create a website

Development of fading channel patch based convolutional neural network models for customer churn prediction. (2024). Gupta, Gaurav.
In: International Journal of System Assurance Engineering and Management.
RePEc:spr:ijsaem:v:15:y:2024:i:1:d:10.1007_s13198-022-01759-2.

Full description at Econpapers || Download paper

Cited: 0

Citations received by this document

Cites: 49

References cited by this document

Cocites: 50

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

    This document has not been cited yet.

References

References cited by this document

  1. Ahmad M, Beddu S, binti Itam Z, Alanimi FBI (2019) State of the art compendium of macro and micro energies. Adv Sci Technol Res J 13(1):88–109.
    Paper not yet in RePEc: Add citation now
  2. Amarapur B (2017) An automated approach for brain tumor identification using ANN classifier. In: 2017 international conference on current trends in computer, electrical, electronics and communication (CTCEEC), pp. 1011–1016. IEEE.
    Paper not yet in RePEc: Add citation now
  3. Bansari S (2019) Introduction to how CNNs Work. Available [Online]: https://medium.datadriveninvestor.com/introduction-to-how-cnns-work-77e0e4cde99b (assessed Nov. 08, 2021).
    Paper not yet in RePEc: Add citation now
  4. Bilski J, Smoląg J (2020) Fast conjugate gradient algorithm for feedforward neural networks. In: Rutkowski L, Scherer R, Korytkowski M, Pedrycz W, Tadeusiewicz R, Zurada JM (eds) Artifi Intelli Soft Comput, Lecture Notes in Computer Science 12415 pp. 27–36.
    Paper not yet in RePEc: Add citation now
  5. Buckinx W, Van Den Poel D (2005) Customer base analysis: Partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. Europ J Operat Res 164(1):252–268.

  6. Burez J, Van den Poel D (2009) Handling class imbalance in customer churn prediction. Expert Syst Appl 36(3-part 1):4626–4636.
    Paper not yet in RePEc: Add citation now
  7. Caigny AD, Coussement K, De Bock KW, Lessmann S (2020) Incorporating textual information in customer churn prediction models based on a convolutional neural network. Int J Forecas 36(4):1563–1578.

  8. Chen Y, Fay S, Wang Q (2011) The role of marketing in social media: How online consumer reviews evolve. J Inter Mark 25(2):85–94.

  9. Chen Y, Yang X, Zhong B, Pan S, Chen D, Zhang H (2016) CNN tracker: online discriminative object tracking via deep convolutional neural network. Appl Soft Comput 38:1088–1098.
    Paper not yet in RePEc: Add citation now
  10. Coussement K, Benoit DF, Van den Poel D (2010) Improved marketing decision making in a customer churn prediction context using generalized additive models. Expert Syst Appl 37(3):2132–2143.

  11. Coussement K, Lessmann S, Verstraeten G (2017) A comparative analysis of data preparation algorithms for customer churn prediction: A case study in the telecommunication industry. Decis Supp Syst 95:27–36.

  12. Coussement K, Van den Poel D (2008) Churn prediction in subscription services: An application of support vector machines while comparing two parameter-selection techniques. Expert Syst Appl 34(1):313–327.

  13. Dharani T, Aroquiaraj IL (2014) Content based image retrieval system with modified knn algorithm. Int J Innov Sci Eng Res (IJISER), 1(1).
    Paper not yet in RePEc: Add citation now
  14. Dhote S, Vichoray C, Pais R, Baskar S, Shakeel PM (2020) Hybrid geometric sampling and AdaBoost based deep learning approach for data imbalance in E-commerce. Electro Commer Res 20:259–274.

  15. Glady N, Baesens B, Croux C (2009) Modeling churn using customer lifetime value. Europ J Operat Res 197(1):402–411.

  16. Gordini N, Veglio V (2017) Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry. Ind Market Manag 62:100–107.
    Paper not yet in RePEc: Add citation now
  17. Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, Liu T, Wang X, Wang L, Wang G, Cai J, Chen T (2018) Recent advances in convolutional neural networks. Patter Recong 77:354–377.
    Paper not yet in RePEc: Add citation now
  18. Huang BQ, Kechadi TM, Buckley B, Kiernan G, Keogh E, Rashid T (2010) A new feature set with new window techniques for customer churn prediction in land-line telecommunications. Expert Syst Appl 37(5):3657–3665.
    Paper not yet in RePEc: Add citation now
  19. Jahromi AT, Stakhovych S, Ewing M (2014) Managing B2B customer churn, retention and profitability. Ind Mark Manag 43(7):1258–1268.
    Paper not yet in RePEc: Add citation now
  20. Jain H, Khunteta A, Srivastava S (2021) Telecom churn prediction and used techniques, datasets and performance measures: a review. Telecom Syst 76:613–630.

