- Auspurg, K., & Brüderl, J. (2024). Toward a more credible assessment of the credibility of science by many-analyst studies. Proceedings of the National Academy of Sciences, 121(38), Article e2404035121. https://doi.org/10.1073/pnas.2404035121 .
Paper not yet in RePEc: Add citation now
Bischof, D. (2017). New graphic schemes for Stata: Plotplain and plottig. Stata Journal, 17(3), 748–759. https://doi.org/10.1177/1536867x1701700313 .
- Bittmann, F., Tekles, A., & Bornmann, L. (2022). Applied usage and performance of statistical matching in bibliometrics: The comparison of milestone and regular papers with multiple measurements of disruptiveness as an empirical example. Quantitative Science Studies, 2(4), 1246–1270. https://doi.org/10.1162/qss_a_00158 .
Paper not yet in RePEc: Add citation now
- Bornmann, L., & Tekles, A. (2019a). Disruption index depends on length of citation window. Profesional De La Informacion, 28(2), Article e280207. https://doi.org/10.3145/epi.2019.mar.07 .
Paper not yet in RePEc: Add citation now
Bornmann, L., & Tekles, A. (2019b). Disruptive papers published in Scientometrics. Scientometrics, 120(1), 331–336. https://doi.org/10.1007/s11192-019-03113-z .
Bornmann, L., & Tekles, A. (2021). Convergent validity of several indicators measuring disruptiveness with milestone assignments to physics papers by experts. Journal of Informetrics, 15(3), Article 101159. https://doi.org/10.1016/j.joi.2021.101159 .
- Bornmann, L., Devarakonda, S., Tekles, A., & Chacko, G. (2020). Are disruption index indicators convergently valid? The comparison of several indicator variants with assessments by peers. Quantitative Science Studies, 1(3), 1242–1259. https://doi.org/10.1162/qss_a_00068 .
Paper not yet in RePEc: Add citation now
Chatfield, C. (1995). Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A (Statistics in Society), 158(3), 419–466. https://doi.org/10.2307/2983440 .
Deng, N., & Zeng, A. (2023). Enhancing the robustness of the disruption metric against noise. Scientometrics, 128(4), 2419–2428. https://doi.org/10.1007/s11192-023-04644-2 .
- Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40(1), 35–41. https://doi.org/10.2307/3033543 .
Paper not yet in RePEc: Add citation now
Funk, R. J., & Owen-Smith, J. (2017). A dynamic network measure of technological change. Management Science, 63(3), 791–817. https://doi.org/10.1287/mnsc.2015.2366 .
- Gebhart, T., & Funk, R. J. (2023). A mathematical framework for citation disruption. arXiv. Retrieved September 11, 2023 from https://doi.org/10.48550/arXiv.2308.16363 .
Paper not yet in RePEc: Add citation now
- Harder, J. A. (2020). The multiverse of methods: Extending the multiverse analysis to address data-collection decisions. Perspectives on Psychological Science, 15(5), 1158–1177. https://doi.org/10.1177/1745691620917678 .
Paper not yet in RePEc: Add citation now
- Holst, V., Algaba, A., Tori, F., Wenmackers, S., & Ginis, V. (2024). Dataset artefacts are the hidden drivers of the declining disruptiveness in science. arXiv. Retrieved February 26, 2024 from https://doi.org/10.48550/arXiv.2402.14583 .
Paper not yet in RePEc: Add citation now
Huntington-Klein, N., Arenas, A., Beam, E., Bertoni, M., Bloem, J. R., Burli, P., Chen, N. B., Grieco, P., Ekpe, G., Pugatch, T., Saavedra, M., & Stopnitzky, Y. (2021). The influence of hidden researcher decisions in applied microeconomics. Economic Inquiry, 59(3), 944–960. https://doi.org/10.1111/ecin.12992 .
Leamer, E. E. (1985). Sensitivity analyses would help. American Economic Review, 75(3), 308–313. https://www.jstor.org/stable/1814801 .
Leibel, C., & Bornmann, L. (2024). What do we know about the disruption index in scientometrics? An overview of the literature. Scientometrics, 129(1), 601–639. https://doi.org/10.1007/s11192-023-04873-5 .
Leydesdorff, L., & Bornmann, L. (2021). Disruption indices and their calculation using Web-of-Science data: Indicators of historical developments or evolutionary dynamics? Journal of Informetrics, 15(4), 101219. https://doi.org/10.1016/j.joi.2021.101219 .
Li, J., & Chen, J. (2022). Measuring destabilization and consolidation in scientific knowledge evolution. Scientometrics, 127(10), 5819–5839. https://doi.org/10.1007/s11192-022-04479-3 .
