SlideShare una empresa de Scribd logo
LEYES FUNDAMENTALES
DE LA QUÍMICA
Unidad 1
2
Contenidos (1)
1.- La Química en la antigüedad. La Alquimia.
2.- Sustancias homogéneas y heterogéneas. Elementos y
compuestos. (Repaso).
3.- Leyes fundamentales de la Química.
3.1. Ley de conservación de la masa.
3.2. Ley de las proporciones definidas.
3.3. Ley de proporciones múltiples.
3.4. Ley de proporciones recíprocas.
4.- Teoría atómica de Dalton (postulados).
3
Contenidos (2)
5.- Evolución de la Teoría atómica de Dalton.
5.1. Relaciones volumétricas de Gay-Lussac.
5.2. Hipótesis de Avogadro.
6.- Masas atómicas y moleculares (repaso).
7.- Concepto de mol.
8.- Composición centesimal.
9.- Fórmula empírica y molecular.
4
• Teoría de los cuatro elementos (Empédocles)
• Teoría atomística (Leucipo y Demócrito)
• Teoría de materia continua (Aristóteles)
Un poco de historia
Aire
Fuego
Tierra
Agua
caliente seco
frío
húmedo
5
Un poco de historia
• Alquimia : Azufre, mercurio y sal
– Piedra filosofal
– Elixir de la vida.
• Siglo XVIII: análisis gravimétrico cuantitativo
– Leyes de la química.
6
Sustancias químicas
(clasificación)
Elementos Compuestos
Sustancias puras Disoluciones
Homogéneas Heterogéneas
SUSTANCIAS QUÍMICAS
7
Leyes fundamentales de la
Química.
• Ley de conservación de la masa (Lavoisier).
• Ley de proporciones definidas (Proust).
• Ley de proporciones múltiples (Dalton).
• Ley de proporciones recíprocas (Ritcher)
• Ley de volúmenes de combinación (Gay-Lussac).
• Hipótesis de Avogadro
TEORÍAATÓMICA DE DALTON
8
Ley de conservación de la masa
(Lavoisier).
• “En toda transformación química la masa se
conserva, es decir, la masa total de los
reactivos es igual a la masa total de los
productos de la reacción”.
• Ejemplo:2 gramos de cloro y 3 gramos de
sodio producen 5 gramos de cloruro de
sodio.
9
Ley de proporciones definidas
(Proust).
• “Los elementos se combinan para formar
compuestos en una proporción de masa fija
y definida”.
• Ejemplo: El azufre y el hierro se combinan
para formar sulfuro de hierro (II) en la
siguiente proporción: 4 gramos de azufre
por cada 7 gramos de hierro.
10
Ley de proporciones definidas
(Proust). Ejemplos.
• Azufre + Hierro  Sulfuro de hierro
• 4 g 7 g 0 g Inicial
• 11 g Final
• 4 g 10 g 0 g Inicial
• 3 g 11 g Final
• 8 g 7 g 0 g Inicial
• 4 g 11 g Final
11
Ley de proporciones definidas
(Proust). Ejemplos.
• Azufre + Hierro  Sulfuro de hierro
• 12 g 30 g 0 g Inicial
• 9 g 33 g Final
• 25 g 35 g 0 g Inicial
• 5 g 55 g Final
• 13’5 g 24’9 g 0 g Inicial
• 1’275 g 37’125 g Final
12
Ejemplo: Se sabe que 8 g de azufre reacciona con con 12 g de
oxígeno para dar 20 g de trióxido de azufre: a) ¿Cuántos
gramos de oxígeno reaccionarán con 1 g de azufre y qué
cantidad de trióxido de azufre se obtendrá; b) si se descompo-
nen 100 g de trióxido de azufre ¿cuántos gramos de azufre y de
oxígeno se obtendrán?
a)Azufre + Oxígeno  Trióxido de azufre
8 g 12 g 20 g
1 g m(O2) m(SO3)
1g · 12 g 1 g · 20 g
m(O2) = ———— = 1,5 g ; m(SO2) = ———— = 2,5 g
8 g 8 g
b) m(S) m(O2) 100 g
100 g · 8 g 100 g · 12 g
m(S) = ———— = 40 g ; m(O2) = ————— = 60 g
20 g 20 g
13
Ley de proporciones múltiples
(Dalton).
• “Cuando dos elementos se combinan entre
sí para dar compuestos diferentes, las
diferentes masas de uno de ellos que se
combinan con una masa fija de otro,
guardan entre sí una relación de números
sencillos”.