  21. Jain H, Khunteta A, Srivastava S (2022) Telecom churn prediction using CNN with variational autoencoder. In: Somani AK, Mundra A, Doss R, Bhattacharya S (eds), Smart Systems: Innovations in Computing, vol 235, Springer, Singapore, pp 583–600.
    Paper not yet in RePEc: Add citation now
  22. Karanovic M, Popovac M, Sladojevic S, Arsenovic M, Stefanovic M (2018) Telecommunication services churn prediction - deep learning approach. IEEE Telecom Forum: 420–425. https://ieeexplore.ieee.org/document/8612067 .
    Paper not yet in RePEc: Add citation now
  23. Kim S, Lee H (2022) Customer churn prediction in influencer commerce: an application of decision trees. Proc Comp Sci 199:1332–1339.
    Paper not yet in RePEc: Add citation now
  24. Kumar A, Kabra G, Mussada EK, Dash MK, Rana PS (2019) Combined artificial bee colony algorithm and machine learning techniques for prediction of online consumer repurchase intention. Neu Comput Appl 31:877–890.
    Paper not yet in RePEc: Add citation now
  25. Kumar MR, Venkatesh J, Md Z. Rahman AMJ (2021) Data mining and machine learning in retail business: developing efficiencies for better customer retention. J Ambien Intelli Human Comput: 1–13. https://link.springer.com/article/10.1007/s12652-020-02711-7 .
    Paper not yet in RePEc: Add citation now
  26. Lee J, Jung O, Lee Y, Kim O, Park C (2021) A comparison and interpretation of machine learning algorithm for the prediction of online purchase conversion. J Theory Appl Elect Commer Res 16(5):1472–1491.
    Paper not yet in RePEc: Add citation now
  27. Lemmens A, Croux C (2006) Bagging and boosting classification trees to predict churn. J Market Res 43(2):276–286.

  28. Li G, Li N (2019) Customs classification for cross border e-commerce based on text image adaptive convolutional neural network. Electro Commer Res 19:779–800.

  29. Li H, Chen J, Lu H, Chi Z (2017) CNN for saliency detection with low-level feature integration. Neu Comput 226:212–220.
    Paper not yet in RePEc: Add citation now
  30. Olist, SA (2018) Brazilian E-Commerce Public Dataset. Available [Online]: https://www.kaggle.com/olistbr/brazilian-ecommerce (assessed Nov. 18, 2020).
    Paper not yet in RePEc: Add citation now
  31. Pan H, Zhou H (2020) Study on convolutional neural network and its application in data mining and sales forecasting for e-commerce. Elect Commer Res 20:297–320.

  32. Parikh R, Mathai A, Parikh S, Sekhar GC, Thomas R (2008) Understanding and using sensitivity, specificity and predictive values. Indian J Ophtham 56(1):45–50.
    Paper not yet in RePEc: Add citation now
  33. Pu Y, Apel D, Szmigiel A, Chen J (2019) Image recognition of coal and coal gangue using a convolutional neural network and transfer learning. Energy 12(9):1–11.