- Li, J., Yin, Y., Fortunato, S., & Wang, D. (2019). A dataset of publication records for Nobel laureates. Scientific Data, 6, Article 33. https://doi.org/10.1038/s41597-019-0033-6 .
Paper not yet in RePEc: Add citation now
Liang, G., Lou, Y., & Hou, H. (2022). Revisiting the disruptive index: Evidence from the Nobel Prize-winning articles. Scientometrics, 127(10), 5721–5730. https://doi.org/10.1007/s11192-022-04499-z .
Lin, Y., Frey, C. B., & Wu, L. (2023a). Remote collaboration fuses fewer breakthrough ideas. Nature, 623(7989), 987–991. https://doi.org/10.1038/s41586-023-06767-1 .
- Lin, Z., Yin, Y., Liu, L., & Wang, D. (2023b). SciSciNet: A large-scale open data lake for the science of science research. Scientific Data, 10(1), Article 315. https://doi.org/10.1038/s41597-023-02198-9 .
Paper not yet in RePEc: Add citation now
- Liu, X., Zhang, C., & Li, J. (2023). Conceptual and technical work: Who will disrupt science? Journal of Informetrics, 17(3), Article 101432. https://doi.org/10.1016/j.joi.2023.101432 .
Paper not yet in RePEc: Add citation now
- Muñoz, J., & Young, C. (2018). We ran 9 billion regressions: Eliminating false positives through computational model robustness. Sociological Methodology, 48(1), 1–33. https://doi.org/10.1177/0081175018777988 .
Paper not yet in RePEc: Add citation now
Park, M., Leahey, E., & Funk, R. J. (2023). Papers and patents are becoming less disruptive over time. Nature, 613(7942), 138–144. https://doi.org/10.1038/s41586-022-05543-x .
- Patel, C. J., Burford, B., & Ioannidis, J. P. A. (2015). Assessment of vibration of effects due to model specification can demonstrate the instability of observational associations. Journal of Clinical Epidemiology, 68(9), 1046–1058. https://doi.org/10.1016/j.jclinepi.2015.05.029 .
Paper not yet in RePEc: Add citation now
- Ruan, X., Lyu, D., Gong, K., Cheng, Y., & Li, J. (2021). Rethinking the disruption index as a measure of scientific and technological advances. Technological Forecasting and Social Change, 172, Article 121071. https://doi.org/10.1016/j.techfore.2021.121071 .
Paper not yet in RePEc: Add citation now
Sheng, L., Lyu, D., Ruan, X., Shen, H., & Cheng, Y. (2023). The association between prior knowledge and the disruption of an article. Scientometrics, 128(8), 4731–4751. https://doi.org/10.1007/s11192-023-04751-0 .
- Simonsohn, U., Simmons, J. P., & Nelson, L. D. (2020). Specification curve analysis. Nature Human Behaviour, 4(11), 1208–1214. https://doi.org/10.1038/s41562-020-0912-z .
Paper not yet in RePEc: Add citation now
- Steegen, S., Tuerlinckx, F., Gelman, A., & Vanpaemel, W. (2016). Increasing transparency through a multiverse analysis. Perspectives on Psychological Science, 11(5), 702–712. https://doi.org/10.1177/1745691616658637 .
Paper not yet in RePEc: Add citation now
- Wang, Q., & Schneider, J. W. (2020). Consistency and validity of interdisciplinarity measures. Quantitative Science Studies, 1(1), 239–263. https://doi.org/10.1162/qss_a_00011 .
Paper not yet in RePEc: Add citation now
Wang, S., Ma, Y., Mao, J., Bai, Y., Liang, Z., & Li, G. (2023). Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities. Journal of the Association for Information Science and Technology, 74(2), 150–167. https://doi.org/10.1002/asi.24719 .
- Wei, C., Li, J., & Shi, D. (2023). Quantifying revolutionary discoveries: Evidence from Nobel prize-winning papers. Information Processing & Management, 60(3), Article 103252. https://doi.org/10.1016/j.ipm.2022.103252 .
Paper not yet in RePEc: Add citation now
Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and small teams disrupt science and technology. Nature, 566(7744), 378–382. https://doi.org/10.1038/s41586-019-0941-9 .
- Young, C. (2018). Model uncertainty and the crisis in science. Socius, 4, 1–7. https://doi.org/10.1177/2378023117737206 .
Paper not yet in RePEc: Add citation now
- Young, C., & Holsteen, K. (2017). Model uncertainty and robustness: A computational framework for multimodel analysis. Sociological Methods & Research, 46(1), 3–40. https://doi.org/10.1177/0049124115610347 .
Paper not yet in RePEc: Add citation now