- Aftabi, S. Z., Ahmadi, A., & Farzi, S. (2023). Fraud detection in financial statements using data mining and GAN models. Expert Systems with Applications, 227, 120144.
Paper not yet in RePEc: Add citation now
- Arnoldi, J. (2016). Computer algorithms, market manipulation and the institutionalization of high frequency trading. Theory, Culture & Society, 33(1), 29–52. Retrieved from https:// doi.org/10.1177/0263276414566642 Arnott, R., Harvey, C. R., & Markowitz, H. (2019). A backtesting protocol in the era of machine learning. The Journal of Financial Data Science, 1(1), 64–74.
Paper not yet in RePEc: Add citation now
- Arthur, C. (2013). Tech giants may be huge, but nothing matches big data. The Guardian. Retrieved from https://www.theguardian.com/technology/2013/aug/23/tech-giants-data (23 August 2013) Assefa, S., Dervovic, D., Mahfouz, M., Blach, T., Reddy, P., & Veloso, M. (2020). Generating synthetic data in finance: Opportunities, challenges and pitfalls. SSRN Scholarly Paper. doi: 10.2139/ssrn.3634235 Austin, A. A., Carpenter, T. D., Christ, M. H., & Nielson, C. S. (2021). The data analytics journey: Interactions among auditors, managers, regulation, and technology. Contemporary Accounting Research, 38(3), 1888–1924.
Paper not yet in RePEc: Add citation now
Axtell, R. L., & Farmer, J. D. (2022). Agent-based modeling in economics and finance: Past, present, and future (Working Paper No. 2022-10). INET Oxford.
- Bowker, G. C., & Star, S. L. (1999). Sorting things out: Classification and its consequences. Cambridge, MA: MIT Press.
Paper not yet in RePEc: Add citation now
- Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of big data’s impact on audit judgment and decision making and future research directions. Accounting Horizons, 29(2), 451–468.
Paper not yet in RePEc: Add citation now
- Buehler, H., Gonon, L., Teichmann, J., & Wood, B. (2019). Deep hedging. Quantitative Finance, 19(8), 1271–1291.
Paper not yet in RePEc: Add citation now
Buehler, H., Horvath, B., Lyons, T., Arribas, I. P., & Wood, B. (2020). A data-driven market simulator for small data environments. arXiv. doi: 10.48550/arXiv.2006.14498 Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 3(1), 2053951715622512.
- Caliskan, K. (2020). Platform works as stack economization: Cryptocurrency markets and exchanges in perspective. Sociologica, 14(3), Article 3. Retrieved from https://doi.org/ 10.6092/issn.1971-8853/11746 Coletta, A., Prata, M., Conti, M., & Balch, T. (2021). Towards realistic market simulations: A generative adversarial network approach. In Proceedings of the 2nd ACM international conference on AI in finance (ICAIF’21). doi: 10.1145/3490354.3494411 Cornelli, G., Frost, J., Gambacorta, L., Rau, P. R., Wardrop, R., & Ziegler, T. (2023). Fintech and big tech credit: Drivers of the growth of digital lending. Journal of Banking & Finance, 148, 106742.
Paper not yet in RePEc: Add citation now
- De Vries, K. (2020). “you never fake alone. creative AI in action.”. Information, Communication & Society, 23(14), 2110–2127.
Paper not yet in RePEc: Add citation now
- Di Girolamo, F., Hledik, J., & Pagano, A. (2024). Synthetic data in the data hub of the digital finance platform (Tech. Rep.). EU Science Hub. doi: 10.2760/83055 Edwards, P. N. (1999). Global climate science, uncertainty and politics: Data-laden models, model-filtered data. Science as Culture, 8(4), 437–472. doi: 10.1080/09505439909526558 FCA Innovation Digital Sandbox. (2025). Authorised push payment (APP) fraud dataset evaluation (Tech. Rep.). Financial Conduct Authority. Retrieved from https://www.fca.org.uk/ publication/external-research/app-fraud-dataset-evaluation-report.pdf (Accessed on 18 August 2025) Ferrari, F., & McKelvey, F. (2023). Hyperproduction: A social theory of deep generative models.