  34. Rangayya V, Patil N (2022) Improved face recognition method using SVM-MRF with KTBD based KCM segmentation approach. Int J Syst Assur Eng Manag. https://doi.org/10.1007/s13198-021-01483-3 .
    Paper not yet in RePEc: Add citation now
  35. Swietojanski P, Ghoshal A, Renals S (2014) Convolutional neural networks for distant speech recognition. IEEE Signal Proc Lett 21(9):1120–1124.
    Paper not yet in RePEc: Add citation now
  36. Taber KS (2017) The use of Cronbach’s alpha when developing and reporting research instruments in science education. Res in Sci Edu 48:1273–1296.
    Paper not yet in RePEc: Add citation now
  37. Tamaddoni A, Stakhovych S, Ewing M (2016) Comparing churn prediction techniques and assessing their performance: A contingent perspective. J Serv Res 19(2):123–141.
    Paper not yet in RePEc: Add citation now
  38. Tariq MU, Babar M, Poulin M, Khattak AS (2022) Distributed model for customer churn prediction using convolutional neural network. J Modell Manag 17(3):853-863.
    Paper not yet in RePEc: Add citation now
  39. Tsai CF, Lu YH (2009) Customer churn prediction by hybrid neural networks. Expert Syst Appl 36(10):12547–12553.
    Paper not yet in RePEc: Add citation now
  40. Uplaonkar DS, Patil N (2021) An efficient discrete wavelet transform based partial hadamard feature extraction and hybrid neural network based monarch butterfly optimization for liver tumor classification. Eng Sci 16:354–365.
    Paper not yet in RePEc: Add citation now
  41. Vafeiadis T, Diamantaras KI, Sarigiannidis G, Chatzisavvas KC (2015) A comparison of machine learning techniques for customer churn prediction. Simul Model Pract Theory 55:1–9.
    Paper not yet in RePEc: Add citation now
  42. Vimal Kumar D, Amutha R (2019) Influence of customer review rating in e-commerce. Int J Innov Sci Eng Res (IJISER) 6(10):72–78.
    Paper not yet in RePEc: Add citation now
  43. Wang C, Han D, Fan W, Liu Q (2019) Customer churn prediction with feature embedded convolutional neural network: An empirical study in the internet funds industry. Int J of Comput Intelli Appl 18(1):1–19.
    Paper not yet in RePEc: Add citation now
  44. Wangperawong A, Brun C, Laudy O, Pavasuthipaisit R (2016) Churn analysis using deep convolutional neural networks and autoencoders. arXiv:1604.05377 . Available [Online]: https://arxiv.org/abs/1604.05377 .
    Paper not yet in RePEc: Add citation now
  45. Xiahou X, Harada Y (2022) B2C e-commerce customer churn prediction based on K-Means and SVM. J Theor Appl Electro Commer Res 17(2):458–475.
    Paper not yet in RePEc: Add citation now
  46. Xie Y, Li X, Ngai EWT, Ying W (2009) Customer churn prediction using improved balanced random forests. Expert Syst Appl 36(3-part1):5445–5449.
    Paper not yet in RePEc: Add citation now
  47. Yu L, Wang Z, Tian S, Ye F, Ding J, Kong J (2017) Convolutional neural networks for water body extraction from Landsat imagery. Int J Comput Intelli Appl 16(1):1–12.
    Paper not yet in RePEc: Add citation now
  48. Yu X, Guo S, Guo J, Huang X (2011) An extended support vector machine forecasting framework for customer churn in e-commerce. Expert Syst Appl 38(3):1425–1430.
    Paper not yet in RePEc: Add citation now
  49. Zaratiegui J, Montoro A, Castanedo F (2015) Performing highly accurate predictions through convolutional networks for actual telecommunication challenges. arXiv:1511.04906 [cs.LG]. Available [Online]: https://arxiv.org/abs/1511.04906 .
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. How training on multiple time slices improves performance in churn prediction. (2021). Thonemann, Ulrich W ; Gattermann-Itschert, Theresa.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:295:y:2021:i:2:p:664-674.

    Full description at Econpapers || Download paper

  2. Churn and loyalty behavior of Turkish digital natives: Empirical insights and managerial implications. (2020). Cavusgil, Tamer S ; Uner, Mithat M ; Guven, Faruk.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:44:y:2020:i:4:s0308596119304471.

    Full description at Econpapers || Download paper

  3. A machine learning framework for customer purchase prediction in the non-contractual setting. (2020). Pereverzyev, Sergiy ; Haltmeier, Markus ; Pirker, Clemens ; Schmuck, Claudia ; Martinez, Andres.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:281:y:2020:i:3:p:588-596.

    Full description at Econpapers || Download paper

  4. Job Dissatisfaction and Turnover Crises in Tunisia. (2019). ben Kahla, Karim ; Khanchel, Hanen.
    In: Business and Management Research.
    RePEc:jfr:bmr111:v:8:y:2019:i:3:p:53-73.

    Full description at Econpapers || Download paper

  5. Churn and loyalty behaviour of Turkish digital natives. (2018). Guven, Faruk.
    In: 29th European Regional ITS Conference, Trento 2018.
    RePEc:zbw:itse18:184943.

