create a website

Governing Synthetic Data in the Financial Sector. (2025). Millo, Yuval ; Xu, Ruowen ; Hansen, Kristian Bondo ; Spears, Taylor C.
In: SocArXiv.
RePEc:osf:socarx:ruxkh_v1.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 46

References cited by this document

Cocites: 45

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Aftabi, S. Z., Ahmadi, A., & Farzi, S. (2023). Fraud detection in financial statements using data mining and GAN models. Expert Systems with Applications, 227, 120144.
    Paper not yet in RePEc: Add citation now
  2. Arnoldi, J. (2016). Computer algorithms, market manipulation and the institutionalization of high frequency trading. Theory, Culture & Society, 33(1), 29–52. Retrieved from https:// doi.org/10.1177/0263276414566642 Arnott, R., Harvey, C. R., & Markowitz, H. (2019). A backtesting protocol in the era of machine learning. The Journal of Financial Data Science, 1(1), 64–74.
    Paper not yet in RePEc: Add citation now
  3. Arthur, C. (2013). Tech giants may be huge, but nothing matches big data. The Guardian. Retrieved from https://www.theguardian.com/technology/2013/aug/23/tech-giants-data (23 August 2013) Assefa, S., Dervovic, D., Mahfouz, M., Blach, T., Reddy, P., & Veloso, M. (2020). Generating synthetic data in finance: Opportunities, challenges and pitfalls. SSRN Scholarly Paper. doi: 10.2139/ssrn.3634235 Austin, A. A., Carpenter, T. D., Christ, M. H., & Nielson, C. S. (2021). The data analytics journey: Interactions among auditors, managers, regulation, and technology. Contemporary Accounting Research, 38(3), 1888–1924.
    Paper not yet in RePEc: Add citation now
  4. Axtell, R. L., & Farmer, J. D. (2022). Agent-based modeling in economics and finance: Past, present, and future (Working Paper No. 2022-10). INET Oxford.

  5. Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its consequences. Cambridge, MA: MIT Press.
    Paper not yet in RePEc: Add citation now
  6. Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of big data’s impact on audit judgment and decision making and future research directions. Accounting Horizons, 29(2), 451–468.
    Paper not yet in RePEc: Add citation now
  7. Buehler, H., Gonon, L., Teichmann, J., & Wood, B. (2019). Deep hedging. Quantitative Finance, 19(8), 1271–1291.
    Paper not yet in RePEc: Add citation now
  8. Buehler, H., Horvath, B., Lyons, T., Arribas, I. P., & Wood, B. (2020). A data-driven market simulator for small data environments. arXiv. doi: 10.48550/arXiv.2006.14498 Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512.

