create a website

Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators. (2024). Chakrabarti, Satyajit ; Ghosh, Rajdeep ; Sadhukhan, Bikash ; Das, Nabanita.
In: Computational Economics.
RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-024-10566-9.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 52

References cited by this document

Cocites: 26

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Ahsan, M., Mashuri, M., Khusna, H., & Wibawati. (2022). Kernel principal component analysis (PCA) control chart for monitoring mixed non-linear variable and attribute quality characteristics. Heliyon, 8(6), e09590. https://doi.org/10.1016/j.heliyon.2022.e09590 .
    Paper not yet in RePEc: Add citation now
  2. Banik, S., Sharma, N., Mangla, M., Mohanty, S. N., & S. Shitharth. (2022). LSTM based decision support system for swing trading in stock market. Knowledge-Based Systems, 239, 107994. https://doi.org/10.1016/j.knosys.2021.107994 .
    Paper not yet in RePEc: Add citation now
  3. Batabyal, D., Bandopadhyay, D., Sadhukhan, B., Das, N., & Mukherjee, S. (2023). Exploring stationarity and fractality in stock market time-series. In 2023 international conference on intelligent systems, advanced computing and communication (ISACC) (pp. 1–6). https://doi.org/10.1109/ISACC56298.2023.10084056 .
    Paper not yet in RePEc: Add citation now
  4. Bollen, J., Mao, H., & Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1), 1–8. https://doi.org/10.1016/j.jocs.2010.12.007 .
    Paper not yet in RePEc: Add citation now
  5. Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on computational learning theory, in COLT ’92. Association for Computing Machinery, New York, NY, USA (pp. 144–152). https://doi.org/10.1145/130385.130401 .
    Paper not yet in RePEc: Add citation now
  6. Bouktif, S., Fiaz, A., & Awad, M. (2020). Augmented textual features-based stock market prediction. IEEE Access, 8, 40269–40282. https://doi.org/10.1109/ACCESS.2020.2976725 .
    Paper not yet in RePEc: Add citation now
  7. Budiharto, W., & Meiliana, M. (2018). Prediction and analysis of Indonesia Presidential election from Twitter using sentiment analysis. Journal of Big Data, 5(1), 51. https://doi.org/10.1186/s40537-018-0164-1 .
    Paper not yet in RePEc: Add citation now
  8. Chakrabarti, P., Malvi, E., Bansal, S., & Kumar, N. (2023). Hashtag recommendation for enhancing the popularity of social media posts. Social Network Analysis and Mining, 13(1), 21. https://doi.org/10.1007/s13278-023-01024-9 .
    Paper not yet in RePEc: Add citation now
  9. Chaudhuri, A., Mukherjee, S., Chowdhury, S., Sadhukhan, B., & Goswami, R. T. (2018). Fractality and stationarity analysis on stock market. In 2018 international conference on advances in computing, communication control and networking (ICACCCN). IEEE, Greater Noida (UP), India (pp. 395–398). https://doi.org/10.1109/ICACCCN.2018.8748504 .
    Paper not yet in RePEc: Add citation now
  10. Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2, 100015. https://doi.org/10.1016/j.dajour.2021.100015 .
    Paper not yet in RePEc: Add citation now
  11. Contreras, I., Hidalgo, J. I., & Núñez-Letamendia, L. (2012). A GA combining technical and fundamental analysis for trading the stock market. In C. Di Chio, A. Agapitos, S. Cagnoni, C. Cotta, F. F. de Vega, G. A. Di Caro, R. Drechsler, A. Ekárt, A. I. Esparcia-Alcázar, M. Farooq, W. B. Langdon, J. J. Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A. Simões, G. Squillero, E. Tarantino, A. G. B. Tettamanzi, … G. N. Yannakakis (Eds.), Applications of evolutionary computation. Lecture notes in computer science (pp. 174–183). Springer. https://doi.org/10.1007/978-3-642-29178-4_18 .
    Paper not yet in RePEc: Add citation now
  12. Cresci, S., Lillo, F., Regoli, D., Tardelli, S., & Tesconi, M. (2019). Cashtag Piggybacking: Uncovering spam and bot activity in stock microblogs on Twitter. ACM Transactions on the Web, 13(2), 1–27. https://doi.org/10.1145/3313184 .
    Paper not yet in RePEc: Add citation now
  13. Das, N., Sadhukhan, B., Chatterjee, T., & Chakrabarti, S. (2022). Effect of public sentiment on stock market movement prediction during the COVID-19 outbreak. Social Network Analysis and Mining, 12(1), 92. https://doi.org/10.1007/s13278-022-00919-3 .
    Paper not yet in RePEc: Add citation now
  14. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv, May 24, 2019. https://doi.org/10.48550/arXiv.1810.04805 .
    Paper not yet in RePEc: Add citation now
  15. Eriksson Krutrök, M., & Lindgren, S. (2018). Continued contexts of terror: Analyzing temporal patterns of hashtag co-occurrence as discursive articulations. Social Media + Society, 4(4), 2056305118813649. https://doi.org/10.1177/2056305118813649 .
    Paper not yet in RePEc: Add citation now
  16. Fong, S., Zhuang, Y., Li, J., & Khoury, R. (2013). Sentiment analysis of online news using MALLET. In International symposium on computational and business intelligence (pp. 301–304). https://doi.org/10.1109/ISCBI.2013.67 .
    Paper not yet in RePEc: Add citation now
  17. Ganaie, M. A., Hu, M., Malik, A. K., Tanveer, M., & Suganthan, P. N. (2022). Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151. https://doi.org/10.1016/j.engappai.2022.105151 .
    Paper not yet in RePEc: Add citation now
  18. Guan, C., Liu, W., & Cheng, J.Y.-C. (2022). Using social media to predict the stock market crash and rebound amid the pandemic: The digital ‘haves’ and ‘have-mores.’ Annals of Data Science, 9(1), 5–31. https://doi.org/10.1007/s40745-021-00353-w .