14
Ley de proporciones múltiples
(Dalton). Ejemplo.
• Óxidos de cobre % cobre % oxígeno
• I 88’83 11’17
• II 79’90 20’10
• masa cobre
masa oxígeno
• I 7’953 (masa de cobre que
II 3’975 se combina con 1g de
oxígeno)
7’953 / 3’975  2 / 1
15
Ejemplo: Dependiendo de las condiciones experimentales
14 g de nitrógeno pueden reaccionar con 8 g, 16 g, 24 g,
32 g y 40 g de oxígeno para dar cinco óxidos diferentes.
Comprobar que se cumple la ley de Dalton.
• Sean los óxidos I, II, III, IV y V respectivamente.
• Las distintas masas de O que se combinan con una
cantidad fija de N (14 g) guardan las relaciones:
• m Ox. (V) 40g 5 m Ox. (IV) 32 g 4
————— = —— = — ; ————— = —— = —
m Ox. (I) 8 g 1 m Ox. (I) 8 g 1
• m Ox. (III) 24g 3 m (II) Ox. 16 g 2
————— = —— = — ; ————— = —— = —
m Ox. (I) 8 g 1 m (I) Ox. 8 g 1
16
Ley de proporciones recíprocas
(Ritcher)
• “Las masas de dos elementos que se
combinan con una masa de un tercero,
guardan la misma relación que las masas de
los dos cuando se combinan entre sí”.
17
Ley de proporciones recíprocas
(Ritcher). Ejemplo.
• Si 2 g de hidrógeno se combinan con 16 g
de oxígeno para dar agua, y 6 g de carbono
se combinan también con 16 gramos de
oxígeno para dar dióxido de carbono,
entonces 2 g de hidrógeno se combinarán
con 6 g de carbono al formar metano.
18
Hipótesis de Avogadro.
• “A una presión y a una temperatura
determinados en un volumen concreto habrá
el mismo número de moléculas de cualquier
gas”.
• Ejemplo: Un mol de cualquier gas, es
decir, 6,022 x 1023 moléculas, ocupa en
condiciones normales (p = 1 atm; T = 0 ºC)
un volumen de 22’4 litros.
19
Ley de volúmenes de
combinación (Gay-Lussac).
• “A temperatura y presión constantes, los
volúmenes de los gases que participan en
una reacción química guardan entre sí
relaciones de números sencillos”.
20
Ejemplo de la ley de volúmenes de combi-
nación (Gay-Lussac).
• 1 litro de hidrógeno se
combina con 1 litro de
cloro para dar 2 litros de
cloruro de hidrógeno.
• 1 litro de nitrógeno se
combina con 3 litros de
hidrógeno para dar 2 litros
de amoniaco.
• 1 litro de oxígeno se
combina con 2 litros de
hidrógeno para dar 2 litros
de agua (gas).
21
Postulados de la teoría atómica
de Dalton.
• Los elementos químicos están constituidos por
partículas llamadas átomos, que son indivisibles e
inalterables en cualquier proceso físico o químico.
• Los átomos de un elemento son todos idénticos en
masa y en propiedades.
• Los átomos de diferentes elementos son diferentes
en masa y en propiedades.
• Los compuestos se originan por la unión de
átomos de distintos elementos en una proporción
constante.
22
Ley de
Dalton
Ley de
Proust
Explicación visual
de las leyes de
Proust y Dalton a
partir de la Teoría
atómica
23
Masas atómicas y moleculares
• La masa atómica de un átomo se calcula hallando la masa
media ponderada de la masa de todos los isótopos del
mismo.
• La masa molecular (M) se obtiene sumando la masas
atómicas de todos los átomos que componen la molécula.
• Ejemplo:Calcular la masa molecular del H2SO4
• M (H2SO4) = 1,008 u · 2 + 32,06 u · 1 + 16,00 u · 4 =
98,076 u
que es la masa de una molécula.
• Normalmente, suele expresarse como
M (H2SO4) = 98,076 g/mol
24
Concepto de mol
• Es un número de Avogadro (NA= 6,022 · 1023) de
átomos o moléculas.
• En el caso de un NA de átomos también suele
llamarse átomo-gramo.
• Es, por tanto, la masa atómica o molecular
expresada en gramos.
• Definición actual: El mol es la cantidad de
sustancia de un sistema que contiene tantas
entidades elementales (átomos, moléculas, iones...)
como átomos hay en 0,012 kg de carbono-12 (12C).
