- Adrian, T., Boyarchenko, N., & Giannone, D. (2019). Vulnerable growth. American Economic Review, 109(4), 1263–89.
Paper not yet in RePEc: Add citation now
- Alexander, W. P., & Grimshaw, S. D. (1996). Treed regression. Journal of Computational and Graphical Statistics, 5(2), 156–175.
Paper not yet in RePEc: Add citation now
- Almon, S. (1965). The distributed lag between capital appropriations and expenditures. Econometrica: Journal of the Econometric Society, 33, 178–196.
Paper not yet in RePEc: Add citation now
Amir‐Ahmadi, P., Matthes, C., & Wang, M.‐C. (2020). Choosing prior hyperparameters: With applications to time‐varying parameter models. Journal of Business & Economic Statistics, 38(1), 124–136.
Aruoba, S. B., Bocola, L., & Schorfheide, F. (2017). Assessing DSGE model nonlinearities. Journal of Economic Dynamics and Control, 83, 34–54.
- Aruoba, S. B., Diebold, F. X., Nalewaik, J., Schorfheide, F., & Song, D. (2013). Improving US GDP measurement: A forecast combination perspective, Recent advances and future directions in causality, prediction, and specification analysis: Springer, pp. 1–25.
Paper not yet in RePEc: Add citation now
- Atkeson, A., & Ohanian, L. E. (2001). Are phillips curves useful for forecasting inflation? Federal Reserve bank of Minneapolis quarterly review, 25(1), 2–11.
Paper not yet in RePEc: Add citation now
Auerbach, A. J., & Gorodnichenko, Y. (2012). Measuring the output responses to fiscal policy. American Economic Journal: Economic Policy, 4(2), 1–27.
Blanchard, O., Cerutti, E., & Summers, L. (2015). Inflation and activity—two explorations and their monetary policy implications. (Technical report): National Bureau of Economic Research.
- Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123–140.
Paper not yet in RePEc: Add citation now
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Paper not yet in RePEc: Add citation now
- Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees: CRC Press.
Paper not yet in RePEc: Add citation now
- Chen, J. C., Dunn, A., Hood, K. K., Driessen, A., & Batch, A. (2019). Off to the races: A comparison of machine learning and alternative data for predicting economic indicators. In Big data for 21st century economic statistics. University of Chicago Press.
Paper not yet in RePEc: Add citation now
Clements, M. P., & Smith, J. (1997). The performance of alternative forecasting methods for SETAR models. International Journal of Forecasting, 13(4), 463–475.
- Cogley, T., & Sargent, T. J. (2001). Evolving post‐world war II US inflation dynamics. NBER Macroeconomics Annual, 16, 331–373.
Paper not yet in RePEc: Add citation now
Coibion, O., & Gorodnichenko, Y. (2015). Is the phillips curve alive and well after all? Inflation expectations and the missing disinflation. American Economic Journal: Macroeconomics, 7(1), 197–232.
D'Agostino, A., Gambetti, L., & Giannone, D. (2013). Macroeconomic forecasting and structural change. Journal of Applied Econometrics, 28(1), 82–101.
Del Negro, M., Giannoni, M. P., & Schorfheide, F. (2015). Inflation in the great recession and new Keynesian models. American Economic Journal: Macroeconomics, 7(1), 168–96.
- Del Negro, M., Lenza, M., Primiceri, G. E., & Tambalotti, A. (2020). What' up with the Phillips curve? (Technical report): National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now
Delle Monache, D., De Polis, A., & Petrella, I. (2020). Modeling and forecasting macroeconomic downside risk.
Diebold, F. X., & Mariano, R. S. (2002). Comparing predictive accuracy. Journal of Business & economic statistics, 20(1), 134–144.
- Dolado, J. J., Marıa‐Dolores, R., & Naveira, M. (2005). Are monetary‐policy reaction functions asymmetric?: The role of nonlinearity in the phillips curve. European Economic Review, 49(2), 485–503.
Paper not yet in RePEc: Add citation now
- Estrella, A., & Mishkin, F. S. (1998). Predicting us recessions: Financial variables as leading indicators. Review of Economics and Statistics, 80(1), 45–61.
Paper not yet in RePEc: Add citation now
- Farrell, M. H., Liang, T., & Misra, S. (2020). Deep learning for individual heterogeneity: An automatic inference framework. arXiv preprint arXiv:2010.14694.
Paper not yet in RePEc: Add citation now
Friedberg, R., Tibshirani, J., Athey, S., & Wager, S. (2020). Local linear forests. Journal of Computational and Graphical Statistics, 30(2), 503–517.
- Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning, Vol. 1: Springer series in statistics New York, NY, USA:.
Paper not yet in RePEc: Add citation now
Galí, J., & Gambetti, L. (2019). Has the us wage phillips curve flattened? A semi‐structural exploration. (Technical report): National Bureau of Economic Research.
Giraitis, L., Kapetanios, G., & Yates, T. (2018). Inference on multivariate heteroscedastic time varying random coefficient models. Journal of Time Series Analysis, 39(2), 129–149.
- Goulet Coulombe, P. (2020a). Time‐varying parameters as ridge regressions. arXiv preprint arXiv:2009.00401.
