Alessi, L., & Detken, C. (2011). Quasi real time early warning indicators for costly asset price boom/bust cycles: A role for global liquidity. European Journal of Political Economy, 27(3), 520–533. https://doi.org/10.1016/j.ejpoleco.2011.01.003.
Alessi, L., & Detken, C. (2018). Identifying excessive credit growth and leverage. Journal of Financial Stability, 35, 215–225. https://doi.org/10.1016/j.jfs.2017.06.005.
- Apley, D. W. (2016). Visualizing the effects of predictor variables in black box supervised learning models.
Paper not yet in RePEc: Add citation now
- Athey, S. (2019). The Impact of Machine Learning on Economics. In the economics of artificial intelligence: An agenda (pp. 507–547). University of Chicago Press.
Paper not yet in RePEc: Add citation now
Baldacci, E., Petrova, I., Belhocine, N., Dobrescu, G., & Mazraani, S. (2011). Assessing fiscal stress. IMF Working Papers, 11(100), 1. https://doi.org/10.5089/9781455254316.001.
Barrell, R., Davis, E. P., Karim, D., & Liadze, I. (2010). Bank regulation, property prices and early warning systems for banking crises in OECD countries. Journal of Banking & Finance, 34(9), 2255–2264. https://doi.org/10.1016/j.jbankfin.2010.02.015.
- Beers, D., & Mavalwalla, J. (2017). Database of sovereign defaults, 2017. Ssrn, No. 101. https://doi.org/10.2139/ssrn.3000226.
Paper not yet in RePEc: Add citation now
Bluwstein, K., Buckmann, M., Joseph, A., Kang, M., Kapadia, S., & Simsek, Ö. (2020). Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach. Bank of England staff working paper, 848.
- Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324.
Paper not yet in RePEc: Add citation now
Bruns, M., & Poghosyan, T. (2016). Leading indicators of fiscal distress: Evidence from the extreme bound analysis. IMF working paper, WP/16/28.
- Caruana, R., & Niculescu‐Mizil, A. (2006). An empirical comparison of supervised learning algorithms. In presented at proc. Int. Conf. Machine learn., 23rd, Pittsburgh, PA.
Paper not yet in RePEc: Add citation now
- Chetverikov, D., Liao, Z., & Chernozhukov, V. (2016). On cross‐validated lasso. Cornell University Library.
Paper not yet in RePEc: Add citation now
Ciarlone, A., & Trebeschi, G. (2005). Designing an early warning system for debt crises. Emerging Markets Review, 6(4), 376–395. https://doi.org/10.1016/j.ememar.2005.09.003.
Cruces, J. J., & Trebesch, C. (2013). Sovereign defaults: The Price of haircuts.
Davis, E. P., & Karim, D. (2008). Could early warning systems have helped to predict the sub‐prime crisis? National Institute Economic Review, 206(1), 35–47. https://doi.org/10.1177/0027950108099841.
- Demirgüç‐Kunt, A., & Detragiache, E. (2005). Cross‐country empirical studies of systemic Bank distress: A survey. IMF working paper, WP/05/96.
Paper not yet in RePEc: Add citation now
Demyany, Y., & Hasan, I. (2009). Financial crises and bank failures: A review of prediction methods. Bank of Finland Research Discussion Papers, 35.
Duttagupta, R., & Cashin, P. (2008). The anatomy of banking crises. IMF working paper, WP/08/93.
Fioramanti, M. (2008). Predicting sovereign debt crises using artificial neural networks: A comparative approach. Journal of Financial Stability, 4(2), 149–164. https://doi.org/10.1016/j.jfs.2008.01.001.
- Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29, 1189–1232.
Paper not yet in RePEc: Add citation now
Fuertes, A.‐M., & Kalotychou, E. (2006). Early warning systems for sovereign debt crises: The role of heterogeneity. Computational Statistics & Data Analysis, 51(2), 1420–1441. https://doi.org/10.1016/j.csda.2006.08.023.
Fuertes, A.‐M., & Kalotychou, E. (2007). Optimal design of early warning systems for sovereign debt crises. International Journal of Forecasting, 23(1), 85–100. https://doi.org/10.1016/j.ijforecast.2006.07.001.
- Hastie, T., Tibshirani, R., & Friedman, J. (2012). The elements of statistical learning. Springer.
Paper not yet in RePEc: Add citation now
Hernández de Cos, P., Koester, G. B., Moral‐Benito, E., & Nickel, C. (2014). Signalling fiscal stress in the euro area ‐ a country‐specific early warning system. ECB Working Paper, No. 1712.