Paper not yet in RePEc: Add citation now
- Distinktion: Journal of Social Theory, 24(2), 338–360. doi: 10.1080/1600910X.2022.2137546 Financial Conduct Authority. (2021, April). Supporting innovation in financial services: the digital sandbox pilot (Tech. Rep.). UK Financial Conduct Authority.
Paper not yet in RePEc: Add citation now
- Financial Conduct Authority. (2022, March). Synthetic data to support financial services innovation (Tech. Rep.). UK Financial Conduct Authority.
Paper not yet in RePEc: Add citation now
- Financial Conduct Authority. (2023, February). Synthetic data call for input: Feedback statement (Tech. Rep.). UK Financial Conduct Authority.
Paper not yet in RePEc: Add citation now
- Financial Conduct Authority. (2024, March). Using synthetic data in financial services (Tech. Rep.). UK Financial Conduct Authority.
Paper not yet in RePEc: Add citation now
- Financial Reporting Council. (2023, December). Audit market and competition developments: A snapshot (Tech. Rep.). Financial Reporting Council.
Paper not yet in RePEc: Add citation now
- Fitzgerald, A. (2024). Why synthetic data can never be ethical: A lesson from media ethics.
Paper not yet in RePEc: Add citation now
- Gambacorta, L., & Shreeti, V. (2025). The AI supply chain (Tech. Rep.). Bank for International Settlements. Retrieved from https://www.bis.org/publ/bppdf/bispap154.htm Gensler, G., & Bailey, L. (2020). Deep learning and financial stability. SSRN Scholarly Paper. doi: 10.2139/ssrn.3723132 Gitelman, L. (Ed.). (2013). “Raw Data” Is an Oxymoron. Cambridge, MA: MIT Press.
Paper not yet in RePEc: Add citation now
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139–144.
Paper not yet in RePEc: Add citation now
- Hansen, K. B. (2020). The virtue of simplicity: On machine learning models in algorithmic trading. Big Data & Society, 7(1), 2053951720926558. doi: 10.1177/2053951720926558 Hansen, K. B. (2025). The stack inversion: On algo-centrism and the complex architecture of automated financial securities trading systems. Science, Technology, & Human Values, 50(5), 932–961. doi: 10.1177/01622439241269983 Hansen, K. B., & Borch, C. (2022). Alternative data and sentiment analysis: Prospecting non-standard data in machine learning-driven finance. Big Data & Society, 9(1), 20539517211070701.
Paper not yet in RePEc: Add citation now
- Hansen, K. B., & Spears, T. (2025). Making data problems doable: The case of synthetic data in financial markets. (Working Paper prepared for Special Issue in The Information Society) Helm, P., Lipp, B., & Pujadas, R. (2024). Generating reality and silencing debate: Synthetic data as discursive device. Big Data & Society, 11(2), 20539517241249447. doi: 10.1177/ Hoffmann, J., Bar-Sinai, Y., Lee, L. M., Andrejevic, J., Mishra, S., Rubinstein, S. M., & Rycroft, C. H. (2019). Machine learning in a data-limited regime: Augmenting experiments with synthetic data uncovers order in crumpled sheets. Science Advances, 5(4), eaau6792. doi: 10.1126/sciadv.aau6792 Jäckel, P. (2002). Monte carlo methods in finance. John Wiley & Sons.
Paper not yet in RePEc: Add citation now
- Jacobsen, B. N. (2023). Machine learning and the politics of synthetic data. Big Data & Society, 10(1), 205395172211453. doi: 10.1177/20539517221145372 Jacobsen, B. N. (2024). The logic of the synthetic supplement in algorithmic societies. Theory, Culture & Society, 41(4), 41–56. doi: 10.1177/02632764231225768 Jensen, C. B., & Morita, A. (2016). Introduction: Infrastructures as ontological experiments.
Paper not yet in RePEc: Add citation now
- Journal of Economic Perspectives, 31(2), 87–106. doi: 10.1257/jep.31.2.87 Munkholm, J. L., & Weihn, T. (2025). Synthetic data: Serving privacy. In S. O. Søe, T. Wiehn, R. F. Jørgensen, & B. Valtýsson (Eds.), Beyond privacy: People, practices, politics (pp. 137–154). Policy Press.