Paper not yet in RePEc: Add citation now
- Goulet Coulombe, P. (2020b). To bag is to prune. arXiv preprint arXiv:2008.07063.
Paper not yet in RePEc: Add citation now
Goulet Coulombe, P., Leroux, M., Stevanovic, D., & Surprenant, S. (2022). How is machine learning useful for macroeconomic forecasting? Journal of Applied Econometrics, 37(5), 920–964.
- Granger, C. W. J. (2008). Non‐linear models: Where do we go next‐time varying parameter models? Studies in Nonlinear Dynamics & Econometrics, 12(3).
Paper not yet in RePEc: Add citation now
- Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree‐based models still outperform deep learning on typical tabular data? Advances in Neural Information Processing Systems, 35, 507–520.
Paper not yet in RePEc: Add citation now
- Hansen, B. E. (2011). Threshold autoregression in economics. Statistics and its Interface, 4(2), 123–127.
Paper not yet in RePEc: Add citation now
- Kotchoni, R., Leroux, M., & Stevanovic, D. (2019). Macroeconomic forecast accuracy in a data‐rich environment. Journal of Applied Econometrics, 34(7), 1050–1072.
Paper not yet in RePEc: Add citation now
- Lancaster, T. (2003). A note on bootstraps and robustness. Available at SSRN 896764.
Paper not yet in RePEc: Add citation now
Leamer, E. E. (2007). Housing is the business cycle. (Technical Report): National Bureau of Economic Research.
Lin, Y., & Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the American Statistical Association, 101(474), 578–590.
Lindé, J., & Trabandt, M. (2019). Resolving the missing deflation puzzle.
MacKinnon, J. G. (2006). Bootstrap methods in econometrics. Economic Record, 82, S2–S18.
- McCracken, M., & Ng, S. (2020). FRED‐QD: A quarterly database for macroeconomic research. (Technical report): National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now
- Medeiros, M. C., Vasconcelos, G. F. R., Veiga, A., & Zilberman, E. (2021). Forecasting inflation in a data‐rich environment: The benefits of machine learning methods. Journal of Business & Economic Statistics, 39(1), 98–119.
Paper not yet in RePEc: Add citation now
- Molnar, C. (2019). Interpretable machine learning: Lulu.com.
Paper not yet in RePEc: Add citation now
- Nalewaik, J. (2016). Non‐linear phillips curves with inflation regime‐switching.
Paper not yet in RePEc: Add citation now
- Newton, M. A., Polson, N. G., & Xu, J. (2021). Weighted Bayesian bootstrap for scalable posterior distributions. Canadian Journal of Statistics, 49(2), 421–437.
Paper not yet in RePEc: Add citation now
- Olson, M. A., & Wyner, A. J. (2018). Making sense of random forest probabilities: A kernel perspective. arXiv preprint arXiv:1812.05792.
Paper not yet in RePEc: Add citation now
- Perdiguero‐García, J. (2013). Symmetric or asymmetric oil prices? A meta‐analysis approach. Energy Policy, 57, 389–397.
Paper not yet in RePEc: Add citation now
- Perron, P. (2006). Dealing with structural breaks. Palgrave Handbook of Econometrics, 1(2), 278–352.
Paper not yet in RePEc: Add citation now
Petrova, K. (2019). A quasi‐Bayesian local likelihood approach to time varying parameter VAR models. Journal of Econometrics, 212(1), 286–306.
- Politis, D. N., Romano, J. P., & Wolf, M. (2001). On the asymptotic theory of subsampling. Statistica Sinica, 1105–1124.
Paper not yet in RePEc: Add citation now
Primiceri, G. E. (2005). Time varying structural vector autoregressions and monetary policy. The Review of Economic Studies, 72(3), 821–852.
Ramey, V. A., & Zubairy, S. (2018). Government spending multipliers in good times and in bad: Evidence from us historical data. Journal of Political Economy, 126(2), 850–901.
- Rubin, D. B. (1981). The Bayesian bootstrap. The Annals of Statistics, 130–134.
Paper not yet in RePEc: Add citation now
Sims, C. A., & Zha, T. (2006). Were there regime switches in us monetary policy? American Economic Review, 96(1), 54–81.
Stock, J. H., & Watson, M. W. (2007). Why has US inflation become harder to forecast? Journal of Money, Credit and Banking, 39, 3–33.
- Stock, J. H., & Watson, M. W. (2008). Phillips curve inflation forecasts. (Technical Report): National Bureau of Economic Research.
Paper not yet in RePEc: Add citation now
- Taddy, M., Chen, C.‐S., Yu, J., & Wyle, M. (2015). Bayesian and empirical Bayesian forests. In International Conference on Machine Learning, PMLR, pp. 967–976.
Paper not yet in RePEc: Add citation now
Taddy, M., Gardner, M., Chen, L., & Draper, D. (2016). A nonparametric Bayesian analysis of heterogenous treatment effects in digital experimentation. Journal of Business & Economic Statistics, 34(4), 661–672.
- Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models. Journal of the american Statistical association, 89(425), 208–218.
Paper not yet in RePEc: Add citation now
- Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes.
Paper not yet in RePEc: Add citation now