Alfarano, S., Lux, T., Wagner, F., 2005. Estimation of agent-based models: The case of an asymmetric herding model. Comput. Econ. 26 (1), 19–49. doi:10. 1007/s10614-005-6415-1.
Alfarano, S., Lux, T., Wagner, F., 2006. Estimation of a simple agent-based model of ï¬Ânancial markets: an application to australian stock and foreign exchange data. Physica A: Stat. Mech. Appl. 370 (1), 38–42. https://doi.org/10.1016/j.physa.2006.04.018.
Amilon, H., 2008. Estimation of an adaptive stock market model with heterogeneous agents. J. Emp. Finance 15 (2), 342–362. https://doi.org/10.1016/j. jempï¬Ân.2006.06.007.
- An, G., Wilensky, U., 2009. From artiï¬Âcial life to in silico medicine. In: Komosinski, M., Adamatzky, A. (Eds.), Artiï¬Âcial Life Models in Software. Springer London, London, pp. 183–214. doi:10.1007/978-1-84882-285-6_7.
Paper not yet in RePEc: Add citation now
- Anderson, P.W., et al., 1972. More is different. Science 177 (4047), 393–396.
Paper not yet in RePEc: Add citation now
Archer, K.J., Kimes, R.V., 2008. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52 (4), 2249–2260.
Assenza, T., Gatti, D.D., Grazzini, J., 2015. Emergent dynamics of a macroeconomic agent based model with capital and credit. J. Econ. Dyn. Control 50, 5–28.
- Balcan, M.-F., Beygelzimer, A., Langford, J., 2006. Agnostic active learning. In: Proceedings of the 23rd International Conference on Machine learning. ACM, pp. 65–72.
Paper not yet in RePEc: Add citation now
Banerjee, A.V., 1992. A simple model of herd behavior. Q. J. Econ. 107 (3), 797–817.
Barde, S., 2016. A practical, accurate, information criterion for nth order Markov processes. Comput. Econ. 1–44. doi:10.1007/s10614-016-9617-9.
Barde, S., 2016. Direct comparison of agent-based models of herding in ï¬Ânancial markets. J. Econ. Dyn. Control 73, 329–353. https://doi.org/10.1016/j.jedc. 2016.10.005.
Barde, S., van der Hoog, S., 2017. An Empirical Validation Protocol for Large-Scale Agent-Based Models. Studies in Economics. School of Economics, University of Kent.
Bargigli, L., Riccetti, L., Russo, A., Gallegati, M., 2016. Network Calibration and Metamodeling of a Financial Accelerator Agent Based Model. Working Papers, Economics. Universitá degli Studi di Firenze, Dipartimento di Scienze per l’Economia e l’Impresa.
- Bergstra, J., Bengio, Y., 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305.
Paper not yet in RePEc: Add citation now
Bianchi, C., Cirillo, P., Gallegati, M., Vagliasindi, P.A., 2007. Validating and calibrating agent-based models: a case study. Comput. Econ. 30 (3), 245–264.
Boswijk, H., Hommes, C., Manzan, S., 2007. Behavioral heterogeneity in stock prices. J. Econ. Dyn. Control 31 (6), 1938–1970. https://doi.org/10.1016/j.jedc. 2007.01.001.
Bottazzi, G., Secchi, A., 2006. Explaining the distribution of ï¬Ârm growth rates. RAND J. Econ. 37 (2), 235–256. doi:10.1111/j.1756-2171.2006.tb00014.x. Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32.
- Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A., 1984. Classiï¬Âcation and Regression Trees. CRC Press.
Paper not yet in RePEc: Add citation now
Brock, W.A., Hommes, C.H., 1997. A rational route to randomness. Econometrica 65 (5), 1059–1095.
Brock, W.A., Hommes, C.H., 1998. Heterogeneous beliefs and routes to chaos in a simple asset pricing model. J. Econ. Dyn. Control 22 (8–9), 1235–1274.
