create a website

Ensemble classification based on generalized additive models. (2010). Van den Poel, Dirk ; De Bock, Koen ; Coussement, Kristof.
In: Working Papers.
RePEc:hub:wpecon:201002.

Full description at Econpapers || Download paper

Cited: 14

Citations received by this document

Cites: 55

References cited by this document

Cocites: 22

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning. (2025). Shahbeik, Hossein ; Golvirdizadeh, Milad ; Peng, Wanxi ; Lam, Su Shiung ; Tabatabaei, Meisam ; Aghbashlo, Mortaza ; Shafizadeh, Alireza ; Chen, Xiangmeng ; Nadian, Mohammad Hossein.
    In: Renewable and Sustainable Energy Reviews.
    RePEc:eee:rensus:v:209:y:2025:i:c:s1364032124008256.

    Full description at Econpapers || Download paper

  2. Interpretable generalized additive neural networks. (2024). Weinzierl, Sven ; Zschech, Patrick ; Kraus, Mathias ; Tschernutter, Daniel.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:317:y:2024:i:2:p:303-316.

    Full description at Econpapers || Download paper

  3. Spline-rule ensemble classifiers with structured sparsity regularization for interpretable customer churn modeling. (2021). de Caigny, Arno ; de Bock, Koen W.
    In: Post-Print.
    RePEc:hal:journl:hal-03391564.

    Full description at Econpapers || Download paper

  4. Fusing Vantage Point Trees and Linear Discriminants for Fast Feature Classification. (2017). Neves, Joo C ; Proena, Hugo.
    In: Journal of Classification.
    RePEc:spr:jclass:v:34:y:2017:i:1:d:10.1007_s00357-017-9223-0.

    Full description at Econpapers || Download paper

  5. An asymptotically optimal kernel combined classifier. (2016). Mojirsheibani, Majid ; Kong, Jiajie.
    In: Statistics & Probability Letters.
    RePEc:eee:stapro:v:119:y:2016:i:c:p:91-100.

    Full description at Econpapers || Download paper

  6. An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market. (2016). Fitzpatrick, Trevor ; Mues, Christophe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:249:y:2016:i:2:p:427-439.

    Full description at Econpapers || Download paper

  7. An ensemble of -nearest neighbours algorithm for detection of Parkinsons disease. (2015). Gk, Murat.
    In: International Journal of Systems Science.
    RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1108-1112.

    Full description at Econpapers || Download paper

  8. A simple method for combining estimates to improve the overall error rates in classification. (2015). Balakrishnan, Narayanaswamy ; Mojirsheibani, Majid.
    In: Computational Statistics.
    RePEc:spr:compst:v:30:y:2015:i:4:p:1033-1049.

    Full description at Econpapers || Download paper

  9. A multi-loss super regression learner (MSRL) with application to survival prediction using proteomics. (2014). Datta, Susmita ; Shah, Jasmit .
    In: Computational Statistics.
    RePEc:spr:compst:v:29:y:2014:i:6:p:1749-1767.

    Full description at Econpapers || Download paper

  10. Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning. (2013). De Bock, Koen ; Coussement, Kristof.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:66:y:2013:i:9:p:1629-1636.

    Full description at Econpapers || Download paper

  11. Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models. (2012). Van den Poel, Dirk ; De Bock, Koen.
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:12/805.

    Full description at Econpapers || Download paper

  12. Consistency of support vector machines using additive kernels for additive models. (2012). Hable, Robert ; Christmann, Andreas.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:56:y:2012:i:4:p:854-873.

    Full description at Econpapers || Download paper

  13. An empirical evaluation of rotation-based ensemble classifiers for customer churn prediction. (2011). Van den Poel, Dirk ; De Bock, Koen.
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:11/717.

    Full description at Econpapers || Download paper

  14. Ensemble classification of paired data. (2011). Adler, Werner ; Potapov, Sergej ; Schmid, Matthias ; Lausen, Berthold ; Brenning, Alexander.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:55:y:2011:i:5:p:1933-1941.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abe, M., 1999. A generalized additive model for discrete-choice data. Journal of Business & Economic Statistics, 17 (3) 271-84.