Paper not yet in RePEc: Add citation now
- Korenhof, P., Giesbers, E., & Sanderse, J. (2023). Contextualizing realism: An analysis of acts of seeing and recording in digital twin datafication. Big Data & Society, 10(1), 20539517231155061. doi: 10.1177/20539517231155061 Kornberger, M., et al. (Eds.). (2019). Thinking infrastructures (Vol. 62). Emerald Publishing Limited.
Paper not yet in RePEc: Add citation now
- KPMG. (2025). AI in financial reporting and audit: Navigating the new era (Tech. Rep.). Retrieved from https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2024/04/ai-in -financial-reporting-and-audit-web.pdf Limmer, Y., & Horvath, B. (2023). Robust hedging GANs. Applied Mathematical Finance. (arXiv) doi: 10.1080/1350486X.2024.2440661 Lopez de Prado, M. (2018). Advances in financial machine learning. Hoboken, NJ: Wiley.
Paper not yet in RePEc: Add citation now
- Lopez de Prado, M. (2020). Machine learning for asset managers. Cambridge, MA: Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Lu, Y., Shen, M., Wang, H., & Wei, W. (2023). Machine learning for synthetic data generation: A review. arXiv. Retrieved from http://arxiv.org/abs/2302.04062 MacKenzie, D. (2004). The big, bad wolf and the rational market: portfolio insurance, the 1987 crash and the performativity of economics. Economy and Society, 33(3), 303–334.
Paper not yet in RePEc: Add citation now
- MacKenzie, D. (2011). The credit crisis as a problem in the sociology of knowledge. American Journal of Sociology, 116(6), 1778–1841.
Paper not yet in RePEc: Add citation now
- MacKenzie, D., Caliskan, K., & Rommerskirchen, C. (2023). The longest second: Header bidding and the material politics of online advertising. Economy and Society, 52(3), 554–578. doi: 10.1080/03085147.2023.2238463 MacKenzie, D., & Millo, Y. (2004). Constructing a market, performing theory: The historical sociology of a financial derivatives exchange. American Journal of Sociology, 109(1), 107–145.
Paper not yet in RePEc: Add citation now
- Martin, A., & Newell, B. (2024). Synthetic data, synthetic media, and surveillance. Surveillance & Society, 22(4), 448–452. doi: 10.24908/ss.v22i4.18334 McCosker, A. (2024). Making sense of deepfakes: Socializing AI and building data literacy on github and youtube. New Media & Society, 26(5), 2786–2803. doi: 10.1177/ Meng, Y., Michalski, M., Huang, J., Zhang, Y., Abdelzaher, T., & Han, J. (2023). Tuning language models as training data generators for augmentation-enhanced few-shot learning. arXiv:2211.03044.
Paper not yet in RePEc: Add citation now
- Nadas, M., Diosan, L., & Tomescu, A. (2025). Synthetic data generation using large language models: Advances in text and code. IEEE Access, 13, 134615–134633. Retrieved from https://doi.org/10.1109/ACCESS.2025.3589503 Nikolenko, S. I. (2021). Synthetic data for deep learning. Cham: Springer Nature.
Paper not yet in RePEc: Add citation now
- Offenhuber, D. (2024). Shapes and frictions of synthetic data. Big Data & Society, 11(2), 20539517241249390. doi: 10.1177/20539517241249390 Paraná, E. (2025). AI as financial infrastructure? In C. Westermeier, M. Campbell-Verduyn, & B. Brandl (Eds.), Cambridge global handbook on financial infrastructures (pp. 386–400). Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Organization Theory, 3(3), 26317877211052296. doi: 10.1177/26317877211052296 Preda, A. (2008). Technology, agency, and financial price data. In T. Pinch & R. Swedberg (Eds.), Living in a material world: Economic sociology meets science and technology studies. Cambridge, MA: MIT Press.
Paper not yet in RePEc: Add citation now
Petry, J. (2021). From national marketplaces to global providers of financial infrastructures: Exchanges, infrastructures and structural power in global finance. New Political Economy, 26(4), 574–597.
Pinzur, D. (2016). Making the grade: Infrastructural semiotics and derivative market outcomes on the chicago board of trade and new orleans cotton exchange, 1856–1909. Economy and Society, 45(3–4), 431–453. Retrieved from https://doi.org/10.1080/03085147.2016 .1225360 Potluru, V. K., Borrajo, D., Coletta, A., Dalmasso, N., El-Laham, Y., Fons, E., ... Balch, T. (2024).