- Brown, D.G., Page, S., Riolo, R., Zellner, M., Rand, W., 2005. Path dependence and the validation of agent-based spatial models of land use. Int. J. Geogr. Inform. Sci. 19 (2), 153–174.
Paper not yet in RePEc: Add citation now
- Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., Stiglitz, J.E., 2016. Agent based-stock flow consistent macroeconomics: Towards a benchmark model. J. Econ. Dyn. Control 69, 375–408.
Paper not yet in RePEc: Add citation now
- Carley, K.M., Fridsma, D.B., Casman, E., Yahja, A., Altman, N., Chen, L.-C., Kaminsky, B., Nave, D., 2006. Biowar: scalable agent-based model of bioattacks. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Humans 36 (2), 252–265.
Paper not yet in RePEc: Add citation now
- Castaldi, C., Dosi, G., 2009. The patterns of output growth of ï¬Ârms and countries: Scale invariances and scale speciï¬Âcities. Emp. Econ. 37 (3), 475–495.
Paper not yet in RePEc: Add citation now
- Chen, S.-H., Chang, C.-L., Du, Y.-R., 2012. Agent-based economic models and econometrics. Knowl. Eng. Rev. 27, 187–219. doi:10.1017/S0269888912000136.
Paper not yet in RePEc: Add citation now
- Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting system. In: Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 785–794.
Paper not yet in RePEc: Add citation now
Chiarella, C., Iori, G., Perelló, J., 2009. The impact of heterogeneous trading rules on the limit order book and order flows. J. Econ. Dyn. Control 33 (3), 525–537.
- Chib, S., Greenberg, E., 1995. Understanding the metropolis-hastings algorithm. Am. Stat. 49 (4), 327–335.
Paper not yet in RePEc: Add citation now
- Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J., 2013. Mitosis detection in breast cancer histology images with deep neural networks. In: Proceedings of the International Conference on Medical Image Computing and Computer-assisted Intervention. Springer, pp. 411–418.
Paper not yet in RePEc: Add citation now
- Cohn, D., Atlas, L., Ladner, R., 1994. Improving generalization with active learning. Mach. Learn. 15 (2), 201–221.
Paper not yet in RePEc: Add citation now
- Collet, T., Pietquin, O., 2015. Optimism in active learning. Comput. Intel. Neurosci. 2015, 94.
Paper not yet in RePEc: Add citation now
- Conti, S., O’Hagan, A., 2010. Bayesian emulation of complex multi-output and dynamic computer models. J. Stat. Plann. Inference 140 (3), 640–651.
Paper not yet in RePEc: Add citation now
- Dawid, H., Gemkow, S., Harting, P., Van der Hoog, S., Neugart, M., 2018. Agent-based macroeconomic modeling and policy analysis: the Eurace@Unibi model. In: Chen, S.-H., Kaboudan, M., Du, Y.-R. (Eds.), Technical Report. Oxford University Press, New York, pp. 490–519.
Paper not yet in RePEc: Add citation now
Dawid, H., Harting, P., Neugart, M., 2014. Economic convergence: Policy implications from a heterogeneous agent model. J. Econ. Dyn. Control 44, 54–80.
- De Marchi, S., 2005. Computational and Mathematical Modeling in the Social Sciences. Cambridge University Press.
Paper not yet in RePEc: Add citation now
Dosi, G., 1988. Sources, procedures and microeconomic effects of innovation. J. Econ. Lit. 26, 126–171.
- Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., 2013. Income distribution, credit and ï¬Âscal policies in an agent-based Keynesian model. J. Econ. Dyn.
Paper not yet in RePEc: Add citation now
Dosi, G., Fagiolo, G., Napoletano, M., Roventini, A., Treibich, T., 2015. Fiscal and monetary policies in complex evolving economies. J. Econ. Dyn. Control 52 (C), 166–189.