  2. Alfaro, E., GÃmez, M., and GarcÃa, N., 2006. adabag: Applies Adaboost.M1 and Bagging, R Package version 1.1.
    Paper not yet in RePEc: Add citation now
  3. Archer, K. J. and Kirnes, R. V., 2008. Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 52 (4) 2249-60.

  4. Asuncion, A. and Newman, D. J., 2007. UCI Machine Learning Repository. Irvine, CA., University of California, School of Information and Computer Science.
    Paper not yet in RePEc: Add citation now
  5. Baccini, M., Biggeri, A., Lagazio, C., Lertxundi, A., and Saez, M., 2007. Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health. Computational Statistics & Data Analysis, 51 (9) 4324-36.

  6. BÃhlmann, P., 2002. Bagging, subagging and Bragging for improving some prediction algorithms, in: Akritas, M. G. and Politis, D. N. (Eds.), Recent Advances and Trends in NonParametric Statistics. Elsevier, Amsterdam.
    Paper not yet in RePEc: Add citation now
  7. Bauer, E. and Kohavi, R., 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36 (1-2) 105-39.
    Paper not yet in RePEc: Add citation now
  8. Berg, D., 2007. Bankruptcy prediction by generalized additive models. Applied Stochastic Models in Business and Industry, 23 (2) 129-43.

  9. Bernard, S., Heutte, L., and Adam, S., 2009. Influence of hyperparameters on Random Forest accuracy. In: Benediktsson, J. A., Kittler, J., and Roli, F. (Eds.), Proc. of 8th International Workshop on Multiple Classifier Systems (MCS 2009), Springer-Verlag, Berlin / Heidelberg.
    Paper not yet in RePEc: Add citation now
  10. Borra, S. and Di Ciaccio, A., 2002. Improving nonparametric regression methods by bagging and boosting. Computational Statistics & Data Analysis, 38 (4) 407-20.

  11. Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2) 123-40.
    Paper not yet in RePEc: Add citation now
  12. Breiman, L., 2001. Random forests. Machine Learning, 45 (1) 5-32.
    Paper not yet in RePEc: Add citation now
  13. Bryll, R., Gutierrez-Osuna, R., and Quek, F., 2003. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36 (6) 1291-302.
    Paper not yet in RePEc: Add citation now
  14. Canuto, A. M. P., Abreu, M. C. C., Oliveira, L. D., Xavier, J. C., and Santos, A. D., 2007. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition Letters, 28 (4) 47286.
    Paper not yet in RePEc: Add citation now
  15. Clements, M. S., Armstrong, B. K., and Moolgavkar, S. H., 2005. Lung cancer rate predictions using generalized additive models. Biostatistics, 6 (4) 576-89. This paper is accepted for publication in Computational Statistics & Data Analysis.
    Paper not yet in RePEc: Add citation now
  16. Croux, C., Joossens, K., and Lemmens, A., 2007. Trimmed bagging. Computational Statistics & Data Analysis, 52 (1) 362-68.