  9. Caliskan, K. (2020). Platform works as stack economization: Cryptocurrency markets and exchanges in perspective. Sociologica, 14(3), Article 3. Retrieved from https://doi.org/ 10.6092/issn.1971-8853/11746 Coletta, A., Prata, M., Conti, M., & Balch, T. (2021). Towards realistic market simulations: A generative adversarial network approach. In Proceedings of the 2nd ACM international conference on AI in finance (ICAIF’21). doi: 10.1145/3490354.3494411 Cornelli, G., Frost, J., Gambacorta, L., Rau, P. R., Wardrop, R., & Ziegler, T. (2023). Fintech and big tech credit: Drivers of the growth of digital lending. Journal of Banking & Finance, 148, 106742.
    Paper not yet in RePEc: Add citation now
  10. De Vries, K. (2020). “you never fake alone. creative AI in action.”. Information, Communication & Society, 23(14), 2110–2127.
    Paper not yet in RePEc: Add citation now
  11. Di Girolamo, F., Hledik, J., & Pagano, A. (2024). Synthetic data in the data hub of the digital finance platform (Tech. Rep.). EU Science Hub. doi: 10.2760/83055 Edwards, P. N. (1999). Global climate science, uncertainty and politics: Data-laden models, model-filtered data. Science as Culture, 8(4), 437–472. doi: 10.1080/09505439909526558 FCA Innovation Digital Sandbox. (2025). Authorised push payment (APP) fraud dataset evaluation (Tech. Rep.). Financial Conduct Authority. Retrieved from https://www.fca.org.uk/ publication/external-research/app-fraud-dataset-evaluation-report.pdf (Accessed on 18 August 2025) Ferrari, F., & McKelvey, F. (2023). Hyperproduction: A social theory of deep generative models.
    Paper not yet in RePEc: Add citation now
  12. Distinktion: Journal of Social Theory, 24(2), 338–360. doi: 10.1080/1600910X.2022.2137546 Financial Conduct Authority. (2021, April). Supporting innovation in financial services: the digital sandbox pilot (Tech. Rep.). UK Financial Conduct Authority.
    Paper not yet in RePEc: Add citation now
  13. Financial Conduct Authority. (2022, March). Synthetic data to support financial services innovation (Tech. Rep.). UK Financial Conduct Authority.
    Paper not yet in RePEc: Add citation now
  14. Financial Conduct Authority. (2023, February). Synthetic data call for input: Feedback statement (Tech. Rep.). UK Financial Conduct Authority.
    Paper not yet in RePEc: Add citation now
  15. Financial Conduct Authority. (2024, March). Using synthetic data in financial services (Tech. Rep.). UK Financial Conduct Authority.
    Paper not yet in RePEc: Add citation now
  16. Financial Reporting Council. (2023, December). Audit market and competition developments: A snapshot (Tech. Rep.). Financial Reporting Council.
    Paper not yet in RePEc: Add citation now
  17. Fitzgerald, A. (2024). Why synthetic data can never be ethical: A lesson from media ethics.
    Paper not yet in RePEc: Add citation now
  18. Gambacorta, L., & Shreeti, V. (2025). The AI supply chain (Tech. Rep.). Bank for International Settlements. Retrieved from https://www.bis.org/publ/bppdf/bispap154.htm Gensler, G., & Bailey, L. (2020). Deep learning and financial stability. SSRN Scholarly Paper. doi: 10.2139/ssrn.3723132 Gitelman, L. (Ed.). (2013). “Raw Data” Is an Oxymoron. Cambridge, MA: MIT Press.
    Paper not yet in RePEc: Add citation now
  19. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
    Paper not yet in RePEc: Add citation now
  20. Hansen, K. B. (2020). The virtue of simplicity: On machine learning models in algorithmic trading. Big Data & Society, 7(1), 2053951720926558. doi: 10.1177/2053951720926558 Hansen, K. B. (2025). The stack inversion: On algo-centrism and the complex architecture of automated financial securities trading systems. Science, Technology, & Human Values, 50(5), 932–961. doi: 10.1177/01622439241269983 Hansen, K. B., & Borch, C. (2022). Alternative data and sentiment analysis: Prospecting non-standard data in machine learning-driven finance. Big Data & Society, 9(1), 20539517211070701.
    Paper not yet in RePEc: Add citation now
  21. Hansen, K. B., & Spears, T. (2025). Making data problems doable: The case of synthetic data in financial markets. (Working Paper prepared for Special Issue in The Information Society) Helm, P., Lipp, B., & Pujadas, R. (2024). Generating reality and silencing debate: Synthetic data as discursive device. Big Data & Society, 11(2), 20539517241249447. doi: 10.1177/ Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M., & Rycroft, C. H. (2019). Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 5(4), eaau6792. doi: 10.1126/sciadv.aau6792 Jäckel, P. (2002). Monte carlo methods in finance. John Wiley & Sons.
    Paper not yet in RePEc: Add citation now