Dosi, G., Fagiolo, G., Roventini, A., 2010. Schumpeter meeting Keynes: A policy-friendly model of endogenous growth and business cycles. J. Econ. Dyn.
- Dosi, G., Pereira, M., Roventini, A., Virgillito, M., 2017a. When more flexibility yields more fragility: the microfoundations of keynesian aggregate unemployment. J. Econ. Dyn. Control. forthcoming.
Paper not yet in RePEc: Add citation now
Dosi, G., Pereira, M., Roventini, A., Virgillito, M.E., 2016. The effects of labour market reforms upon unemployment and income inequalities: an agent based model. LEM Working Papers Series 2016-27. Scuola Superiore Sant’Anna.
Dosi, G., Pereira, M., Roventini, A., Virgillito, M.E., 2017b. Causes and Consequences of Hysteresis: Aggregate Demand, Productivity and Employment. LEM Working Papers Series 2017-07. Scuola Superiore Sant’Anna.
Dosi, G., Pereira, M.C., Virgillito, M.E., 2017. On the robustness of the fat-tailed distribution of ï¬Ârm growth rates: a global sensitivity analysis. J. Econ. Inter.
- Doucet, A., Godsill, S., Andrieu, C., 2000. On sequential monte carlo sampling methods for Bayesian ï¬Âltering. Stat. Comput. 10 (3), 197–208.
Paper not yet in RePEc: Add citation now
- Dupouët, O., Yıldızoğlu, M., 2006. Organizational performance in hierarchies and communities of practice. J. Econ. Behav. Organ. 61 (4), 668–690.
Paper not yet in RePEc: Add citation now
- Effken, J.A., Carley, K.M., Lee, J.-S., Brewer, B.B., Verran, J.A., 2012. Simulating nursing unit performance with orgahead: strengths and challenges. Comput. Inform. Nursing 30 (11), 620.
Paper not yet in RePEc: Add citation now
F. Lamperti et al. / Journal of Economic Dynamics & Control 90 (2018) 366–389 389 Grazzini, J., 2012. Analysis of the emergent properties: Stationarity and ergodicity. J. Artif. Soc. Social Simul. 15 (2), 7.
- F. Lamperti et al. / Journal of Economic Dynamics & Control 90 (2018) 366–389 Booker, A., Dennis Jr., J.E., Frank, P., Seraï¬Âni, D., Torczon, V., Trosset, M., 1999. A rigorous framework for optimization of expensive functions by surrogates.
Paper not yet in RePEc: Add citation now
Fabretti, A., 2012. On the problem of calibrating an agent based model for ï¬Ânancial markets. J. Econ. Inter. Coord. 8 (2), 277–293. doi:10.1007/ s11403-012-0096-3.
Fagiolo, G., Birchenhall, C., Windrum, P., 2007. Empirical validation in agent-based models: introduction to the special issue. Comput. Econ. 30 (3), 189–194. doi:10.1007/s10614-007-9109-z.
Fagiolo, G., Dosi, G., 2003. Exploitation, exploration and innovation in a model of endogenous growth with locally interacting agents. Struct. Change Econ. Dyn. 14 (3), 237–273.
Fagiolo, G., Guerini, M., Lamperti, F., Moneta, G., Roventini, A., Sapio, A., 2017. Validation of Agent-Based Models in Economics and Finance. LEM Working Papers Series. Scuola Superiore Sant’Anna.
Fagiolo, G., Napoletano, M., Roventini, A., 2008. Are output growth-rate distributions fat-tailed? Some evidence from OECD countries. J. Appl. Econ. 23 (5), 639–669.
Fagiolo, G., Roventini, A., 2012. Macroeconomic policy in DSGE and agent-based models. Revue de l’OFCE 124, 67–116.
Fagiolo, G., Roventini, A., 2017. Macroeconomic policy in DSGE and agent-based models redux: New developments and challenges ahead. J. Artif. Soc. Social Simul. 20 (1).