  17. De Bock, K. W., Coussement, K., and Van den Poel, D., 2009. GAMens: Applies GAMens, GAMrsm and GAMbag ensemble classifiers, R Package version 1.0.
    Paper not yet in RePEc: Add citation now
  18. DemÃ…ar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7 1-30.
    Paper not yet in RePEc: Add citation now
  19. Diaz-Uriate, R. and de Andres, S. A., 2006. Gene selection and classification of microarray data using random forest. Bmc Bioinformatics, 7.
    Paper not yet in RePEc: Add citation now
  20. Dietterich, T. G., 2000. Ensemble methods in machine learning. In: Kittler, J. and Roli, F. (Eds.), Proc. of 1st International Workshop on Multiple Classifier Systems (MCS 2001), Springer-Verlag, Berlin / Heidelberg.
    Paper not yet in RePEc: Add citation now
  21. Dunn, O. J., 1961. Multiple comparisons among means. Journal of the American Statistical Association, 56 (293) 52-64.
    Paper not yet in RePEc: Add citation now
  22. Friedman, J., Hastie, T., and Tibshirani, R., 2000. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28 (2) 337-74.
    Paper not yet in RePEc: Add citation now
  23. Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32 (200) 675-701.
    Paper not yet in RePEc: Add citation now
  24. Friedman, M., 1940. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11 (1) 86-92.
    Paper not yet in RePEc: Add citation now
  25. Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely randomized trees. Machine Learning, 63 (1) 3-42.
    Paper not yet in RePEc: Add citation now
  26. Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R., 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27 (4) 294-300.
    Paper not yet in RePEc: Add citation now
  27. Hansen, L. K. and Salamon, P., 1990. Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (10) 993-1001.
    Paper not yet in RePEc: Add citation now
  28. Hastie, T. and Tibshirani, R., 1986. Generalized additive models. Statistical Science, 1 (3) 297-318.
    Paper not yet in RePEc: Add citation now
  29. Hastie, T. and Tibshirani, R., 1987. Generalized Additive Models: Some applications. Journal of the American Statistical Association, 82 (398) 371-86. This paper is accepted for publication in Computational Statistics & Data Analysis.
    Paper not yet in RePEc: Add citation now
  30. Hastie, T. and Tibshirani, R., 1990. Generalized Additive Models. Chapman and Hall, London.
    Paper not yet in RePEc: Add citation now
  31. Hastie, T., 2008. gam: Generalized Additive Models, R package version 1.0.
    Paper not yet in RePEc: Add citation now
  32. Hastie, T., Tibshirani, R., and Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York.
    Paper not yet in RePEc: Add citation now
  33. Ho, T. K., 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8) 832-44.
    Paper not yet in RePEc: Add citation now
  34. Hothorn, T. and Lausen, B., 2005. Bundling classifiers by bagging trees. Computational Statistics & Data Analysis, 49 (4) 1068-78.

  35. Kawakita, M., Minami, M., Eguchi, S., and Lennert-Cody, C. E., 2005. An introduction to the predictive technique AdaBoost with a comparison to generalized additive models. Fisheries Research, 76 (3) 328-43.
    Paper not yet in RePEc: Add citation now
  36. Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., 2002. Support vector machine ensemble with bagging. In: Lee, S. E. Verri A. (Eds.), Proc. of 1st International Workshop on Pattern Recognition with Support Vector Machines, Springer-Verlag, Berlin / Heidelberg.
    Paper not yet in RePEc: Add citation now
  37. Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., 2003. Constructing support vector machine ensemble. Pattern Recognition, 36 (12) 2757-67.
    Paper not yet in RePEc: Add citation now
  38. Kuncheva, L. I. and Rodriguez, J. J., 2007. Classifier ensembles with a random linear oracle. IEEE Transactions on Knowledge and Data Engineering, 19 (4) 500-08.
    Paper not yet in RePEc: Add citation now
  39. Kuncheva, L. I. and Whitaker, C. J., 2003. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51 (2) 181-207.
    Paper not yet in RePEc: Add citation now
  40. Kuncheva, L. I., 2004. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, Hoboken, New Jersey.
    Paper not yet in RePEc: Add citation now
  41. Langley, P., 2000. Crafting papers on Machine Learning. In: Langley, P. (Eds.), Proc. of 17th International Conference on Machine Learning (ICML-2000), Stanford University, Stanford.
    Paper not yet in RePEc: Add citation now
  42. Liaw, A. and Wiener, M., 2002. Classification and Regression by randomForest. R News, 2 (3) 18-22.
    Paper not yet in RePEc: Add citation now
  43. Maclin, R. and Shavlik, J. W., 1995. Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In: Mellish, C. S. (Eds.), Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Morgan-Kauffman, San Francisco, CA.
    Paper not yet in RePEc: Add citation now
  44. Marx, B. D. and Eilers, P. H. C., 1998. Direct generalized additive modeling with penalized likelihood. Computational Statistics & Data Analysis, 28 (2) 193-209.

  45. Opitz, D. W. and Shavlik, J. W., 1996. Generating accurate and diverse members of a neural-network ensemble. Advances in Neural Information Processing Systems, 8 535-41.
    Paper not yet in RePEc: Add citation now
  46. Prasad, A. M., Iverson, L. R., and Liaw, A., 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9 (2) 181-99. This paper is accepted for publication in Computational Statistics & Data Analysis.
    Paper not yet in RePEc: Add citation now
  47. Prinzie, A. and Van den Poel, D., 2008. Random forests for multiclass classification: Random MultiNomial Logit. Expert Systems with Applications, 34 (3) 1721-32.

