

    Full description at Econpapers || Download paper

  13. Determinants of the Intention to Use MOOCs as a Complementary Tool: An Observational Study of Ecuadorian Teachers. (2022). Lujan-Mora, Sergio ; Yamba-Yugsi, Marco ; Atiaja, Lourdes Atiaja ; Eguia-Gomez, Jose Luis.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:22:p:15189-:d:974303.

    Full description at Econpapers || Download paper

  14. Predictors Influencing Urban and Rural Area students to Use Tablet Computers as Learning Tools: Combination of UTAUT and TTF Models. (2022). Liu, Yixuan ; Wijaya, Tommy Tanu ; Wang, Fang ; Habibi, Akhmad.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:21:p:13965-:d:954880.

    Full description at Econpapers || Download paper

  15. Learning Outcomes of Educational Usage of Social Media: The Moderating Roles of Task–Technology Fit and Perceived Risk. (2022). Sabah, Nasser M ; Altalbe, Ali A.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:14:p:8895-:d:867394.

    Full description at Econpapers || Download paper

  16. Influencing Factors in MOOCs Adoption in Higher Education: A Meta-Analytic Path Analysis. (2022). Mohamad, Zulkifli ; Zaremohzzabieh, Zeinab ; Ahrari, Seyedali ; Roslan, Samsilah ; Ismail, Ismi Arif.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:14:p:8268-:d:856930.

    Full description at Econpapers || Download paper

  17. Motivations Influencing Alipay Users to Participate in the Ant Forest Campaign: An Empirical Study. (2022). Wang, Shujie ; Ibrahiem, Mohammed Habes ; Li, Mengyu.
    In: IJERPH.
    RePEc:gam:jijerp:v:19:y:2022:i:24:p:17034-:d:1007374.

    Full description at Econpapers || Download paper

  18. An empirical analysis of mobile learning app usage experience. (2022). Singh, Yashdeep ; Suri, Pradeep Kumar.
    In: Technology in Society.
    RePEc:eee:teinso:v:68:y:2022:i:c:s0160791x22000707.

    Full description at Econpapers || Download paper

  19. Remote learning via video conferencing technologies: Implications for research and practice. (2022). Camilleri, Mark Anthony.
    In: Technology in Society.
    RePEc:eee:teinso:v:68:y:2022:i:c:s0160791x22000227.

    Full description at Econpapers || Download paper

  20. Multiple Correspondence Analysis of Factors Influencing Student Acceptance of Massive Open Online Courses. (2021). Olugbara, Oludayo O ; Letseka, Moeketsi.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:23:p:13451-:d:695438.

    Full description at Econpapers || Download paper

  21. Adopting xRM in Higher Education: E-Services Outside the Classroom. (2021). Despotovi-Zraki, Marijana ; Aleksi, Ema ; Bara, Duan ; Solea, Dragan ; Maleevi, Adam.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:14:p:7522-:d:589209.

    Full description at Econpapers || Download paper

  22. The Impact of Quality of Experience of Chinese College Students on Internet-Based Resources English Learning. (2021). Gao, Hui-Li.
    In: Future Internet.
    RePEc:gam:jftint:v:13:y:2021:i:7:p:162-:d:579220.

    Full description at Econpapers || Download paper

  23. Characterizing Chinese consumers’ intention to use live e-commerce shopping. (2021). Huang, Xin ; Kong, Nan ; Zhou, Min ; Wu, Kexin ; Campy, Kathryn S.
    In: Technology in Society.
    RePEc:eee:teinso:v:67:y:2021:i:c:s0160791x21002426.

    Full description at Econpapers || Download paper

  24. Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. (2021). Dabic, Marina ; Jeganathan, Kishokanth ; Kundi, Gagandeep Singh ; Melovi, Boban ; Szymkowiak, Andrzej.
    In: Technology in Society.
    RePEc:eee:teinso:v:65:y:2021:i:c:s0160791x21000403.

    Full description at Econpapers || Download paper

  25. Acceptability of mobile stock trading application: A study of young investors in Malaysia. (2021). Tan, Siow-Hooi ; Chong, Lee-Lee.
    In: Technology in Society.
    RePEc:eee:teinso:v:64:y:2021:i:c:s0160791x20313002.

    Full description at Econpapers || Download paper

  26. Motivation and Continuance Intention towards Online Instruction among Teachers during the COVID-19 Pandemic: The Mediating Effect of Burnout and Technostress. (2020). Chirca, Ruxandra ; Lazar, Iulia ; Panisoara, Ion Ovidiu ; Ursu, Anca Simona.
    In: IJERPH.
    RePEc:gam:jijerp:v:17:y:2020:i:21:p:8002-:d:437654.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 02:20:57 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.