- PwC. (2025). AI agents: Transforming the tax experience. Retrieved from https://www.pwc.com/ us/en/services/tax/library/tax-ai-agents.html Ravn, L. (2024a). The overlooked politics of synthetic data performance metrics. Internet Policy Review.
Paper not yet in RePEc: Add citation now
- Retrieved from https://doi.org/10.1080/09692290.2019.1625420 Birch, K., Cochrane, D. T., & Ward, C. (2021). Data as asset? the measurement, governance, and valuation of digital personal data by big tech. Big Data & Society, 8(1), 20539517211017308.
Paper not yet in RePEc: Add citation now
- Retrieved from https://doi.org/10.48550/arXiv.2211.03044 Millo, Y., Spence, C., & Valentine, J. (2023). The field of investment advice: The social forces that govern equity analysts. The Accounting Review, 98(7), 457–477. doi: 10.2308/TAR-2021 -0140 Mullainathan, S., & Spiess, J. (2017). Machine learning: An applied econometric approach.
Paper not yet in RePEc: Add citation now
- Retrieved from https://policyreview.info/articles/news/politics-of-synthetic -data-performance-metrics/1761 (Retrieved May 16, 2024) Ravn, L. (2024b). Synthetic training data and the reconfiguration of surveillant assemblages.
Paper not yet in RePEc: Add citation now
- Samiolo, R., Spence, C., & Toh, D. (2024). Auditor judgment in the fourth industrial revolution. Contemporary Accounting Research, 41(1), 498–528.
Paper not yet in RePEc: Add citation now
Sisson, C. A. (1979). The synthetic micro data file: A new tool for economists. Journal of Agricultural Economics Research, 31(3), 1–10.
- Surveillance & Society, 22(4), 477–482. doi: 10.24908/ss.v22i4.18324 Gal, M. S., & Lynskey, O. (2023). Synthetic data: Legal implications of the data-generation revolution. Iowa Law Review, 109, 1087–.
Paper not yet in RePEc: Add citation now
- Synthetic data – what, why and how? arXiv. Retrieved from http://arxiv.org/abs/ 2205.03257 Kellard, N., Millo, Y., Simon, J., & Engel, O. (2016). Close communications: Hedge funds, brokers and the emergence of herding. British Journal of Management. doi: 10.1111/1467-8551.12158 Kingma, D. P., & Welling, M. (2019). An introduction to variational autoencoders. Foundations and Trends in Machine Learning, 12(4), 307–392.
Paper not yet in RePEc: Add citation now
- Synthetic data applications in finance. SSRN Scholarly Paper. doi: 10.2139/ssrn.3634235 Power, M. (2022). Theorizing the economy of traces: From audit society to surveillance capitalism.
Paper not yet in RePEc: Add citation now
- Talwar, D., Guruswamy, S., Ravipati, N., & Eirinaki, M. (2020). Evaluating validity of synthetic data in perception tasks for autonomous vehicles. In 2020 IEEE international conference on artificial intelligence testing (AITest). doi: 10.1109/AITEST49225.2020.00018 The Economist. (2017). The world’s most valuable resource is no longer oil, but data. The Economist. Retrieved 2025-03-25, from https://www.economist.com/leaders/2017/ 05/06/the-worlds-most-valuable-resource-is-no-longer-oil-but-data (6 May 2017) Wang, R., Liu, J., Zhao, W., Li, S., & Zhang, D. (2025). Auditbench: A benchmark for large language models in financial statement auditing. In Ai for research and scalable, efficient systems. doi: 10.1007/978-981-96-8912-5_3 Westermeier, C., Campbell-Verduyn, M., & Brandl, B. (Eds.). (2025). Cambridge global handbook on financial infrastructures. Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Whitney, C. D., & Norman, J. (2024). Real risks of fake data: Synthetic data, diversity-washing and consent circumvention. In Proceedings of the 2024 ACM conference on fairness, accountability, and transparency (pp. 1733–1744). doi: 10.1145/3630106.3659002 Wiehn, T. (2024). Synthetic data: From data scarcity to data pollution. Surveillance & Society, 22(4), 472–476.
Paper not yet in RePEc: Add citation now