  48. Provost, F., Fawcett, T., and Kohavi, R. The Case against Accuracy Estimation for Comparing Induction Algorithms. In: Shavlik, J. (Eds.), Proc. of 15th International Conference on Machine Learning (ICML-1998), Morgan Kaufman, San Francisco, CA.
    Paper not yet in RePEc: Add citation now
  49. R Development Core Team, 2009. R: A Language and Environment for Statistical Computing, Vienna, Austria.
    Paper not yet in RePEc: Add citation now
  50. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., 2006. Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (10) 1619-30.
    Paper not yet in RePEc: Add citation now
  51. Schwenk, H. and Bengio, Y., 2000. Boosting neural networks. Neural Computation, 12 (8) 1869-87.
    Paper not yet in RePEc: Add citation now
  52. Skurichina, M. and Duin, R. P. W., 2000. The role of combining rules in bagging and boosting. In: Ferri, F. J., Inesta, J. M., Amin, A., and Pudil, P. (Eds.), Proc. of Joint International Workshops SSPR 2000 and SPR 2001, Springer-Verlag, Berlin / Heidelberg.
    Paper not yet in RePEc: Add citation now
  53. Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P., 2003. Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43 (6) 1947-58.
    Paper not yet in RePEc: Add citation now
  54. Zhang, C. X. and Zhang, J. S., 2008. RotBoost: A technique for combining Rotation Forest and AdaBoost. Pattern Recognition Letters, 29 (10) 1524-36.
    Paper not yet in RePEc: Add citation now
  55. Zhou, Z. H., Wu, J. X., and Tang, W., 2002. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137 (1-2) 239-63.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Teleworking and housing demand. (2023). Wersing, Martin ; Watson, Verity ; Schulz, Rainer.
    In: Regional Science and Urban Economics.
    RePEc:eee:regeco:v:101:y:2023:i:c:s0166046223000509.

    Full description at Econpapers || Download paper

  2. Enhancing discrete choice models with representation learning. (2020). Lurkin, Virginie ; Sifringer, Brian ; Alahi, Alexandre.
    In: Transportation Research Part B: Methodological.
    RePEc:eee:transb:v:140:y:2020:i:c:p:236-261.

    Full description at Econpapers || Download paper

  3. Arriving at a decision: A semi-parametric approach to institutional birth choice in India. (2019). Daziano, Ricardo A ; Bansal, Prateek ; Sunder, Naveen.
    In: Journal of choice modelling.
    RePEc:eee:eejocm:v:31:y:2019:i:c:p:86-103.

    Full description at Econpapers || Download paper

  4. Flexible estimation of time-varying effects for frequently purchased retail goods: a modeling approach based on household panel data. (2018). Steiner, Winfried J ; Kneib, Thomas ; Guhl, Daniel ; Baumgartner, Bernhard.
    In: OR Spectrum: Quantitative Approaches in Management.
    RePEc:spr:orspec:v:40:y:2018:i:4:d:10.1007_s00291-018-0530-6.

    Full description at Econpapers || Download paper

  5. Estimating time-varying parameters in brand choice models: A semiparametric approach. (2018). Steiner, Winfried J ; Kneib, Thomas ; Guhl, Daniel ; Baumgartner, Bernhard.
    In: International Journal of Research in Marketing.
    RePEc:eee:ijrema:v:35:y:2018:i:3:p:394-414.

    Full description at Econpapers || Download paper

  6. A Monte Carlo Evaluation of the Logit-Mixed Logit under Asymmetry and Multimodality. (2017). Scarpa, Riccardo ; Franceschinis, Cristiano ; Scarpan, Riccardo ; Thiene, Mara.
    In: Working Papers in Economics.
    RePEc:wai:econwp:17/23.

    Full description at Econpapers || Download paper

  7. Probabilistic forecasting with discrete choice models: Evaluating predictions with pseudo-coefficients of determination. (2016). Sung, Ming-Chien.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:248:y:2016:i:3:p:1021-1030.

    Full description at Econpapers || Download paper

  8. Kernel-based semiparametric multinomial logit modelling of political party preferences. (2014). Sperlich, Stefan ; Langrock, Roland ; Heidenreich, Nils-Bastian .
    In: Statistical Methods & Applications.
    RePEc:spr:stmapp:v:23:y:2014:i:3:p:435-449.

