Abe, M., 1999. A generalized additive model for discrete-choice data. Journal of Business & Economic Statistics, 17 (3) 271-84.
- Alfaro, E., GÃmez, M., and GarcÃa, N., 2006. adabag: Applies Adaboost.M1 and Bagging, R Package version 1.1.
Paper not yet in RePEc: Add citation now
Archer, K. J. and Kirnes, R. V., 2008. Empirical characterization of random forest variable importance measures. Computational Statistics & Data Analysis, 52 (4) 2249-60.
- Asuncion, A. and Newman, D. J., 2007. UCI Machine Learning Repository. Irvine, CA., University of California, School of Information and Computer Science.
Paper not yet in RePEc: Add citation now
Baccini, M., Biggeri, A., Lagazio, C., Lertxundi, A., and Saez, M., 2007. Parametric and semi-parametric approaches in the analysis of short-term effects of air pollution on health. Computational Statistics & Data Analysis, 51 (9) 4324-36.
- BÃhlmann, P., 2002. Bagging, subagging and Bragging for improving some prediction algorithms, in: Akritas, M. G. and Politis, D. N. (Eds.), Recent Advances and Trends in NonParametric Statistics. Elsevier, Amsterdam.
Paper not yet in RePEc: Add citation now
- Bauer, E. and Kohavi, R., 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning, 36 (1-2) 105-39.
Paper not yet in RePEc: Add citation now
Berg, D., 2007. Bankruptcy prediction by generalized additive models. Applied Stochastic Models in Business and Industry, 23 (2) 129-43.
- Bernard, S., Heutte, L., and Adam, S., 2009. Influence of hyperparameters on Random Forest accuracy. In: Benediktsson, J. A., Kittler, J., and Roli, F. (Eds.), Proc. of 8th International Workshop on Multiple Classifier Systems (MCS 2009), Springer-Verlag, Berlin / Heidelberg.
Paper not yet in RePEc: Add citation now
Borra, S. and Di Ciaccio, A., 2002. Improving nonparametric regression methods by bagging and boosting. Computational Statistics & Data Analysis, 38 (4) 407-20.
- Breiman, L., 1996. Bagging predictors. Machine Learning, 24 (2) 123-40.
Paper not yet in RePEc: Add citation now
- Breiman, L., 2001. Random forests. Machine Learning, 45 (1) 5-32.
Paper not yet in RePEc: Add citation now
- Bryll, R., Gutierrez-Osuna, R., and Quek, F., 2003. Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition, 36 (6) 1291-302.
Paper not yet in RePEc: Add citation now
- Canuto, A. M. P., Abreu, M. C. C., Oliveira, L. D., Xavier, J. C., and Santos, A. D., 2007. Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles. Pattern Recognition Letters, 28 (4) 47286.
Paper not yet in RePEc: Add citation now
- Clements, M. S., Armstrong, B. K., and Moolgavkar, S. H., 2005. Lung cancer rate predictions using generalized additive models. Biostatistics, 6 (4) 576-89. This paper is accepted for publication in Computational Statistics & Data Analysis.
Paper not yet in RePEc: Add citation now
Croux, C., Joossens, K., and Lemmens, A., 2007. Trimmed bagging. Computational Statistics & Data Analysis, 52 (1) 362-68.
- De Bock, K. W., Coussement, K., and Van den Poel, D., 2009. GAMens: Applies GAMens, GAMrsm and GAMbag ensemble classifiers, R Package version 1.0.
Paper not yet in RePEc: Add citation now
- DemÃ…ar, J., 2006. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7 1-30.
Paper not yet in RePEc: Add citation now
- Diaz-Uriate, R. and de Andres, S. A., 2006. Gene selection and classification of microarray data using random forest. Bmc Bioinformatics, 7.
Paper not yet in RePEc: Add citation now
- Dietterich, T. G., 2000. Ensemble methods in machine learning. In: Kittler, J. and Roli, F. (Eds.), Proc. of 1st International Workshop on Multiple Classifier Systems (MCS 2001), Springer-Verlag, Berlin / Heidelberg.
Paper not yet in RePEc: Add citation now
- Dunn, O. J., 1961. Multiple comparisons among means. Journal of the American Statistical Association, 56 (293) 52-64.
Paper not yet in RePEc: Add citation now
- Friedman, J., Hastie, T., and Tibshirani, R., 2000. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28 (2) 337-74.
Paper not yet in RePEc: Add citation now
- Friedman, M., 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32 (200) 675-701.
Paper not yet in RePEc: Add citation now
- Friedman, M., 1940. A comparison of alternative tests of significance for the problem of m rankings. The Annals of Mathematical Statistics, 11 (1) 86-92.
Paper not yet in RePEc: Add citation now
- Geurts, P., Ernst, D., and Wehenkel, L., 2006. Extremely randomized trees. Machine Learning, 63 (1) 3-42.
Paper not yet in RePEc: Add citation now
- Gislason, P. O., Benediktsson, J. A., and Sveinsson, J. R., 2006. Random Forests for land cover classification. Pattern Recognition Letters, 27 (4) 294-300.
Paper not yet in RePEc: Add citation now
- Hansen, L. K. and Salamon, P., 1990. Neural Network Ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (10) 993-1001.
Paper not yet in RePEc: Add citation now
- Hastie, T. and Tibshirani, R., 1986. Generalized additive models. Statistical Science, 1 (3) 297-318.