- Fawcett, T., 2006. An introduction to roc analysis. Pattern Recognit. Lett. 27 (8), 861–874. ROC Analysis in Pattern Recognition.
Paper not yet in RePEc: Add citation now
Fernández-Villaverde, J., Rubio-RamÃÂrez, J.F., Schorfheide, F., 2016. Solution and estimation methods for DSGE models. In: Taylor, J., H, U. (Eds.), Handbook of Macroeconomics, 2, pp. 527–724.
Franke, R., 2009. Applying the method of simulated moments to estimate a small agent-based asset pricing model. J. Emp. Finance 16 (5), 804–815. https: //doi.org/10.1016/j.jempï¬Ân.2009.06.006.
Franke, R., Westerhoff, F., 2012. Structural stochastic volatility in asset pricing dynamics: estimation and model contest. J. Econ. Dyn. Control 36 (8), 1193–1211.
- Freund, Y., 1990. Boosting a weak learning algorithm by majority. In: Proceedings of the COLT, 90, pp. 202–216.
Paper not yet in RePEc: Add citation now
- Freund, Y., Schapire, R.E., et al., 1996. Experiments with a new boosting algorithm. In: Proceedings of the ICML, 96, pp. 148–156.
Paper not yet in RePEc: Add citation now
- Gallegati, M., Kirman, A., 2012. Reconstructing economics. Compl. Econ. 1 (1), 5–31.
Paper not yet in RePEc: Add citation now
Gilli, M., Winker, P., 2003. A global optimization heuristic for estimating agent based models. Comput. Stat. Data Anal. 42 (3), 299–312. Computational Ecomometrics.
- Goldberg, A.B., Zhu, X., Furger, A., Xu, J.-M., 2011. Oasis: Online active semi-supervised learning. In: Proceedings of the AAAI.
Paper not yet in RePEc: Add citation now
Grazzini, J., Richiardi, M., 2015. Estimation of ergodic agent-based models by simulated minimum distance. J. Econ. Dyn. Control 51, 148–165. https://doi. org/10.1016/j.jedc.2014.10.006.
Grazzini, J., Richiardi, M.G., Tsionas, M., 2017. Bayesian estimation of agent-based models. J. Econ. Dyn. Control 77, 26–47. https://doi.org/10.1016/j.jedc.2017. 01.014.
- Grimm, V., Railsback, S.F., 2013. Individual-Based Modeling and Ecology. Princeton University Press.
Paper not yet in RePEc: Add citation now
Gualdi, S., Tarzia, M., Zamponi, F., Bouchaud, J.-P., 2015. Tipping points in macroeconomic agent-based models. J. Econ. Dyn. Control 50, 29–61. Crises and ComplexityComplexity Research Initiative for Systemic InstabilitieS (CRISIS) Workshop 2013.
Guerini, M., Moneta, A., 2016. A Method for Agent-Based Models Validation. LEM Papers Series 2016/16. Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy.
- Herlands, W., Wilson, A., Nickisch, H., Flaxman, S., Neill, D., Van Panhuis, W., Xing, E., 2016. Scalable Gaussian processes for characterizing multidimensional change surfaces. In: Proceedings of Artiï¬Âcial Intelligence and Statistics 2016, pp. 1013–1021.
Paper not yet in RePEc: Add citation now
- Ilachinski, A., 1997. Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An Artiï¬Âcial-Life Approach to Land Warfare. Technical Report. DTIC Document.
Paper not yet in RePEc: Add citation now
- Issaks, E.H., Srivsatava, R.M., 1989. Applied Geostatistics. Oxford University Press.
Paper not yet in RePEc: Add citation now
- Kucherenko, S., Albrecht, D., Saltelli, A., 2015. Exploring multi-dimensional spaces: A comparison of latin hypercube and quasi monte carlo sampling techniques.