  19. Hajihosseinlou, M., Maghsoudi, A., & Ghezelbash, R. (2024). Stacking: A novel data-driven ensemble machine learning strategy for prediction and mapping of Pb-Zn prospectivity in Varcheh district, west Iran. Expert Systems with Applications, 237, 121668. https://doi.org/10.1016/j.eswa.2023.121668 .
    Paper not yet in RePEc: Add citation now
  20. Iacomini, E., & Vellucci, P. (2023). Contrarian effect in opinion forming: Insights from Greta Thunberg phenomenon. The Journal of Mathematical Sociology, 47(2), 123–169. https://doi.org/10.1080/0022250X.2021.1981310 .

  21. Jiang, W. (2021). Applications of deep learning in stock market prediction: Recent progress. Expert Systems with Applications, 184, 115537. https://doi.org/10.1016/j.eswa.2021.115537 .
    Paper not yet in RePEc: Add citation now
  22. Jing, N., Wu, Z., & Wang, H. (2021). A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Systems with Applications, 178, 115019.
    Paper not yet in RePEc: Add citation now
  23. Kamdem, J. S., Essomba, R. B., & Berinyuy, J. N. (2020). Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities. Chaos, Solitons & Fractals, 140, 110215. https://doi.org/10.1016/j.chaos.2020.110215 .

  24. Khan, W., Ghazanfar, M. A., Azam, M. A., Karami, A., Alyoubi, K. H., & Alfakeeh, A. S. (2022). Stock market prediction using machine learning classifiers and social media, news. J Ambient Intell Human Comput, 13(7), 3433–3456. https://doi.org/10.1007/s12652-020-01839-w .
    Paper not yet in RePEc: Add citation now
  25. Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J. (2022). Machine learning techniques and data for stock market forecasting: A literature review. Expert Systems with Applications, 197, 116659. https://doi.org/10.1016/j.eswa.2022.116659 .
    Paper not yet in RePEc: Add citation now
  26. Li, Y., Wang, S., Wei, Y., & Zhu, Q. (2021). A new hybrid VMD-ICSS-BiGRU approach for gold futures price forecasting and algorithmic trading. IEEE Transactions on Computational Social Systems, 8(6), 1357–1368. https://doi.org/10.1109/TCSS.2021.3084847 .
    Paper not yet in RePEc: Add citation now
  27. Liao, W., Zeng, B., Liu, J., Wei, P., Cheng, X., & Zhang, W. (2021). Multi-level graph neural network for text sentiment analysis. Computers & Electrical Engineering, 92, 107096. https://doi.org/10.1016/j.compeleceng.2021.107096 .
    Paper not yet in RePEc: Add citation now
  28. Liu, H. (2018). Leveraging financial news for stock trend prediction with attention-based recurrent neural network. arXiv, 14, 2018. https://doi.org/10.48550/arXiv.1811.06173 .