  22. Jacobsen, B. N. (2023). Machine learning and the politics of synthetic data. Big Data & Society, 10(1), 205395172211453. doi: 10.1177/20539517221145372 Jacobsen, B. N. (2024). The logic of the synthetic supplement in algorithmic societies. Theory, Culture & Society, 41(4), 41–56. doi: 10.1177/02632764231225768 Jensen, C. B., & Morita, A. (2016). Introduction: Infrastructures as ontological experiments.
    Paper not yet in RePEc: Add citation now
  23. Journal of Economic Perspectives, 31(2), 87–106. doi: 10.1257/jep.31.2.87 Munkholm, J. L., & Weihn, T. (2025). Synthetic data: Serving privacy. In S. O. Søe, T. Wiehn, R. F. Jørgensen, & B. Valtýsson (Eds.), Beyond privacy: People, practices, politics (pp. 137–154). Policy Press.
    Paper not yet in RePEc: Add citation now
  24. Korenhof, P., Giesbers, E., & Sanderse, J. (2023). Contextualizing realism: An analysis of acts of seeing and recording in digital twin datafication. Big Data & Society, 10(1), 20539517231155061. doi: 10.1177/20539517231155061 Kornberger, M., et al. (Eds.). (2019). Thinking infrastructures (Vol. 62). Emerald Publishing Limited.
    Paper not yet in RePEc: Add citation now
  25. KPMG. (2025). AI in financial reporting and audit: Navigating the new era (Tech. Rep.). Retrieved from https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2024/04/ai-in -financial-reporting-and-audit-web.pdf Limmer, Y., & Horvath, B. (2023). Robust hedging GANs. Applied Mathematical Finance. (arXiv) doi: 10.1080/1350486X.2024.2440661 Lopez de Prado, M. (2018). Advances in financial machine learning. Hoboken, NJ: Wiley.
    Paper not yet in RePEc: Add citation now
  26. Lopez de Prado, M. (2020). Machine learning for asset managers. Cambridge, MA: Cambridge University Press.
    Paper not yet in RePEc: Add citation now
  27. Lu, Y., Shen, M., Wang, H., & Wei, W. (2023). Machine learning for synthetic data generation: A review. arXiv. Retrieved from http://arxiv.org/abs/2302.04062 MacKenzie, D. (2004). The big, bad wolf and the rational market: portfolio insurance, the 1987 crash and the performativity of economics. Economy and Society, 33(3), 303–334.
    Paper not yet in RePEc: Add citation now
  28. MacKenzie, D. (2011). The credit crisis as a problem in the sociology of knowledge. American Journal of Sociology, 116(6), 1778–1841.
    Paper not yet in RePEc: Add citation now
  29. MacKenzie, D., Caliskan, K., & Rommerskirchen, C. (2023). The longest second: Header bidding and the material politics of online advertising. Economy and Society, 52(3), 554–578. doi: 10.1080/03085147.2023.2238463 MacKenzie, D., & Millo, Y. (2004). Constructing a market, performing theory: The historical sociology of a financial derivatives exchange. American Journal of Sociology, 109(1), 107–145.
    Paper not yet in RePEc: Add citation now
  30. Martin, A., & Newell, B. (2024). Synthetic data, synthetic media, and surveillance. Surveillance & Society, 22(4), 448–452. doi: 10.24908/ss.v22i4.18334 McCosker, A. (2024). Making sense of deepfakes: Socializing AI and building data literacy on github and youtube. New Media & Society, 26(5), 2786–2803. doi: 10.1177/ Meng, Y., Michalski, M., Huang, J., Zhang, Y., Abdelzaher, T., & Han, J. (2023). Tuning language models as training data generators for augmentation-enhanced few-shot learning. arXiv:2211.03044.
    Paper not yet in RePEc: Add citation now
  31. Nadas, M., Diosan, L., & Tomescu, A. (2025). Synthetic data generation using large language models: Advances in text and code. IEEE Access, 13, 134615–134633. Retrieved from https://doi.org/10.1109/ACCESS.2025.3589503 Nikolenko, S. I. (2021). Synthetic data for deep learning. Cham: Springer Nature.
    Paper not yet in RePEc: Add citation now
  32. Offenhuber, D. (2024). Shapes and frictions of synthetic data. Big Data & Society, 11(2), 20539517241249390. doi: 10.1177/20539517241249390 Paraná, E. (2025). AI as financial infrastructure? In C. Westermeier, M. Campbell-Verduyn, & B. Brandl (Eds.), Cambridge global handbook on financial infrastructures (pp. 386–400). Cambridge University Press.
    Paper not yet in RePEc: Add citation now
  33. Organization Theory, 3(3), 26317877211052296. doi: 10.1177/26317877211052296 Preda, A. (2008). Technology, agency, and financial price data. In T. Pinch & R. Swedberg (Eds.), Living in a material world: Economic sociology meets science and technology studies. Cambridge, MA: MIT Press.
    Paper not yet in RePEc: Add citation now
  34. Petry, J. (2021). From national marketplaces to global providers of financial infrastructures: Exchanges, infrastructures and structural power in global finance. New Political Economy, 26(4), 574–597.

