Abate, G., Basile, I., & Ferrari, P. (2021). The level of sustainability and mutual fund performance in Europe: An empirical analysis using ESG ratings. Corporate Social Responsibility and Environmental Management, 28(5), 1446–1455. https://doi.org/10.1002/csr.2175 .
- Abdelsalam, A., Barake, S., & Elcheikh, A. (2020). Sustainable Investment and ESG Performance. Retrieved from https://www.researchgate.net/publication/342703817_Sustainable_Investment_and_ESG_Performance .
Paper not yet in RePEc: Add citation now
- Biecek, P., & Burzycowski, T. (2020). Explanatory Model Analysis. Retrieved from https://pbiecek.github.io/ema/preface.html [Accessed 21 Sept. 2022].
Paper not yet in RePEc: Add citation now
- Biecek, P., Maksymiuk, S., & Baniecki, B. (2022). DALEX: Descriptive mAchine Learning EXplanations. R package version 2.4.0. Retrieved from https://cran.r-project.org/web/packages/DALEX/index.html .
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 .
Paper not yet in RePEc: Add citation now
Broadstock, D., Chan, K., Cheng, L., & Wang, X. (2021). The role of ESG performance during times of financial crisis: Evidence from COVID-19 in China. Finance Research Letters, 38, 101716. https://doi.org/10.1016/j.frl.2020.101716 .
Carmona, P., Climent, F., & Momparler, A. (2019). Predicting failure in the US banking sector: An extreme gradient boosting approach. International Review of Economics & Finance, 61, 304–323.
- Chen, T., & Guestrin, C. (2016). XGBoost: A scalable Tree Boosting System. arXiv:1603.02754v3 [cs.LG].
Paper not yet in RePEc: Add citation now
Climent, F., Momparler, A., & Carmona, P. (2019). Anticipating bank distress in the Eurozone: An Extreme Gradient boosting approach. Journal of Business Research, 101, 885–896.
- Collins, S. (2020). Advancing environmental, social, and governance investing. A holistic approach for investment management firms. Deloitte report. Retrieved June 22, from: https://www2.deloitte.com/us/en/insights/industry/financial-services/esg-investing-performance.html .
Paper not yet in RePEc: Add citation now
DeMiguel, V., Gil-Bazo, J., Nogales, F., & Santos, A. (2023). Machine learning and fund characteristics help to select mutual funds with positive alpha. Journal of Financial Economics, 150(3), 102737. https://doi.org/10.1016/j.jfineco.2023.103737 .
- Dolvin, S., Fulkerson, J., & Krukover, A. (2019). Do good guys finish last? The relationship between Morningstar sustainability ratings and mutual fund performance. The Journal of Investing, 28(2), 77–91. https://doi.org/10.3905/joi.2019.28.2.077 .
Paper not yet in RePEc: Add citation now
- Doukas, H., Xidonas, P., & Mastromichalakis, N. (2022). How successful are energy efficiency investments? A comparative analysis for classification and performance prediction. Computational Economics, 59, 579–598. https://doi.org/10.1007/s10614-021-10098-6 .
Paper not yet in RePEc: Add citation now
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.
Paper not yet in RePEc: Add citation now
Friedman, J. H. (2002). Stochastic gradient boosting. Journal of Computational Statistics & Data Analysis, 38(4), 367–378.
- Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407.
Paper not yet in RePEc: Add citation now
Graham, J. E., Lassala, C., & Ribeiro-Navarrete, B. (2019). A fuzzy-set analysis of conditions influencing mutual fund performance. International Review of Economics and Finance, 61, 324–336.
- Hall, P., & Gill, N. (2019). Introduction to machine learning interpretability (2nd ed.). O’Reilly Media.
Paper not yet in RePEc: Add citation now
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning (2nd ed.). Springer.
Paper not yet in RePEc: Add citation now
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An introduction to statistical learning (2nd ed.). Springer.
Paper not yet in RePEc: Add citation now
Kaniel, R., Lin, Z., Pelger, M., & Van Nieuwerburgh, S. (2023). Machine-learning the skill of mutual fund managers. Journal of Financial Economics, 150(1), 94–138. https://doi.org/10.1016/j.jfineco.2023.07.004 .
- Kuhn, M., & Vaughan, D. (2021). parsnip: A Common API to Modeling and Analysis Functions. R package version 0.1.5. Retrieved June 2022, from https://CRAN.R-project.org/package=parsnip .
Paper not yet in RePEc: Add citation now
- LeDell, E., Gill, N., Aiello, S. (2022). h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package version 3.36.0.1. Retrieved June 2022, from https://CRAN.R-project.org/package=h2o .
Paper not yet in RePEc: Add citation now
- Li, B., & Rossi, A. G. (2021). Selecting mutual funds from the stocks they hold: A machine learning approach. Available at SSRN 3737667 papers. ssrn.com .
Paper not yet in RePEc: Add citation now
Losada, R. (2022). Periodic public information on investment funds and how it influences investors’ decisions; CNMV Working Paper Nº 76.
- Morningstar (2021). Global Sustainable Fund Flows: Q4 2021 in Review.
Paper not yet in RePEc: Add citation now
- Morningstar (2022). Global Sustainable Fund Flows: Q4 2022 in Review.
Paper not yet in RePEc: Add citation now
- Natekin, A., & Knoll, A. (2013). Gradient boosting machines, a tutorial. Frontiers in Neurorobotics, 7, 21. https://doi.org/10.3389/fnbot.2013.00021 .
Paper not yet in RePEc: Add citation now
- R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved June 2022, from http://www.R-project.org/ .
Paper not yet in RePEc: Add citation now
Raghunandan, A., & Rajgopal, S. (2022). Do ESG funds make stakeholder-friendly investments? Review of Accounting Studies, 27, 822–863. https://doi.org/10.1007/s11142-022-09693-1 .
- Ruf, B., Das, N., Chatterjee, S., & Sunder, A. (2019). Investments in ESG-Rated mutual funds: Is good better than great? The Journal of Wealth Management, 22(1), 56–61. https://doi.org/10.3905/jwm.2019.1.070 .
Paper not yet in RePEc: Add citation now
- Steen, M., Taghawi, J., & Gjolberg, O. (2020). Is there a relationship between Morningstar’s ESG ratings and mutual fund performance? Journal of Sustainable Finance & Investment, 10(4), 349–370. https://doi.org/10.1080/20430795.2019.1700065 .
Paper not yet in RePEc: Add citation now
- Whelan, T., Atz, U., Van Holt, T., & Clark, C. (2021). ESG and financial performance: Uncovering the Relationship by Aggregating Evidence from 1,000 Plus Studies Published between 2015–2020. Center for Sustainable Business (NYU – Stern). Retrieved June 22, from https://www.stern.nyu.edu/sites/default/files/assets/documents/ESG%20Paper%20Aug%202021.pdf .
Paper not yet in RePEc: Add citation now
- Wickham, H. (2022). Tidyverse. R package version 1.3.2. Retrieved June 2022, from https://tidyverse.tidyverse.org , https://github.com/tidyverse/tidyverse.
Paper not yet in RePEc: Add citation now
Xidonas, P., & Essner, E. (2024). On ESG portfolio construction: A multiobjective optimization approach. Computational Economics, 63, 21–45. https://doi.org/10.1007/s10614-022-10327-6 .