  29. Lu, Y., & Zheng, Q. (2021). Twitter public sentiment dynamics on cruise tourism during the COVID-19 pandemic. Current Issues in Tourism, 24(7), 892–898. https://doi.org/10.1080/13683500.2020.1843607 .

  30. Mienye, I. D., & Sun, Y. (2022). A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access, 10, 99129–99149. https://doi.org/10.1109/ACCESS.2022.3207287 .
    Paper not yet in RePEc: Add citation now
  31. Mndawe, S. T., Paul, B. S., & Doorsamy, W. (2022). Development of a stock price prediction framework for intelligent media and technical analysis. Applied Sciences, 12(2), Art. no. 2. https://doi.org/10.3390/app12020719 .
    Paper not yet in RePEc: Add citation now
  32. Mukherjee, S., Sadhukhan, B., Sarkar, N., Roy, D., & De, S. (2021). Stock market prediction using deep learning algorithms. CAAI Transactions on Intelligence Technology. https://doi.org/10.1049/cit2.12059 .
    Paper not yet in RePEc: Add citation now
  33. Nabipour, M., Nayyeri, P., Jabani, H., Mosavi, A., Salwana, E., & Shahab S. (2020). Deep learning for stock market prediction. Entropy, 22(8), Art. no. 8. https://doi.org/10.3390/e22080840 .

  34. Nahil, A., & Lyhyaoui, A. (2018). Short-term stock price forecasting using kernel principal component analysis and support vector machines: The case of Casablanca stock exchange. Procedia Computer Science, 127, 161–169. https://doi.org/10.1016/j.procs.2018.01.111 .
    Paper not yet in RePEc: Add citation now
  35. Oyedele, A. A., Ajayi, A. O., Oyedele, L. O., Bello, S. A., & Jimoh, K. O. (2023). Performance evaluation of deep learning and boosted trees for cryptocurrency closing price prediction. Expert Systems with Applications, 213, 119233. https://doi.org/10.1016/j.eswa.2022.119233 .
    Paper not yet in RePEc: Add citation now
  36. Passalis, N., et al. (2022). Multisource financial sentiment analysis for detecting Bitcoin price change indications using deep learning. Neural Computing and Applications, 34(22), 19441–19452. https://doi.org/10.1007/s00521-022-07509-6 .
    Paper not yet in RePEc: Add citation now
  37. Perdana, R. S., & Pinandito, A. (2018). Combining likes-retweet analysis and naive Bayes classifier within Twitter for sentiment analysis. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(1–8), Art. no. 1–8.
    Paper not yet in RePEc: Add citation now
  38. Qiu, J., Wang, B., & Zhou, C. (2020). Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE, 15(1), e0227222. https://doi.org/10.1371/journal.pone.0227222 .

