Andrieu, C., Doucet, A., & Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(3), 269–342.
Cecchetti, S. G., Hooper, P., Kashyap, A. K., & Schoenholtz, K. L. (2017). Deflating inflation expectations: The implications of inflation's simple dynamics. In U.S. Monetary Policy Forum.
Chan, J. C. (2013). Moving average stochastic volatility models with application to inflation forecast. Journal of Econometrics, 176(2), 162–172.
Chan, J. C. (2017). The stochastic volatility in mean model with time‐varying parameters: An application to inflation modeling. Journal of Business & Economic Statistics, 35(1), 17–28.
- Chan, J. C., & Jeliazkov, I. (2009). Efficient simulation and integrated likelihood estimation in state space models. International Journal of Mathematical Modelling and Numerical Optimisation, 1(1‐2), 101–120.
Paper not yet in RePEc: Add citation now
Chan, J. C., Clark, T. E., & Koop, G. (2018). A new model of inflation, trend inflation, and long‐run inflation expectations. Journal of Money Credit and Banking, 50(1), 5–53.
- Chan, J. C., Hou, C., & Yang, T. T. (2017). Asymptotic trimming for importance sampling estimators with infinite variance. Technical report.
Paper not yet in RePEc: Add citation now
Chen, R., & Liu, J. S. (2000). Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 62(3), 493–508.
Dekkers, A. L., Einmahl, J. H., & De Haan, L. (1989). A moment estimator for the index of an extreme‐value distribution. The Annals of Statistics, 17, 1833–1855.
- Doornik, J. A. (2007). Object‐Oriented Matrix Programming Using Ox (3rd ed.). London: Timberlake Consultants Press.
Paper not yet in RePEc: Add citation now
- Doucet, A., De Freitas, N., & Gordon, N. (2001). An introduction to sequential Monte Carlo methods, Sequential Monte Carlo methods in practice: Springer, pp. 3–14.
Paper not yet in RePEc: Add citation now
- Durbin, J., & Koopman, S. J. (1997). Monte Carlo maximum likelihood estimation for non‐Gaussian state space models. Biometrika, 84(3), 669–684.
Paper not yet in RePEc: Add citation now
Durbin, J., & Koopman, S. J. (2002). A simple and efficient simulation smoother for state space time series analysis. Biometrika, 89(3), 603–616.
Durbin, J., & Koopman, S. J. (2012). Time series analysis by state space methods (2nd ed.). Oxford University Press.
- Gerstner, T., & Griebel, M. (1998). Numerical integration using sparse grids. Numerical algorithms, 18(3‐4), 209–232.
Paper not yet in RePEc: Add citation now
Geweke, J. (1989). Bayesian inference in econometric models using Monte Carlo integration. Econometrica, 57, 1317–1339.
Geweke, J., & Amisano, G. (2011). Optimal prediction pools. Journal of Econometrics, 164(1), 130–141.
Gordon, R. J. (1990). The Phillips curve now and then. Technical report, National Bureau of Economic Research, Inc.
- Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge University Press.
Paper not yet in RePEc: Add citation now
Harvey, A. C. (2011). Modelling the Phillips curve with unobserved components. Applied Financial Economics, 21(1‐2), 7–17.
- Hasenzagl, T., Pellegrino, F., Reichlin, L., & Ricco, G. (2021). A model of the Fed's view on inflation. Review of Economics and Statistics, 102. forthcoming.
Paper not yet in RePEc: Add citation now
Herbst, E., & Schorfheide, F. (2019). Tempered particle filtering. Journal of Econometrics, 210(1), 26–44.
- Jäckel, P. (2005). A note on multivariate Gauss–Hermite quadrature. (Technical report). https://jaeckel.org/ANoteOnMultivariateGaussHermiteQuadrature.pdf.
Paper not yet in RePEc: Add citation now
- Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J., & Chopin, N. (2015). On particle methods for parameter estimation in state‐space models. Statistical Science, 30(3), 328–351.
Paper not yet in RePEc: Add citation now
Kim, C., Manopimoke, P., & Nelson, C. R. (2014). Trend inflation and the nature of structural breaks in the New Keynesian Phillips curve. Journal of Money Credit and Banking, 46(2‐3), 253–266.
- Kleppe, T. S. (2019). Dynamically rescaled Hamiltonian Monte Carlo for Bayesian hierarchical models. Journal of Computational and Graphical Statistics, 28, 493–507.
Paper not yet in RePEc: Add citation now
Koopman, S. J., & Hol Uspensky, E. (2002). The stochastic volatility in mean model: empirical evidence from international stock markets. Journal of Applied Econometrics, 17(6), 667–689.
- Koopman, S. J., Lucas, A., & Scharth, M. (2015). Numerically accelerated importance sampling for nonlinear non‐Gaussian state‐space models. Journal of Business & Economic Statistics, 33(1), 114–127.
Paper not yet in RePEc: Add citation now
Koopman, S. J., Shephard, N., & Creal, D. (2009). Testing the assumptions behind importance sampling. Journal of Econometrics, 149(1), 2–11.
Liesenfeld, R., & Richard, J.‐F. (2003). Univariate and multivariate stochastic volatility models: Estimation and diagnostics. Journal of Empirical Finance, 10, 505–531.
Malik, S., & Pitt, M. K. (2011). Particle filters for continuous likelihood evaluation and maximisation. Journal of Econometrics, 165, 190–209.
Mertens, E. (2016). Measuring the level and uncertainty of trend inflation. Review of Economics and Statistics, 98(5), 950–967.
Mertens, E., & Nason, J. M. (2017). Inflation and Professional Forecast Dynamics: An Evaluation of Stickiness, Persistence and Volatility: Australian National University.
- Pitt, M. K., & Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. Journal of the American Statistical Association, 94(446), 590–599.
Paper not yet in RePEc: Add citation now
- Richard, J.‐F., & Zhang, W. (2007). Efficient high‐dimensional importance sampling. Journal of Econometrics, 141(2), 1385–1411.
Paper not yet in RePEc: Add citation now
Sandmann, G., & Koopman, S. J. (1998). Estimation of stochastic volatility models via Monte Carlo maximum likelihood. Journal of Econometrics, 87(2), 271–301.
Shephard, N. (2015). Martingale Unobserved Component Models. In S. J. Koopman, N. Shephard, & Shephard, N (Eds.), Unobserved components and time series econometrics. Oxford University Press. Chapter 10.
- Shephard, N., & Pitt, M. K. (1997). Likelihood analysis of non‐Gaussian measurement time series. Biometrika, 84(3), 653–667.
Paper not yet in RePEc: Add citation now
- Stock, J. H., & Watson, M. W. (1998). Median unbiased estimation of coefficient variance in a time‐varying parameter model. Journal of the American Statistical Association, 93(441), 349–358.
Paper not yet in RePEc: Add citation now
Stock, J. H., & Watson, M. W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking, 39(s1), 3–33.
Stock, J. H., & Watson, M. W. (2008). Phillips Curve Inflation Forecasts: National Bureau of Economic Research.
Stock, J. H., & Watson, M. W. (2016). Core inflation and trend inflation. Review of Economics and Statistics, 98(4), 770–784.