Paper not yet in RePEc: Add citation now
- Hastie, T. and Tibshirani, R., 1987. Generalized Additive Models: Some applications. Journal of the American Statistical Association, 82 (398) 371-86. This paper is accepted for publication in Computational Statistics & Data Analysis.
Paper not yet in RePEc: Add citation now
- Hastie, T. and Tibshirani, R., 1990. Generalized Additive Models. Chapman and Hall, London.
Paper not yet in RePEc: Add citation now
- Hastie, T., 2008. gam: Generalized Additive Models, R package version 1.0.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., and Friedman, J., 2001. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, New York.
Paper not yet in RePEc: Add citation now
- Ho, T. K., 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8) 832-44.
Paper not yet in RePEc: Add citation now
Hothorn, T. and Lausen, B., 2005. Bundling classifiers by bagging trees. Computational Statistics & Data Analysis, 49 (4) 1068-78.
- Kawakita, M., Minami, M., Eguchi, S., and Lennert-Cody, C. E., 2005. An introduction to the predictive technique AdaBoost with a comparison to generalized additive models. Fisheries Research, 76 (3) 328-43.
Paper not yet in RePEc: Add citation now
- Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., 2002. Support vector machine ensemble with bagging. In: Lee, S. E. Verri A. (Eds.), Proc. of 1st International Workshop on Pattern Recognition with Support Vector Machines, Springer-Verlag, Berlin / Heidelberg.
Paper not yet in RePEc: Add citation now
- Kim, H. C., Pang, S., Je, H. M., Kim, D., and Bang, S. Y., 2003. Constructing support vector machine ensemble. Pattern Recognition, 36 (12) 2757-67.
Paper not yet in RePEc: Add citation now
- Kuncheva, L. I. and Rodriguez, J. J., 2007. Classifier ensembles with a random linear oracle. IEEE Transactions on Knowledge and Data Engineering, 19 (4) 500-08.
Paper not yet in RePEc: Add citation now
- Kuncheva, L. I. and Whitaker, C. J., 2003. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51 (2) 181-207.
Paper not yet in RePEc: Add citation now
- Kuncheva, L. I., 2004. Combining pattern classifiers: methods and algorithms. John Wiley & Sons, Hoboken, New Jersey.
Paper not yet in RePEc: Add citation now
- Langley, P., 2000. Crafting papers on Machine Learning. In: Langley, P. (Eds.), Proc. of 17th International Conference on Machine Learning (ICML-2000), Stanford University, Stanford.
Paper not yet in RePEc: Add citation now
- Liaw, A. and Wiener, M., 2002. Classification and Regression by randomForest. R News, 2 (3) 18-22.
Paper not yet in RePEc: Add citation now
- Maclin, R. and Shavlik, J. W., 1995. Combining the predictions of multiple classifiers: Using competitive learning to initialize neural networks. In: Mellish, C. S. (Eds.), Proc. of 14th International Joint Conference on Artificial Intelligence (IJCAI-95), Morgan-Kauffman, San Francisco, CA.
Paper not yet in RePEc: Add citation now
Marx, B. D. and Eilers, P. H. C., 1998. Direct generalized additive modeling with penalized likelihood. Computational Statistics & Data Analysis, 28 (2) 193-209.
- Opitz, D. W. and Shavlik, J. W., 1996. Generating accurate and diverse members of a neural-network ensemble. Advances in Neural Information Processing Systems, 8 535-41.
Paper not yet in RePEc: Add citation now
- Prasad, A. M., Iverson, L. R., and Liaw, A., 2006. Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9 (2) 181-99. This paper is accepted for publication in Computational Statistics & Data Analysis.
Paper not yet in RePEc: Add citation now
Prinzie, A. and Van den Poel, D., 2008. Random forests for multiclass classification: Random MultiNomial Logit. Expert Systems with Applications, 34 (3) 1721-32.
- Provost, F., Fawcett, T., and Kohavi, R. The Case against Accuracy Estimation for Comparing Induction Algorithms. In: Shavlik, J. (Eds.), Proc. of 15th International Conference on Machine Learning (ICML-1998), Morgan Kaufman, San Francisco, CA.
Paper not yet in RePEc: Add citation now
- R Development Core Team, 2009. R: A Language and Environment for Statistical Computing, Vienna, Austria.
Paper not yet in RePEc: Add citation now
- Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., 2006. Rotation forest: A new classifier ensemble method. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (10) 1619-30.
Paper not yet in RePEc: Add citation now
- Schwenk, H. and Bengio, Y., 2000. Boosting neural networks. Neural Computation, 12 (8) 1869-87.
Paper not yet in RePEc: Add citation now
- Skurichina, M. and Duin, R. P. W., 2000. The role of combining rules in bagging and boosting. In: Ferri, F. J., Inesta, J. M., Amin, A., and Pudil, P. (Eds.), Proc. of Joint International Workshops SSPR 2000 and SPR 2001, Springer-Verlag, Berlin / Heidelberg.
Paper not yet in RePEc: Add citation now
- Svetnik, V., Liaw, A., Tong, C., Culberson, J. C., Sheridan, R. P., and Feuston, B. P., 2003. Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Computer Sciences, 43 (6) 1947-58.
Paper not yet in RePEc: Add citation now
- Zhang, C. X. and Zhang, J. S., 2008. RotBoost: A technique for combining Rotation Forest and AdaBoost. Pattern Recognition Letters, 29 (10) 1524-36.
Paper not yet in RePEc: Add citation now
- Zhou, Z. H., Wu, J. X., and Tang, W., 2002. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 137 (1-2) 239-63.
Paper not yet in RePEc: Add citation now