  39. Raman, R., Aljafari, R., Venkatesh, V., & Richardson, V. (2022). Mixed-methods research in the age of analytics, an exemplar leveraging sentiments from news articles to predict firm performance. International Journal of Information Management, 64, 102451. https://doi.org/10.1016/j.ijinfomgt.2021.102451 .
    Paper not yet in RePEc: Add citation now
  40. Rhanoui, M., Mikram, M., Yousfi, S., & Barzali, S. (2019). A CNN-BiLSTM model for document-level sentiment analysis. Machine Learning and Knowledge Extraction, 1(3), Art. no. 3. https://doi.org/10.3390/make1030048 .
    Paper not yet in RePEc: Add citation now
  41. Shen, J., & Shafiq, M. O. (2020). Short-term stock market price trend prediction using a comprehensive deep learning system. Journal of Big Data, 7(1), 66. https://doi.org/10.1186/s40537-020-00333-6 .
    Paper not yet in RePEc: Add citation now
  42. Smith, S., & O’Hare, A. (2022). Comparing traditional news and social media with stock price movements; which comes first, the news or the price change? Journal of Big Data, 9(1), 47. https://doi.org/10.1186/s40537-022-00591-6 .
    Paper not yet in RePEc: Add citation now
  43. Sohangir, S., Wang, D., Pomeranets, A., & Khoshgoftaar, T. M. (2018). Big Data: Deep Learning for financial sentiment analysis. Journal of Big Data, 5(1), 3. https://doi.org/10.1186/s40537-017-0111-6 .
    Paper not yet in RePEc: Add citation now
  44. Sprenger, T. O., Tumasjan, A., Sandner, P. G., & Welpe, I. M. (2014). Tweets and trades: The information content of stock microblogs. European Financial Management, 20(5), 926–957. https://doi.org/10.1111/j.1468-036X.2013.12007.x .

  45. Suresh Kumar, P., Behera, H. S., Nayak, J., & Naik, B. (2021). Bootstrap aggregation ensemble learning-based reliable approach for software defect prediction by using characterized code feature. Innovations in Systems and Software Engineering, 17(4), 355–379. https://doi.org/10.1007/s11334-021-00399-2 .
    Paper not yet in RePEc: Add citation now
  46. Tetlock, P. C. (2007). Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3), 1139–1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x .

  47. Vargas, M. R., dos Anjos, C. E. M., Bichara, G. L. G., & Evsukoff, A. G. (2018). Deep leaming for stock market prediction using technical indicators and financial news articles. In International joint conference on neural networks (IJCNN), (pp. 1–8). https://doi.org/10.1109/IJCNN.2018.8489208 .
    Paper not yet in RePEc: Add citation now
  48. Wang, H., Wang, J., Cao, L., Li, Y., Sun, Q., & Wang, J. (2021). A Stock closing price prediction model based on CNN-BiSLSTM. Complexity, 2021, e5360828. https://doi.org/10.1155/2021/5360828 .
    Paper not yet in RePEc: Add citation now
  49. Wu, X., Wang, X., Ma, S., & Ye, Q. (2017). The influence of social media on stock volatility. Frontiers of Engineering, 4(2), Art. no. 2. https://doi.org/10.15302/J-FEM-2017018 .
    Paper not yet in RePEc: Add citation now
  50. Zhang, K. et al. (2011). SES: Sentiment elicitation system for social media data. In 2011 IEEE 11th international conference on data mining workshops (pp. 129–136). https://doi.org/10.1109/ICDMW.2011.153 .
    Paper not yet in RePEc: Add citation now
  51. Zheng, H., Wang, H., & Chen, J. (2021). Evolutionary framework with bidirectional long short-term memory network for stock price prediction. Mathematical Problems in Engineering, 2021, e8850600. https://doi.org/10.1155/2021/8850600 .
    Paper not yet in RePEc: Add citation now
  52. Zhong, X., & Enke, D. (2019). Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financial Innovation, 5(1), 24. https://doi.org/10.1186/s40854-019-0138-0 .

Cocites

Documents in RePEc which have cited the same bibliography

  1. Forecasting crude oil prices with alternative data and a deep learning approach. (2025). Hao, Jing ; He, Feng ; Xia, Zihui ; Zhang, Xiaotao.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-024-06056-8.

    Full description at Econpapers || Download paper

  2. Predicting the cryptocurrency market using social media metrics and search trends during COVID-19. (2024). Liu, Wenting ; Kim, Jongki ; Mou, Jian ; Westland, Christopher J ; Guan, Chong.
    In: Electronic Commerce Research.
    RePEc:spr:elcore:v:24:y:2024:i:2:d:10.1007_s10660-023-09801-6.

    Full description at Econpapers || Download paper

  3. Forecasting commodity prices: empirical evidence using deep learning tools. (2024). Ftiti, Zied ; Louhichi, Wael ; Boubaker, Sahbi ; Tissaoui, Kais ; ben Ameur, Hachmi.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-05076-6.

