Alm, J., & Embaye, A. (2013). Using dynamic panel methods to estimate shadow economies around the world, 1984–2006. Public Finance Review, 41(5), 510–543.
Athey, S., & Imbens, G. W. (2019). Machine learning methods that economists should know about. Annual Review of Economics, 11, 685–725.
- Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.
Paper not yet in RePEc: Add citation now
Canh, P. N., & Dinh Thanh, S. (2020). Exports and the shadow economy: Non-linear effects. The Journal of International Trade and Economic Development, 29(7), 865–890.
- Chen, T. & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, (pp. 785–794).
Paper not yet in RePEc: Add citation now
- Cui, P., & Athey, S. (2022). Stable learning establishes some common ground between causal inference and machine learning. Nature Machine Intelligence, 4(2), 110–115.
Paper not yet in RePEc: Add citation now
- Dabiri, H., Kheyroddin, A., & Faramarzi, A. (2022). Predicting tensile strength of spliced and non-spliced steel bars using machine learning-and regression-based methods. Construction and Building Materials, 325, 126835.
Paper not yet in RePEc: Add citation now
- Denk, M. & Weber, M. (2011). Avoid filling swiss cheese with whipped cream: Imputation techniques and evaluation procedures for cross-country time series. IMF Working Paper 11/151.
Paper not yet in RePEc: Add citation now
- Dorogush, A. V., Ershov, V., & Gulin, A. (2018). Catboost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363 .
Paper not yet in RePEc: Add citation now
- Elbahnasawy, N. G. (2021). Can e-government limit the scope of the informal economy? World Development, 139, 105341.
Paper not yet in RePEc: Add citation now
Elgin, C. (2013). Internet usage and the shadow economy: Evidence from panel data. Economic Systems, 37(1), 111–121.
- Gambhir, E., Jain, R., Gupta, A., & Tomer, U. (2020). Regression analysis of COVID-19 using machine learning algorithms. In 2020 International conference on smart electronics and communication (ICOSEC), (pp. 65–71). IEEE.
Paper not yet in RePEc: Add citation now
- Géron, A. (2022). Hands-on machine learning with Scikit-learn, Keras, and TensorFlow. O’Reilly Media, Inc.
Paper not yet in RePEc: Add citation now
- Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine Learning, 63, 3–42.
Paper not yet in RePEc: Add citation now
- Goldstein, B. A., Navar, A. M., & Carter, R. E. (2017). Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. European Heart Journal, 38(23), 1805–1814.
Paper not yet in RePEc: Add citation now
Guo, F., Huang, Y., Wang, J., & Wang, X. (2022). The informal economy at times of COVID-19 pandemic. China Economic Review, 71, 101722.
- Ivaşcu, C.-F., & Ştefoni, S. E. (2023). Modelling the non-linear dependencies between government expenditures and shadow economy using data-driven approaches. Scientific Annals of Economics and Business, 70(1), 97–114.
Paper not yet in RePEc: Add citation now
- Jadhav, A., Pramod, D., & Ramanathan, K. (2019). Comparison of performance of data imputation methods for numeric dataset. Applied Artificial Intelligence, 33(10), 913–933.
Paper not yet in RePEc: Add citation now
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30.
Paper not yet in RePEc: Add citation now
- Keren, L. S., Liberzon, A., & Lazebnik, T. (2023). A computational framework for physics-informed symbolic regression with straightforward integration of domain knowledge. Scientific Reports, 13(1), 1249.
Paper not yet in RePEc: Add citation now
- Lazebnik, T., & Bunimovich-Mendrazitsky, S. (2023). Decision tree post-pruning without loss of accuracy using the sat-pp algorithm with an empirical evaluation on clinical data. Data & Knowledge Engineering, 145, 102173.
Paper not yet in RePEc: Add citation now
- Lundberg, S. M. & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.
Paper not yet in RePEc: Add citation now
Lyulyov, O., Paliienko, M., Prasol, L., Vasylieva, T., Kubatko, O., & Kubatko, V. (2021). Determinants of shadow economy in transition countries: Economic and environmental aspects. International Journal of Global Energy Issues, 43(2–3), 166–182.
Medina, L. & Schneider, M. F. (2018). Shadow Economies Around the World: what did we learn over the last 20 years? International Monetary Fund.
- Olson, R. S. & Moore, J. H. (2016). TPOT: A tree-based pipeline optimization tool for automating machine learning. In Workshop on automatic machine learning, (pp. 66–74).
Paper not yet in RePEc: Add citation now
Pappadà, F. & Rogoff, K. S. (2023). Rethinking the informal economy and the hugo effect. Technical Report 31963, National Bureau of Economic Research.
- Ranis, G., & Stewart, F. (1999). V-goods and the role of the urban informal sector in development. Economic Development and Cultural Change, 47(2), 259–288.
Paper not yet in RePEc: Add citation now
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you? Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, (pp. 1135–1144).
Paper not yet in RePEc: Add citation now
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. In Proceedings of the AAAI conference on artificial intelligence, (Vol. 32).
Paper not yet in RePEc: Add citation now
Schneider, F. & Klinglmair, R. (2004). Shadow economies around the world: What do we know? Available at SSRN 518526.
Schneider, F., Raczkowski, K., & Mróz, B. (2015). Shadow economy and tax evasion in the EU. Journal of Money Laundering Control, 18(1), 34–51.
- Shami, L. & Lazebnik, T. (2023). Implementing machine learning methods in estimating the size of the non-observed economy. Computational Economics, pp. 1–18.
Paper not yet in RePEc: Add citation now
- Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307–317.
Paper not yet in RePEc: Add citation now
- Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14, 199–222.
Paper not yet in RePEc: Add citation now
Teobaldelli, D., & Schneider, F. (2013). The influence of direct democracy on the shadow economy. Public Choice, 157, 543–567.
Ulyssea, G. (2018). Firms, informality, and development: Theory and evidence from Brazil. American Economic Review, 108(8), 2015–47.
Ulyssea, G. (2020). Informality: Causes and consequences for development. Annual Review of Economics, 12(1), 525–546.
Vousinas, G. L. (2017). Shadow economy and tax evasion. The Achilles heel of Greek economy. Determinants, effects and policy proposals. Journal of Money Laundering Control, 20(4), 386–404.
- Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259.
Paper not yet in RePEc: Add citation now
Yoon, J. (2021). Forecasting of real GDP growth using machine learning models: Gradient boosting and random forest approach. Computational Economics, 57(1), 247–265.
Zhanabekov, S. (2022). Robust determinants of the shadow economy. Bulletin of Economic Research, 74(4), 1017–1052.