    Full description at Econpapers || Download paper

  6. Assessing the sales effectiveness of differently located endcaps in a supermarket. (2018). Bogomolova, Svetlana ; Tan, Pei Jie ; Lockshin, Larry ; Cohen, Justin ; Corsi, Armando ; Sharp, Anne ; Caruso, William.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:43:y:2018:i:c:p:200-208.

    Full description at Econpapers || Download paper

  7. On the operational efficiency of different feature types for telco Churn prediction. (2018). Lemahieu, Wilfried ; Mitrovi, Sandra ; de Weerdt, Jochen ; Baesens, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:267:y:2018:i:3:p:1141-1155.

    Full description at Econpapers || Download paper

  8. ‘Buy n times, get one free’ loyalty cards: Are they profitable for competing firms? A game theoretic analysis. (2018). Karray, Salma ; Zolfaghari, Saeed ; Bazargan, Amirhossein.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:265:y:2018:i:2:p:621-630.

    Full description at Econpapers || Download paper

  9. Socioeconomic characterization of regions through the lens of individual financial transactions. (2017). Arias, Juan Murillo ; Bojic, Iva ; Massaro, Emanuele ; Ratti, Carlo ; Hashemian, Behrooz ; Sobolevsky, Stanislav.
    In: PLOS ONE.
    RePEc:plo:pone00:0187031.

    Full description at Econpapers || Download paper

  10. Modeling reward expiry for loyalty programs in a competitive market. (2017). Karray, Salma ; Zolfaghari, Saeed ; Bazargan, Amirhossein.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:193:y:2017:i:c:p:352-364.

    Full description at Econpapers || Download paper

  11. Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data. (2016). Cancho, Vicente G ; Louzada, Francisco ; Dey, Dipak K.
    In: Journal of Applied Statistics.
    RePEc:taf:japsta:v:43:y:2016:i:3:p:572-584.

    Full description at Econpapers || Download paper

  12. Developing a prediction model for customer churn from electronic banking services using data mining. (2016). Mirmohammadi, Seyed Mohammad ; Ghaneei, Hajar ; Keramati, Abbas.
    In: Financial Innovation.
    RePEc:spr:fininn:v:2:y:2016:i:1:d:10.1186_s40854-016-0029-6.

    Full description at Econpapers || Download paper

  13. Determinants of ex-customer winback in financial services. (2016). Bogomolova, Svetlana.
    In: Journal of Retailing and Consumer Services.
    RePEc:eee:joreco:v:32:y:2016:i:c:p:1-6.

    Full description at Econpapers || Download paper

  14. Customer-base analysis using repeated cross-sectional summary (RCSS) data. (2016). Fader, Peter S ; Jerath, Kinshuk.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:249:y:2016:i:1:p:340-350.

    Full description at Econpapers || Download paper

  15. Twentieth Century Enterprise Forms: Japan in Comparative Perspective. (2015). Kasuya, Makoto ; Hannah, Leslie.
    In: CIRJE F-Series.
    RePEc:tky:fseres:2015cf966.

    Full description at Econpapers || Download paper

  16. Deriving Customer Lifetime Value from RFM Measures:Insights into Customer Retention and Acquisition. (2015). Abe, Makoto.
    In: CIRJE F-Series.
    RePEc:tky:fseres:2015cf962.

    Full description at Econpapers || Download paper

  17. Who is (not) convinced to withdraw a contract termination announcement? – A discriminant analysis of mobile communications customers in Germany. (2015). Gerpott, Torsten J ; Ahmadi, Nima ; Weimar, Daniel.
    In: Telecommunications Policy.
    RePEc:eee:telpol:v:39:y:2015:i:1:p:38-52.

    Full description at Econpapers || Download paper

  18. The Impact of the Multi-channel Retail Mix on Online Store Choice: Does Online Experience Matter?. (2015). Lamey, Lien ; Melis, Kristina ; Campo, Katia ; Breugelmans, Els.
    In: Journal of Retailing.
    RePEc:eee:jouret:v:91:y:2015:i:2:p:272-288.

    Full description at Econpapers || Download paper

  19. CRM in social media: Predicting increases in Facebook usage frequency. (2015). Van den Poel, Dirk ; Ballings, Michel.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:244:y:2015:i:1:p:248-260.

    Full description at Econpapers || Download paper

  20. Hybrid C&RT-Logit Models In Churn Analysis. (2014). Mariusz, Apczyski.
    In: Folia Oeconomica Stetinensia.
    RePEc:vrs:foeste:v:14:y:2014:i:2:p:37-52:n:6.