  35. Pinzur, D. (2016). Making the grade: Infrastructural semiotics and derivative market outcomes on the chicago board of trade and new orleans cotton exchange, 1856–1909. Economy and Society, 45(3–4), 431–453. Retrieved from https://doi.org/10.1080/03085147.2016 .1225360 Potluru, V. K., Borrajo, D., Coletta, A., Dalmasso, N., El-Laham, Y., Fons, E., ... Balch, T. (2024).

  36. PwC. (2025). AI agents: Transforming the tax experience. Retrieved from https://www.pwc.com/ us/en/services/tax/library/tax-ai-agents.html Ravn, L. (2024a). The overlooked politics of synthetic data performance metrics. Internet Policy Review.
    Paper not yet in RePEc: Add citation now
  37. Retrieved from https://doi.org/10.1080/09692290.2019.1625420 Birch, K., Cochrane, D. T., & Ward, C. (2021). Data as asset? the measurement, governance, and valuation of digital personal data by big tech. Big Data & Society, 8(1), 20539517211017308.
    Paper not yet in RePEc: Add citation now
  38. Retrieved from https://doi.org/10.48550/arXiv.2211.03044 Millo, Y., Spence, C., & Valentine, J. (2023). The field of investment advice: The social forces that govern equity analysts. The Accounting Review, 98(7), 457–477. doi: 10.2308/TAR-2021 -0140 Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach.
    Paper not yet in RePEc: Add citation now
  39. Retrieved from https://policyreview.info/articles/news/politics-of-synthetic -data-performance-metrics/1761 (Retrieved May 16, 2024) Ravn, L. (2024b). Synthetic training data and the reconfiguration of surveillant assemblages.
    Paper not yet in RePEc: Add citation now
  40. Samiolo, R., Spence, C., & Toh, D. (2024). Auditor judgment in the fourth industrial revolution. Contemporary Accounting Research, 41(1), 498–528.
    Paper not yet in RePEc: Add citation now
  41. Sisson, C. A. (1979). The synthetic micro data file: A new tool for economists. Journal of Agricultural Economics Research, 31(3), 1–10.