    Full description at Econpapers || Download paper

  4. Developing Hybrid Deep Learning Models for Stock Price Prediction Using Enhanced Twitter Sentiment Score and Technical Indicators. (2024). Chakrabarti, Satyajit ; Ghosh, Rajdeep ; Sadhukhan, Bikash ; Das, Nabanita.
    In: Computational Economics.
    RePEc:kap:compec:v:64:y:2024:i:6:d:10.1007_s10614-024-10566-9.

    Full description at Econpapers || Download paper

  5. Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series. (2024). SADEFO KAMDEM, Jules ; Pokou, Fredy ; Benhmad, Franois.
    In: Computational Economics.
    RePEc:kap:compec:v:63:y:2024:i:4:d:10.1007_s10614-023-10499-9.

    Full description at Econpapers || Download paper

  6. When to Hedge Downside Risk?. (2024). Giannikos, Christos ; Suen, Tin Shan ; Guirguis, Hany ; Kakolyris, Andreas.
    In: Risks.
    RePEc:gam:jrisks:v:12:y:2024:i:2:p:42-:d:1341077.

    Full description at Econpapers || Download paper

  7. Impact of big data analytics on telecom companies competitive advantage. (2024). Liebana-Cabanillas, Francisco ; Blanco-Encomienda, Francisco Javier ; Alshawawreh, Ali Raed.
    In: Technology in Society.
    RePEc:eee:teinso:v:76:y:2024:i:c:s0160791x24000071.

    Full description at Econpapers || Download paper

  8. Quantifying predictive knowledge: Wavelet energy α-divergence measure for time series uncertainty reduction. (2024). Mazzoccoli, Alessandro ; Mastroeni, Loretta.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:188:y:2024:i:c:s0960077924010403.

    Full description at Econpapers || Download paper

  9. Evidence from the nonlinear autoregressive distributed lag model on the asymmetric influence of the first wave of the COVID-19 pandemic on energy markets. (2023). Gherghina, Ştefan ; Andrei, Jean Vasile ; Armeanu, Daniel Stefan ; Joldes, Camelia Catalina.
    In: Energy & Environment.
    RePEc:sae:engenv:v:34:y:2023:i:5:p:1433-1470.

    Full description at Econpapers || Download paper

  10. Harnessing the power of AI: Advanced deep learning models optimization for accurate SARS-CoV-2 forecasting. (2023). Tariq, Muhammad Usman ; Ismail, Shuhaida Binti ; Babar, Muhammad ; Ahmad, Ashir.
    In: PLOS ONE.
    RePEc:plo:pone00:0287755.

    Full description at Econpapers || Download paper

  11. A Multi-Factor Selection and Fusion Method through the CNN-LSTM Network for Dynamic Price Forecasting. (2023). Liu, Yishun ; Huang, Keke ; Yang, Chunhua.
    In: Mathematics.
    RePEc:gam:jmathe:v:11:y:2023:i:5:p:1132-:d:1079267.

    Full description at Econpapers || Download paper

  12. Skewed multifractal scaling of stock markets during the COVID-19 pandemic. (2023). Saâdaoui, Foued ; Saadaoui, Foued.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:170:y:2023:i:c:s0960077923002734.

    Full description at Econpapers || Download paper

  13. Volatility Transmissionin Agricultural Markets: Evidence from the Russia-Ukraine Conflict. (2023). Gaio, Luiz ; Dario, Daniel Henrique.
    In: International Journal of Food and Agricultural Economics (IJFAEC).
    RePEc:ags:ijfaec:334707.

    Full description at Econpapers || Download paper

  14. Efficient Equalization and Carrier Frequency Offset Compensation for Underwater Wireless Communication Systems. (2022). Elbakry, Mohamed S ; Ramadan, Khaled.
    In: Annals of Data Science.
    RePEc:spr:aodasc:v:9:y:2022:i:6:d:10.1007_s40745-022-00449-x.

    Full description at Econpapers || Download paper

  15. Fundamentals vs. Financialization during Extreme Events: From Backwardation to Contango, a Copper Market Analysis during the COVID-19 Pandemic. (2022). Martin-Garcia, Rodrigo ; Galan-Gutierrez, Juan Antonio.
    In: Mathematics.
    RePEc:gam:jmathe:v:10:y:2022:i:4:p:559-:d:747076.