    Full description at Econpapers || Download paper

  21. A methodology based on profitability criteria for defining the partial defection of customers in non-contractual settings. (2014). Giner-Bosch, V. ; San Matias, S. ; Clemente-Ciscar, M..
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:239:y:2014:i:1:p:276-285.

    Full description at Econpapers || Download paper

  22. Assessing the impact of derived behavior information on customer attrition in the financial service industry. (2014). Fletcher, Mary ; Thomas, Lyn ; Tang, Leilei ; Pan, Jiazhu ; Marshall, Andrew.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:236:y:2014:i:2:p:624-633.

    Full description at Econpapers || Download paper

  23. Evaluating the Added Value of Pictorial Data for Customer Churn Prediction. (2013). Van den Poel, Dirk ; BALLINGS, M. ; VERHAGEN, E..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:13/869.

    Full description at Econpapers || Download paper

  24. Profitability of loyalty reward programs: An analytical investigation. (2013). Zolfaghari, S. ; Gandomi, A..
    In: Omega.
    RePEc:eee:jomega:v:41:y:2013:i:4:p:797-807.

    Full description at Econpapers || Download paper

  25. Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning. (2013). De Bock, Koen ; Coussement, Kristof.
    In: Journal of Business Research.
    RePEc:eee:jbrese:v:66:y:2013:i:9:p:1629-1636.

    Full description at Econpapers || Download paper

  26. A memetic approach to construct transductive discrete support vector machines. (2013). Vo, Stefan ; Lessmann, Stefan ; Brandner, Hubertus .
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:230:y:2013:i:3:p:581-595.

    Full description at Econpapers || Download paper

  27. Predicting partial customer churn using Markov for discrimination for modeling first purchase sequences. (2012). Van den Poel, Dirk ; Migueis, Vera ; João Falcão e Cunha, ; Camanho, Ana.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:6:y:2012:i:4:p:337-353.

    Full description at Econpapers || Download paper

  28. Image data analysis and classification in marketing. (2012). Frost, Sarah ; Naundorf, Robert ; Daniel, Ines ; Baier, Daniel.
    In: Advances in Data Analysis and Classification.
    RePEc:spr:advdac:v:6:y:2012:i:4:p:253-276.

    Full description at Econpapers || Download paper

  29. Kernel Factory: An Ensemble of Kernel Machines. (2012). Van den Poel, Dirk ; BALLINGS, M..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:12/825.

    Full description at Econpapers || Download paper

  30. Predicting Partial Customer Churn Using Markov for Discrimination for Modeling First Purchase Sequences. (2012). Van den Poel, Dirk ; MIGUeIS, V. L. ; JOAO FALCAO E CUNHA, ; CAMANHO, A. S..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:12/806.

    Full description at Econpapers || Download paper

  31. Reconciling Performance and Interpretability in Customer Churn Prediction using Ensemble Learning based on Generalized Additive Models. (2012). Van den Poel, Dirk ; De Bock, Koen.
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:12/805.

    Full description at Econpapers || Download paper

  32. Modeling Partial Customer Churn: On the Value of First Product-Category Purchase Sequences. (2012). Van den Poel, Dirk ; MIGUeIS, V. L. ; J. FALCAO E CUNHA, ; CAMANHO, A. S..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:12/790.

    Full description at Econpapers || Download paper

  33. A hierarchical multiple kernel support vector machine for customer churn prediction using longitudinal behavioral data. (2012). Fan, Zhi-Ping ; Chen, Zhen-Yu ; Sun, Minghe.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:223:y:2012:i:2:p:461-472.

    Full description at Econpapers || Download paper

  34. New insights into churn prediction in the telecommunication sector: A profit driven data mining approach. (2012). Verbeke, Wouter ; Dejaeger, Karel ; Hur, Joon ; Martens, David ; Baesens, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:218:y:2012:i:1:p:211-229.

    Full description at Econpapers || Download paper

  35. Dynamics of Customer Response to Promotional and Relational Direct Mailings from an Apparel Retailer: The Moderating Role of Relationship Strength. (2011). de Canniere, Marie Helene ; Gazquez-Abad, Juan Carlos ; Martinez-Lopez, Francisco J.
    In: Journal of Retailing.
    RePEc:eee:jouret:v:87:y:2011:i:2:p:166-181.