  42. Surveillance & Society, 22(4), 477–482. doi: 10.24908/ss.v22i4.18324 Gal, M. S., & Lynskey, O. (2023). Synthetic data: Legal implications of the data-generation revolution. Iowa Law Review, 109, 1087–.
    Paper not yet in RePEc: Add citation now
  43. Synthetic data – what, why and how? arXiv. Retrieved from http://arxiv.org/abs/ 2205.03257 Kellard, N., Millo, Y., Simon, J., & Engel, O. (2016). Close communications: Hedge funds, brokers and the emergence of herding. British Journal of Management. doi: 10.1111/1467-8551.12158 Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4), 307–392.
    Paper not yet in RePEc: Add citation now
  44. Synthetic data applications in finance. SSRN Scholarly Paper. doi: 10.2139/ssrn.3634235 Power, M. (2022). Theorizing the economy of traces: From audit society to surveillance capitalism.
    Paper not yet in RePEc: Add citation now
  45. Talwar, D., Guruswamy, S., Ravipati, N., & Eirinaki, M. (2020). Evaluating validity of synthetic data in perception tasks for autonomous vehicles. In 2020 IEEE international conference on artificial intelligence testing (AITest). doi: 10.1109/AITEST49225.2020.00018 The Economist. (2017). The world’s most valuable resource is no longer oil, but data. The Economist. Retrieved 2025-03-25, from https://www.economist.com/leaders/2017/ 05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data (6 May 2017) Wang, R., Liu, J., Zhao, W., Li, S., & Zhang, D. (2025). Auditbench: A benchmark for large language models in financial statement auditing. In Ai for research and scalable, efficient systems. doi: 10.1007/978-981-96-8912-5_3 Westermeier, C., Campbell-Verduyn, M., & Brandl, B. (Eds.). (2025). Cambridge global handbook on financial infrastructures. Cambridge University Press.
    Paper not yet in RePEc: Add citation now
  46. Whitney, C. D., & Norman, J. (2024). Real risks of fake data: Synthetic data, diversity-washing and consent circumvention. In Proceedings of the 2024 ACM conference on fairness, accountability, and transparency (pp. 1733–1744). doi: 10.1145/3630106.3659002 Wiehn, T. (2024). Synthetic data: From data scarcity to data pollution. Surveillance & Society, 22(4), 472–476.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Fleeting extinction? Unraveling the persistence of noise traders in financial markets with learning and replacement. (2025). Gerotto, Luca ; Pellizzari, Paolo ; Tolotti, Marco.
    In: Journal of Evolutionary Economics.
    RePEc:spr:joevec:v:35:y:2025:i:2:d:10.1007_s00191-025-00892-y.

    Full description at Econpapers || Download paper

  2. Governing Synthetic Data in the Financial Sector. (2025). Millo, Yuval ; Xu, Ruowen ; Hansen, Kristian Bondo ; Spears, Taylor C.
    In: SocArXiv.
    RePEc:osf:socarx:ruxkh_v1.

    Full description at Econpapers || Download paper

  3. Costs of choice: reformulating price theory without heroic assumptions. (2025). Devereaux, Abigail.
    In: Public Choice.
    RePEc:kap:pubcho:v:202:y:2025:i:3:d:10.1007_s11127-025-01265-6.

    Full description at Econpapers || Download paper

  4. Pollution Abatement and Lobbying in a Cournot Game: An Agent-Based Modelling Approach. (2025). Catola, Marco ; Leoni, Silvia.
    In: Computational Economics.
    RePEc:kap:compec:v:65:y:2025:i:2:d:10.1007_s10614-023-10463-7.

    Full description at Econpapers || Download paper

  5. The optimal choice of scaling in economic agent-based models. (2025). Vg, Nikolett ; Mr, Bence ; Borsos, Andrs ; Hossz, Zsuzsanna.
    In: Journal of Economic Behavior & Organization.
    RePEc:eee:jeborg:v:232:y:2025:i:c:s0167268125000484.

    Full description at Econpapers || Download paper

  6. Agent-based models of the United States wealth distribution with Ensemble Kalman Filter. (2025). Suchak, Keiran ; Oswald, Yannick ; Malleson, Nick.
    In: Journal of Economic Behavior & Organization.
    RePEc:eee:jeborg:v:229:y:2025:i:c:s0167268124004347.

    Full description at Econpapers || Download paper

  7. Comparative techno-economic analysis of market models for peer-to-peer energy trading on a distributed platform. (2025). Chaves-Vila, Jos Pablo ; Pilo, Fabrizio ; Troncia, Matteo ; Galici, Marco ; Nour, Morsy.
    In: Applied Energy.
    RePEc:eee:appene:v:380:y:2025:i:c:s0306261924023894.