Holopainen, M., & Sarlin, P. (2017). Toward robust early‐warning models: A horse race, ensembles and model uncertainty. Quantitative Finance, 17(12), 1933–1963. https://doi.org/10.1080/14697688.2017.1357972.
Jimenez, B. S. (2017). Institutional constraints, rule‐following, and circumvention: Tax and expenditure limits and the choice of fiscal tools during a budget crisis. Public Budgeting & Finance, 37(2), 5–34. https://doi.org/10.1111/pbaf.12152.
Kaminsky, G. L. (1999). Currency and banking crises: The early warnings of distress. IMF working paper, no. 99/178.
Kaminsky, G. L., & Reinhart, C. M. (1999). The twin crises: The causes of banking and balance‐of‐payments problems. American Economic Review, 89(3), 473–500. https://doi.org/10.1257/aer.89.3.473.
Kaminsky, G. L., Lizondo, S., & Reinhart, C. M. (1998). Leading indicators of currency crises. IMF staff papers, (November):45.
Knedlik, T., & von Schweinitz, G. (2012). Macroeconomic imbalances as indicators for debt crises in Europe. JCMS: Journal of Common Market Studies, 50(5), 726–745.
Kumar, M., Moorthy, U., & Perraudin, W. (2003). Predicting emerging market currency crashes. Journal of Empirical Finance, 10(4), 427–454. https://doi.org/10.1016/S0927-5398(02)00068-3.
Lo Duca, M., & Peltonen, T. (2011). Macrofinancial vulnerabilities and future financial stress: assessing systemic risks and predicting systemic events. In macroprudential regulation and policy, 60, 82–88. Bank for International Settlements.
- Lo Duca, M., & Peltonen, T. A. (2013). Assessing systemic risks and predicting systemic events. Journal of Banking & Finance, 37, 2183–2195. https://doi.org/10.1016/j.jbankfin.2012.06.010.
Paper not yet in RePEc: Add citation now
- Louppe, G. (2014). Understanding random forests: From theory to practice. Cornell University Library.
Paper not yet in RePEc: Add citation now
Manasse, P., & Roubini, N. (2009). “Rules of thumb” for sovereign debt crises. Journal of International Economics, 78(2), 192–205. https://doi.org/10.1016/j.jinteco.2008.12.002.
Manasse, P., Roubini, N., & Schimmelpfennig, A. (2003). Predicting sovereign debt crises. IMF working paper, no. 03/221.
Mitchell, D. T., & Stansel, D. (2016). The determinants of the severity of state fiscal crises. Public Budgeting & Finance, 36(4), 50–67. https://doi.org/10.1111/pbaf.12116.
- Ostaszewski, J., & Wrzesiński, M. (2018). Etyka, sprawiedliwość i racjonalność w dorobku nauki o finansach w latach 1918–2018. Szkoła Główna Handlowa. Oficyna Wydawnicza.
Paper not yet in RePEc: Add citation now
Reinhart, C. M., & Rogoff, K. S. (2008). Is the 2007 US sub‐prime financial crisis so different? An international historical comparison. American Economic Review, 98(2), 339–344. https://doi.org/10.1257/aer.98.2.339.
Reinhart, C., & Rogoff, K. (2010). From financial crash to debt crisis. National Bureau of Economic Research.
- Rossi, B. (2014). Density forecasts in economics and policymaking.
Paper not yet in RePEc: Add citation now
- Sarlin, P. (2012). On biologically inspired predictions of the global financial crisis. Neural Computing and Applications, 24(3–4), 663–673.
Paper not yet in RePEc: Add citation now
Schularick, M., & Taylor, A. M. (2012). Credit booms gone bust: Monetary policy, leverage cycles, and financial crises, 1870‐2008. American Economic Review, 102(2), 1029–1061. https://doi.org/10.1257/aer.102.2.1029.
- Shapley, L. S. (1953). A value for n‐person games. In Contributions to the Theory of Games (Vol. 2.28) (pp. 307–317).
Paper not yet in RePEc: Add citation now
- Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310.
Paper not yet in RePEc: Add citation now
- Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with feature contributions. Knowledge and Information Systems, 41(3), 647–665. https://doi.org/10.1007/s10115-013-0679-x.
Paper not yet in RePEc: Add citation now
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B: Methodological, 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.
Paper not yet in RePEc: Add citation now
Trebesch, C., Papaioannou, M. G., & Das, U. S. (2012). Sovereign debt restructurings 1950‐2010; literature survey, data, and stylized facts. IMF working paper, no. 12/203.
Zhuang, J., & Dowling, J. M. (2002). Causes of the 1997 Asian financial crisis: What can an early warning system model tell us?. ERD WORKING PAPER SERIES, NO. 26.