Paper not yet in RePEc: Add citation now
Kukacka, J., Barunik, J., 2016. Estimation of Financial Agent-Based Models with Simulated Maximum Likelihood. IES Working Paper. Charles University of Prague.
- Lamperti, F., 2017. An information theoretic criterion for empirical validation of simulation models. Econ. Stat. forthcoming.
Paper not yet in RePEc: Add citation now
- Lamperti, F., 2017. Empirical validation of simulated models through the GSL-div: an illustrative application. J. Econ. Inter. Coord. doi:10.1007/ s11403-017-0206-3.
Paper not yet in RePEc: Add citation now
Lamperti, F., Dosi, G., Napoletano, M., Roventini, A., Sapio, A., 2017. Faraway, so close: coupled climate and economic dynamics in an agent based integrated assessment model. LEM Working Papers Series. Scuola Superiore Sant’Anna.
Lamperti, F., Mattei, C.E., 2016. Going Up and Down: Rethinking the Empirics of Growth in the Developing and Newly Industrialized World. LEM Papers Series. Laboratory of Economics and Management (LEM), Sant’Anna School of Advanced Studies, Pisa, Italy.
Leal, S.J., Napoletano, M., Roventini, A., Fagiolo, G., 2014. Rock around the clock: an agent-based model of low-and high-frequency trading. J. Evol. Econ. 1–28.
Lee, J.-S., Filatova, T., Ligmann-Zielinska, A., Hassani-Mahmooei, B., Stonedahl, F., Lorscheid, I., Voinov, A., Polhill, J.G., Sun, Z., Parker, D.C., 2015. The complexities of agent-based modeling output analysis. J. Artif. Soc. Social Simul. 18 (4), 4.
- Lewis, D.D., Gale, W.A., 1994. A sequential algorithm for training text classiï¬Âers. In: Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Springer-Verlag New York, Inc., pp. 3–12.
Paper not yet in RePEc: Add citation now
- Loh, W.-Y., 2011. Classiï¬Âcation and regression trees. Wiley Interdis. Rev. Data Mining Knowl. Discov. 1 (1), 14–23.
Paper not yet in RePEc: Add citation now
- Louppe, G., Wehenkel, L., Sutera, A., Geurts, P., 2013. Understanding variable importances in forests of randomized trees. In: Advances in Neural Information Processing Systems, pp. 431–439.
Paper not yet in RePEc: Add citation now
- Lux, T., Marchesi, M., 2000. Volatility clustering in ï¬Ânancial markets: a microsimulation of interacting agents. Int. J. Theor. Appl. Finance 3 (04), 675–702.
Paper not yet in RePEc: Add citation now
- Macy, M.W., Willer, R., 2002. From factors to actors: Computational sociology and agent-based modeling. Annual Rev. Sociol. 143–166.
Paper not yet in RePEc: Add citation now
- Marks, R.E., 2013. Validation and model selection: three similarity measures compared. Complex. Econ. 2 (1), 41–61.
Paper not yet in RePEc: Add citation now
- Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E., 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21 (6), 1087–1092.
Paper not yet in RePEc: Add citation now
- Morokoff, W.J., Caflisch, R.E., 1994. Quasi-random sequences and their discrepancies. SIAM J. Sci. Comput. 15 (6), 1251–1279.
Paper not yet in RePEc: Add citation now
- Moss, S., 2008. Alternative approaches to the empirical validation of agent-based models. J. Artif. Soc. Social Simul. 11 (1), 5.
Paper not yet in RePEc: Add citation now
Mullainathan, S., Spiess, J., 2017. Machine learning: an applied econometric approach. J. Econ. Perspect. 31 (2), 87–106.
- Petrovic, S., Osborne, M., Lavrenko, V., 2011. Rt to win! predicting message propagation in twitter. 11, 586–589.
Paper not yet in RePEc: Add citation now
- Platt, J., et al., 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Class. 10 (3), 61–74.