    Full description at Econpapers || Download paper

  8. Segregation, spillovers and the locus of racial change. (2025). Thies, Stephan ; Easton, Matthew ; Davis, Donald R.
    In: CEP Discussion Papers.
    RePEc:cep:cepdps:dp2125.

    Full description at Econpapers || Download paper

  9. TaxAgent: How Large Language Model Designs Fiscal Policy. (2025). Fang, Xiaodan ; Wang, Jizhou ; Huang, Yongfeng.
    In: Papers.
    RePEc:arx:papers:2506.02838.

    Full description at Econpapers || Download paper

  10. Advanced Digital Simulation for Financial Market Dynamics: A Case of Commodity Futures. (2025). Jiang, Changjun ; Zeng, Shirong ; Wang, Chuwen.
    In: Papers.
    RePEc:arx:papers:2503.20787.

    Full description at Econpapers || Download paper

  11. ADAGE: A generic two-layer framework for adaptive agent based modelling. (2025). Evans, Benjamin Patrick ; Ganesh, Sumitra ; Zeng, Sihan ; Ardon, Leo.
    In: Papers.
    RePEc:arx:papers:2501.09429.

    Full description at Econpapers || Download paper

  12. Deep Learning Meets Queue-Reactive: A Framework for Realistic Limit Order Book Simulation. (2025). Bodor, Hamza ; Carlier, Laurent.
    In: Papers.
    RePEc:arx:papers:2501.08822.

    Full description at Econpapers || Download paper

  13. Adaptation to climate-induced macrofinancial risks: top-down and bottom-up solutions. (2025). Ciola, Emanuele ; Bazzana, Davide ; Legrenzi, Demis.
    In: FEEM Working Papers.
    RePEc:ags:feemwp:369004.

    Full description at Econpapers || Download paper

  14. Pluralist economics in an era of polycrisis. (2024). Hötte, Kerstin ; Schulz, Jan ; Htte, Kerstin ; Mayerhoffer, Daniel M.
    In: Review of Evolutionary Political Economy.
    RePEc:spr:revepe:v:5:y:2024:i:2:d:10.1007_s43253-024-00128-y.

    Full description at Econpapers || Download paper

  15. Introduction to the special issue on two editions of the workshop on economic science with heterogeneous interacting agents, $$24.5{\text {th}}$$ 24.5 th Milan, 2021 (wehia 2021) $$25{\text {th}}$$ 25 th Catania, 2022 (wehia 2022). (2024). Delli Gatti, Domenico ; Biondo, Alessio Emanuele.
    In: Journal of Economic Interaction and Coordination.
    RePEc:spr:jeicoo:v:19:y:2024:i:4:d:10.1007_s11403-024-00427-x.

    Full description at Econpapers || Download paper

  16. Assessing Emerging Markets through Transactional Dynamics: A New Multi-Dimensional Valuation Framework. (2024). Midha, Joshua.
    In: SocArXiv.
    RePEc:osf:socarx:d8jkt_v1.

    Full description at Econpapers || Download paper

  17. Assessing Emerging Markets through Transactional Dynamics: A New Multi-Dimensional Valuation Framework. (2024). Midha, Joshua.
    In: SocArXiv.
    RePEc:osf:socarx:d8jkt.

    Full description at Econpapers || Download paper

  18. What can complexity learn from Misesian economics?. (2024). Moreno-Casas, Vicente.
    In: The Review of Austrian Economics.
    RePEc:kap:revaec:v:37:y:2024:i:3:d:10.1007_s11138-023-00620-4.

    Full description at Econpapers || Download paper

  19. The soft underbelly of complexity science adoption in policymaking: towards addressing frequently overlooked non-technical challenges. (2024). Taeihagh, Araz ; Nel, Darren.
    In: Policy Sciences.
    RePEc:kap:policy:v:57:y:2024:i:2:d:10.1007_s11077-024-09531-y.