    Full description at Econpapers || Download paper

  16. Risk Contagion between Global Commodities from the Perspective of Volatility Spillover. (2022). Pan, QI ; Ng, Pin ; Zhao, Lili ; Shen, Hong.
    In: Energies.
    RePEc:gam:jeners:v:15:y:2022:i:7:p:2492-:d:781639.

    Full description at Econpapers || Download paper

  17. VIX and major agricultural future markets: dynamic linkage and time-frequency relations around the COVID-19 outbreak. (2022). Lu, Ran ; Zeng, Hongjun.
    In: Studies in Economics and Finance.
    RePEc:eme:sefpps:sef-02-2022-0121.

    Full description at Econpapers || Download paper

  18. Have returns and volatilities for financial assets responded to implied volatility during the COVID-19 pandemic?. (2022). Maghyereh, Aktham ; Abdoh, Hussein ; Awartani, Basel.
    In: Journal of Commodity Markets.
    RePEc:eee:jocoma:v:26:y:2022:i:c:s2405851321000283.

    Full description at Econpapers || Download paper

  19. Empirical study and model simulation of global stock market dynamics during COVID-19. (2022). Xiong, Long ; Jin, Lifu ; Zhang, Jiu ; Li, Jiangcheng ; Ma, Jiahao ; Zheng, BO ; Jiang, Xiongfei.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:159:y:2022:i:c:s0960077922003484.

    Full description at Econpapers || Download paper

  20. The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic. (2021). Cola, Vincenzo Schiano ; Cuomo, Salvatore ; Piccialli, Francesco ; Giampaolo, Fabio.
    In: Information Systems Frontiers.
    RePEc:spr:infosf:v:23:y:2021:i:6:d:10.1007_s10796-021-10131-x.

    Full description at Econpapers || Download paper

  21. Testing the Resilience of CSR Stocks during the COVID-19 Crisis: A Transcontinental Analysis. (2021). Martin, Pedro Antonio ; del Carmen, Maria.
    In: Mathematics.
    RePEc:gam:jmathe:v:9:y:2021:i:5:p:514-:d:508811.

    Full description at Econpapers || Download paper

  22. Sugar Prices vs. Financial Market Uncertainty in the Time of Crisis: Does COVID-19 Induce Structural Changes in the Relationship?. (2021). Smutka, Lubos ; Kotyza, Pavel ; Prochazka, Petr ; Wielechowski, Micha ; Czech, Katarzyna.
    In: Agriculture.
    RePEc:gam:jagris:v:11:y:2021:i:2:p:93-:d:484771.

    Full description at Econpapers || Download paper

  23. COVID-19 Pandemic: Stock Markets Situation in European Ex-Communist Countries. (2021). Karpio, Andrew ; Żebrowska-Suchodolska, Dorota ; Kompa, Krzysztof ; Zebrowska-Suchodolska, Dorota.
    In: European Research Studies Journal.
    RePEc:ers:journl:v:xxiv:y:2021:i:3:p:1106-1128.

    Full description at Econpapers || Download paper

  24. COVID-19 Pandemic: Stock Markets Situation in European Ex-Communist Countries. (2021). Kompa, Krzysztof ; Karpio, Andrzej ; Zebrowska-Suchodolska, Dorota.
    In: European Research Studies Journal.
    RePEc:ers:journl:v:xxiv:y:2021:i:3-part1:p:1106-1128.

    Full description at Econpapers || Download paper

  25. Impact of COVID-19 outbreak on multi-scale asymmetric spillovers between food and oil prices. (2021). Cao, Yan ; Cheng, Sheng.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:74:y:2021:i:c:s0301420721003731.

    Full description at Econpapers || Download paper

  26. Price overreactions in the commodity futures market: An intraday analysis of the Covid-19 pandemic impact. (2021). Czudaj, Robert ; van Hoang, Thi Hong ; Borgards, Oliver.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:71:y:2021:i:c:s0301420720309946.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-09-23 13:23:54 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.