Paper not yet in RePEc: Add citation now
Popoyan, L., Napoletano, M., Roventini, A., 2017a. Taming macroeconomic instability: Monetary and macro-prudential policy interactions in an agent-based model. J. Econ. Behav. Organ. 134, 117–140.
Popoyan, L., Napoletano, M., Roventini, A., 2017b. Taming macroeconomic instability: monetary and macro prudential policy interactions in an agent-based model. J. Econ. Behav. Organ. 134, 117–140.
- Rasmussen, C.E., Williams, C.K.I., 2006. Gaussian Processes for Machine Learning. MIT Press.
Paper not yet in RePEc: Add citation now
Recchioni, M.C., Tedeschi, G., Gallegati, M., 2015. A calibration procedure for analyzing stock price dynamics in an agent-based framework. J. Econ. Dyn.
- Ross, S., Gordon, G.J., Bagnell, D., 2011. A reduction of imitation learning and structured prediction to no-regret online learning. In: Proceedings of the AISTATS, 1(2), p. 6.
Paper not yet in RePEc: Add citation now
- Roy, N., McCallum, A., 2001. Toward optimal active learning through monte carlo estimation of error reduction. Proceedings of the ICML, pp. 441–448.
Paper not yet in RePEc: Add citation now
Salle, I., Yildizoglu, M., 2014. Efficient sampling and meta-modeling for computational economic models. Comput. Econ. 44 (4), 507–536.
- Sani, A., Lazaric, A., Ryabko, D., 2015. The replacement bootstrap for dependent data. In: Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT). IEEE, pp. 1194–1198.
Paper not yet in RePEc: Add citation now
- Settles, B., 2010. Active Learning Literature Survey. Technical Report 55–66. University of Wisconsin, Madison.
Paper not yet in RePEc: Add citation now
- Seung, H.S., Opper, M., Sompolinsky, H., 1992. Query by committee. In: Proceedings of the ï¬Âfth annual workshop on Computational learning theory. ACM, pp. 287–294.
Paper not yet in RePEc: Add citation now
Squazzoni, F., 2010. The impact of agent-based models in the social sciences after 15 years of incursions. History of Econ. Ideas 197–233.
- Sridharan, M., Tesauro, G., 2002. Multi-agent q-learning and regression trees for automated pricing decisions. In: Game Theory and Decision Theory in Agent-Based Systems. Springer, pp. 217–234.
Paper not yet in RePEc: Add citation now
- Subbotin, M.T., 1923. On the law of frequency of error. Matematicheskii Sbornik 31 (2), 296–301.
Paper not yet in RePEc: Add citation now
ten Broeke, G., van Voorn, G., Ligtenberg, A., 2016. Which sensitivity analysis method should i use for my agent-based model? J. Artif. Soc. Social Simul. 19 (1).
Thiele, J.C., Kurth, W., Grimm, V., 2014. Facilitating parameter estimation and sensitivity analysis of agent-based models: a cookbook using netlogo and r. J. Artif. Soc. Social Simul. 17 (3), 11.
Weeks, M., 1995. Circumventing the curse of dimensionality in applied work using computer intensive methods. Econ. J. 105 (429), 520–530.
- Wilson, A. G., Dann, C., Nickisch, H., 2015. Thoughts on massively scalable gaussian processes. arXiv preprint arXiv:1511.01870.
Paper not yet in RePEc: Add citation now
Winker, P., Gilli, M., Jeleskovic, V., 2007. An objective function for simulation based inference on exchange rate data. J. Econ. Interaction Coord. 2 (2), 125–145. doi:10.1007/s11403-007-0020-4.
- Wolpert, D.H., 2002. The supervised learning no-free-lunch theorems. In: Soft Computing and Industry. Springer, pp. 25–42.
Paper not yet in RePEc: Add citation now
- Zhu, X., 2005. Semi-supervised Learning Literature Survey. Technical Report. University of Wisconsin-Madison.
Paper not yet in RePEc: Add citation now