    Full description at Econpapers || Download paper

  20. Mandatory disclosure of open-ended real estate fund shares that are registered for redemption?. (2024). Kaspereit, Thomas.
    In: International Review of Law and Economics.
    RePEc:eee:irlaec:v:80:y:2024:i:c:s0144818824000498.

    Full description at Econpapers || Download paper

  21. Trading strategies and Financial Performances: A simulation approach. (2024). Mazzarino, Laura ; Biondo, Alessio Emanuele ; Pluchino, Alessandro.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:95:y:2024:i:pb:s1057521924003582.

    Full description at Econpapers || Download paper

  22. Black-box Bayesian inference for agent-based models. (2024). Farmer, J. ; Schmon, Sebastian M ; Cannon, Patrick ; Dyer, Joel.
    In: Journal of Economic Dynamics and Control.
    RePEc:eee:dyncon:v:161:y:2024:i:c:s0165188924000198.

    Full description at Econpapers || Download paper

  23. Market efficiency, informational asymmetry and pseudo-collusion of adaptively learning agents. (2024). Pastushkov, Aleksei.
    In: Papers.
    RePEc:arx:papers:2411.05032.

    Full description at Econpapers || Download paper

  24. Neuro-Symbolic Traders: Assessing the Wisdom of AI Crowds in Markets. (2024). Baggott, Rory ; Stillman, Namid R.
    In: Papers.
    RePEc:arx:papers:2410.14587.

    Full description at Econpapers || Download paper

  25. Tax Credits and Household Behavior: The Roles of Myopic Decision-Making and Liquidity in a Simulated Economy. (2024). Vyetrenko, Svitlana ; Dwarakanath, Kshama ; Dong, Jialin.
    In: Papers.
    RePEc:arx:papers:2408.10391.

    Full description at Econpapers || Download paper

  26. Modelling Opaque Bilateral Market Dynamics in Financial Trading: Insights from a Multi-Agent Simulation Study. (2024). Walsh, Toby ; Vidler, Alicia.
    In: Papers.
    RePEc:arx:papers:2405.02849.

    Full description at Econpapers || Download paper

  27. Simulating the Economic Impact of Rationality through Reinforcement Learning and Agent-Based Modelling. (2024). Glielmo, Aldo ; Delli Gatti, Domenico ; Padoan, Tommaso ; Brusatin, Simone ; Coletta, Andrea.
    In: Papers.
    RePEc:arx:papers:2405.02161.

    Full description at Econpapers || Download paper

  28. Learning and Calibrating Heterogeneous Bounded Rational Market Behaviour with Multi-Agent Reinforcement Learning. (2024). Ganesh, Sumitra ; Evans, Benjamin Patrick.
    In: Papers.
    RePEc:arx:papers:2402.00787.

    Full description at Econpapers || Download paper

  29. Scalable Agent-Based Modeling for Complex Financial Market Simulations. (2024). Varner, Jeffrey D ; Wheeler, Aaron.
    In: Papers.
    RePEc:arx:papers:2312.14903.

    Full description at Econpapers || Download paper

  30. Market-GAN: Adding Control to Financial Market Data Generation with Semantic Context. (2024). Wang, Xinrun ; Sun, Shuo ; Xia, Haochong.
    In: Papers.
    RePEc:arx:papers:2309.07708.

    Full description at Econpapers || Download paper

  31. Fiscal Transfers and Common Debt in a Monetary Union: A Multi-Country Agent Based-Stock Flow Consistent Model. (2023). Catullo, Ermanno ; Caiani, Alessandro.
    In: LEM Papers Series.
    RePEc:ssa:lemwps:2023/19.

    Full description at Econpapers || Download paper

  32. Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents. (2023). Vodret, Michele ; Benzaquen, Michael ; Mastromatteo, Iacopo ; Toth, Bence.
    In: Journal of Economic Interaction and Coordination.
    RePEc:spr:jeicoo:v:18:y:2023:i:3:d:10.1007_s11403-023-00379-8.