    Full description at Econpapers || Download paper

  9. Generalized Additive Models for Nonmarket Valuation via Revealed or Stated Preference Methods. (2012). Ferrini, Silvia ; Fezzi, Carlo.
    In: Land Economics.
    RePEc:uwp:landec:v:88:y:2012:iv:1:p:782-802.

    Full description at Econpapers || Download paper

  10. Inference on finite population categorical response: nonparametric regression-based predictive approach. (2012). Banerjee, Tathagata ; Adhya, Sumanta ; Chattopadhyay, Gaurangadeb.
    In: AStA Advances in Statistical Analysis.
    RePEc:spr:alstar:v:96:y:2012:i:1:p:69-98.

    Full description at Econpapers || Download paper

  11. Data augmentation, frequentist estimation, and the Bayesian analysis of multinomial logit models. (2011). Scott, Steven .
    In: Statistical Papers.
    RePEc:spr:stpapr:v:52:y:2011:i:1:p:87-109.

    Full description at Econpapers || Download paper

  12. Semiparametric specification of the utility function in a travel mode choice model. (2010). Fukuda, Daisuke ; Yai, Tetsuo.
    In: Transportation.
    RePEc:kap:transp:v:37:y:2010:i:2:p:221-238.

    Full description at Econpapers || Download paper

  13. Ensemble classification based on generalized additive models. (2010). Van den Poel, Dirk ; De Bock, Koen ; Coussement, Kristof.
    In: Working Papers.
    RePEc:hub:wpecon:201002.

    Full description at Econpapers || Download paper

  14. Ensemble classification based on generalized additive models. (2010). Van den Poel, Dirk ; De Bock, Koen ; Coussement, Kristof.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:54:y:2010:i:6:p:1535-1546.

    Full description at Econpapers || Download paper

  15. Using a heterogeneous multinomial probit model with a neural net extension to model brand choice. (2007). Hruschka, Harald.
    In: Journal of Forecasting.
    RePEc:jof:jforec:v:26:y:2007:i:2:p:113-127.

    Full description at Econpapers || Download paper

  16. Generalized structured additive regression based on Bayesian P-splines. (2006). Lang, Stefan ; Brezger, Andreas.
    In: Computational Statistics & Data Analysis.
    RePEc:eee:csdana:v:50:y:2006:i:4:p:967-991.

    Full description at Econpapers || Download paper

  17. Allocation of catalogs to collective customers based on semiparametric response models. (2005). Hruschka, Harald ; Baumgartner, Bernhard.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:162:y:2005:i:3:p:839-849.

    Full description at Econpapers || Download paper

  18. A new integrated model of noncompensatory and compensatory decision strategies. (2004). Elrod, Terry ; Johnson, Richard D. ; White, Joan.
    In: Organizational Behavior and Human Decision Processes.
    RePEc:eee:jobhdp:v:95:y:2004:i:1:p:1-19.

    Full description at Econpapers || Download paper

  19. An empirical comparison of the validity of a neural net based multinomial logit choice model to alternative model specifications. (2004). Fettes, Werner ; Probst, Markus ; Hruschka, Harald.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:159:y:2004:i:1:p:166-180.

    Full description at Econpapers || Download paper

  20. Investigating the Competitive Assumption of Multinomial Logit Models of Brand Choice by Nonparametric Modeling. (2003). Hildebrandt, Lutz ; Boztug, Yasemin ; Abe, Makoto.
    In: CIRJE F-Series.
    RePEc:tky:fseres:2003cf193.

    Full description at Econpapers || Download paper

  21. Investigation of the stochastic utility maximization process of consumer brand choice by semiparametric modeling. (2000). Abe, Makoto ; Hildebrandt, Lutz ; Boztuag, Yasemin .
    In: SFB 373 Discussion Papers.
    RePEc:zbw:sfb373:200084.

    Full description at Econpapers || Download paper

  22. A nonparametric multiple choice method within the random utility framework. (2000). Huang, J u-Chin, ; Nychka, Douglas W..
    In: Journal of Econometrics.
    RePEc:eee:econom:v:97:y:2000:i:2:p:207-225.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-03 10:49:06 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.