    Full description at Econpapers || Download paper

  36. Die Prognose von Serviceintervallen mit der Hazard-Raten-Analyse – Ergebnisse einer empirischen Studie im Automobilmarkt. (2010). Scharf, Sebastian ; Wolff, Michael ; Sarstedt, Marko ; Thamm, Alexander.
    In: Metrika: International Journal for Theoretical and Applied Statistics.
    RePEc:spr:metrik:v:20:y:2010:i:3:p:269-283.

    Full description at Econpapers || Download paper

  37. Analysing consumer segments to budget for loyalty and promotion programmes and maximize market share. (2010). Pitt, L ; Campbell, C.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:61:y:2010:i:10:d:10.1057_jors.2009.117.

    Full description at Econpapers || Download paper

  38. Staying Power of Churn Prediction Models. (2010). , Tammo ; Verhoef, Peter C ; Risselada, Hans.
    In: Journal of Interactive Marketing.
    RePEc:eee:joinma:v:24:y:2010:i:3:p:198-208.

    Full description at Econpapers || Download paper

  39. Domain knowledge integration in data mining using decision tables: case studies in churn prediction. (2009). Lima, E ; Mues, C ; Baesens, B.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:60:y:2009:i:8:d:10.1057_jors.2008.161.

    Full description at Econpapers || Download paper

  40. The impact of loyalty and promotion effects on retention rate. (2009). Pitt, L ; Campbell, C.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:60:y:2009:i:5:d:10.1057_palgrave.jors.2602564.

    Full description at Econpapers || Download paper

  41. Improved Marketing Decision Making in a Customer Churn Prediction Context Using Generalized Additive Models. (2009). Van den Poel, Dirk ; Coussement, Kristof ; Benoit, Dries Frederik .
    In: Working Papers.
    RePEc:hub:wpecon:200918.

    Full description at Econpapers || Download paper

  42. A reference model for customer-centric data mining with support vector machines. (2009). Vo, Stefan ; Lessmann, Stefan.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:199:y:2009:i:2:p:520-530.

    Full description at Econpapers || Download paper

  43. Modeling churn using customer lifetime value. (2009). Glady, Nicolas ; Croux, Christophe ; Baesens, Bart.
    In: European Journal of Operational Research.
    RePEc:eee:ejores:v:197:y:2009:i:1:p:402-411.

    Full description at Econpapers || Download paper

  44. Improving Customer Attrition Prediction by Integrating Emotions from Client/Company Interaction Emails and Evaluating Multiple Classifiers.. (2008). Van den Poel, Dirk ; Coussement, Kristof.
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:08/527.

    Full description at Econpapers || Download paper

  45. Forecasting and operational research: a review. (2008). Nikolopoulos, Konstantinos ; Crone, S F ; Fildes, R ; Syntetos, A A.
    In: Journal of the Operational Research Society.
    RePEc:pal:jorsoc:v:59:y:2008:i:9:d:10.1057_palgrave.jors.2602597.

    Full description at Econpapers || Download paper

  46. Specific customer knowledge and operational performance in apparel manufacturing. (2008). Yeung, Andy C. L., ; Yeung, Alice H. W., ; Lo, Victor H. Y., ; Cheng, T. C. Edwin, .
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:114:y:2008:i:2:p:520-533.

    Full description at Econpapers || Download paper

  47. Measuring Customer Relationship Value: The Role of Switching Cost*. (2007). Kinney, William R ; Dikolli, Shane S ; Sedatole, Karen L.
    In: Contemporary Accounting Research.
    RePEc:wly:coacre:v:24:y:2007:i:1:p:93-132.

    Full description at Econpapers || Download paper

  48. Random Forrests for Multiclass classification: Random Multinomial Logit. (2007). Van den Poel, Dirk ; PRINZIE, A..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:07/435.

    Full description at Econpapers || Download paper

  49. Churn Prediction in Subscription Services: an Application of Support Vector Machines While Comparing Two Parameter-Selection Techniques. (2006). Van den Poel, Dirk ; Coussement, Kristof.
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:06/412.

    Full description at Econpapers || Download paper

  50. Predicting Customer Retention and Profitability by Using Random Forests and Regression Forests Techniques. (2004). Van den Poel, Dirk ; LARIVIRE, B..
    In: Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium.
    RePEc:rug:rugwps:04/282.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2025-10-04 03:04:33 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Last updated August, 3 2024. Contact: Jose Manuel Barrueco.