    Full description at Econpapers || Download paper

  33. Pollution Abatement and Lobbying in a Cournot Game. An Agent-Based Modelling approach. (2023). Leoni, Silvia ; Catola, Marco.
    In: Discussion Papers.
    RePEc:pie:dsedps:2023/294.

    Full description at Econpapers || Download paper

  34. An Analysis of Residual Financial Contagion in Romania’s Banking Market for Mortgage Loans. (2023). Ionescu, Tefan ; Chiri, Nora ; Nica, Ionu ; Delcea, Camelia.
    In: Sustainability.
    RePEc:gam:jsusta:v:15:y:2023:i:15:p:12037-:d:1211596.

    Full description at Econpapers || Download paper

  35. Back to the future: Agent-based modelling and dynamic microsimulation. (2023). Richiardi, Matteo ; Bronka, Patryk ; van De, Justin.
    In: Centre for Microsimulation and Policy Analysis Working Paper Series.
    RePEc:ese:cempwp:cempa8-23.

    Full description at Econpapers || Download paper

  36. Economics in nouns and verbs. (2023). Arthur, Brian W.
    In: Journal of Economic Behavior & Organization.
    RePEc:eee:jeborg:v:205:y:2023:i:c:p:638-647.

    Full description at Econpapers || Download paper

  37. Amortized Neural Networks for Agent-Based Model Forecasting. (2023). Seleznev, Sergei ; Ponomarenko, Alexey ; Koshelev, Denis.
    In: Bank of Russia Working Paper Series.
    RePEc:bkr:wpaper:wps115.

    Full description at Econpapers || Download paper

  38. Analyzing the Impact of Tax Credits on Households in Simulated Economic Systems with Learning Agents. (2023). Vyetrenko, Svitlana ; Dwarakanath, Kshama ; Dong, Jialin.
    In: Papers.
    RePEc:arx:papers:2311.17252.

    Full description at Econpapers || Download paper

  39. A simulated electronic market with speculative behaviour and bubble formation. (2023). Cofre, Nicolas ; Mosionek-Schweda, Magdalena.
    In: Papers.
    RePEc:arx:papers:2311.12247.

    Full description at Econpapers || Download paper

  40. Deep Calibration of Market Simulations using Neural Density Estimators and Embedding Networks. (2023). Chen, Tao ; Baggott, Rory ; Vytelingum, Perukrishnen ; Stillman, Namid R ; Lyon, Justin ; Zhang, Jianfei ; Zhu, Dingqiu.
    In: Papers.
    RePEc:arx:papers:2311.11913.

    Full description at Econpapers || Download paper

  41. GPT in Game Theory Experiments. (2023). Guo, Fulin.
    In: Papers.
    RePEc:arx:papers:2305.05516.

    Full description at Econpapers || Download paper

  42. Reinforcement Learning for Combining Search Methods in the Calibration of Economic ABMs. (2023). Glielmo, Aldo ; Delli Gatti, Domenico ; Favorito, Marco ; Chanda, Debmallya.
    In: Papers.
    RePEc:arx:papers:2302.11835.

    Full description at Econpapers || Download paper

  43. Forecasting financial time series with Boltzmann entropy through neural networks. (2022). Grilli, Luca ; Santoro, Domenico.
    In: Computational Management Science.
    RePEc:spr:comgts:v:19:y:2022:i:4:d:10.1007_s10287-022-00430-2.

    Full description at Econpapers || Download paper

  44. The political economy of complexity: The case of cyber-communism. (2022). Wang, William Hongsong ; Espinosa, Victor I ; Moreno-Casas, Vicente.
    In: Journal of Economic Behavior & Organization.
    RePEc:eee:jeborg:v:204:y:2022:i:c:p:566-580.

    Full description at Econpapers || Download paper

  45. The impact of moving expenses on social segregation: a simulation with RL and ABM. (2022). Li, Xinyu.
    In: Papers.
    RePEc:arx:papers:2211.12475.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-05 08:16:51 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.