25
Cálculo del número de moles.
• Si en M (masa atómica o molecular)(g) hay 1 mol
en m (g) habrá n moles.
• m (g)
n (mol) = —————
M (g/mol)
• Ejemplo: Calcular cuantos moles de CO2 habrá en
100 g de dicha sustancia.
• m (g) 100 g
n = ————— = ———— = 2,27 moles CO2
M (g/mol) 44 g/mol
26
Ejercicio: ¿ Cuántas moléculas de Cl2 hay en 12 g
de cloro molecular? Si todas las moléculas de Cl2 se
disociaran para dar átomos de cloro, ¿Cuántos
átomos de cloro atómico se obtendrían?
La masa molecular de Cl2 es 35,45 · 2 =70,9 u. Luego un
mol de Cl2 son 70,9 g. En los 12 g de Cl2 hay:
12 g
 = 0,169 moles de Cl2
70,9 g/mol
Teniendo en cuenta que en un mol 6,02 · 1023 moléc.
0,169 moles contienen:
0,169 moles · 6,02 ·1023 moléculas/mol =
= 1,017 · 1023 moléculas Cl2
2 át. Cl
1,017·1023 moléc. Cl2 ·  = 2,034·1023 át. Cl
moléc. Cl2
27
Composición centesimal
• A partir de la fórmula de un compuesto
podemos deducir la composición centesimal de
cada elemento que contiene aplicando simples
proporciones.
• Sea el compuesto AaBb.
M (masa molecular) = a·Mat(A) + b·Mat(B)
• M (AaBb) a·Mat(A) b·Mat(B)
———— = ———— = ————
100 % (A) % (B)
• La suma de las proporciones de todos los
elementos que componen una sustancia debe dar
el 100 %.
28
Ejemplo: Calcular el % de plata, nitrógeno y
oxígeno que contiene el nitrato de plata.
• M (AgNO3) = 107,9 u +14,01 u + 16,00 u • 3 = 169,91 u ;
M (AgNO3) = 169,91 g/mol
• 169,91 g (AgNO3) 107,9 g (Ag) 14,01 g (N) 48,0 g O
——————— = ————— = ————— = ———
100 % Ag % N % O
• 107,9 g (Ag) · 100
% Ag = ———————— = 63,50 % de Ag
169,91 g (AgNO3)
• 14,01 g (N) · 100
% N = ———————— = 8,25 % de N
169,91 g (AgNO3)
• 48,0 g (O) ·100
% O = ———————— = 28,25 % de O
169,91 g (AgNO3)
29
Tipos de fórmulas
• Molecular.
– Indica el nº de átomos existentes en cada molécula.
• Empírica.
– Indica la proporción de átomos existentes en una
sustancia.
– Está siempre reducida al máximo.
• Ejemplo: El peróxido de hidrógeno está
formado por moléculas con dos átomos de H y
dos de O.
– Su fórmula molecular es H2O2.
– Su fórmula empírica es HO.
30
Ejercicio: Escribir las fórmulas empíricas de: a)
Glucosa, conocida también como dextrosa, cuya
fórmula molecular es C6H12O6; Óxido de nitrógeno (I),
gas usado como anestésico, de fórmula molecular N2O.
a) Los subíndices de la fórmula empírica son los números
enteros más pequeños que expresan la relación correcta
de átomos. Dichos números se obtendrán dividiendo los
subíndices da la fórmula molecular por su máximo
común divisor, que en este caso es 6. La fórmula
empírica resultante es CH2O.
b) Los subíndices en N2O son ya los enteros más bajos
posibles. Por lo tanto, la fórmula empírica coincide con
la molecular.
31
Cálculo de la fórmula empírica.
• Supongamos que partimos de 100 g de sustancia.
• Si dividimos el % de cada átomo entre su masa
atómica (A), obtendremos el nº de moles (átomos-
gramo) de dicho átomo.
• La proporción en moles es igual a la que debe
haber en átomos en cada molécula.
• Posteriormente, se divide por el que tenga menor
nº de moles.
• Por último, si quedan números fraccionarios, se
multiplica a todos por un mismo nº con objeto de
que queden números enteros.
32
Ejemplo: Calcular la fórmula empírica de un
compuesto orgánico cuya composición centesimal es
la siguiente: 34’8 % de O, 13 % de H y 52’2 % de C.
• 34,8 g 13 g
———— = 2,175 mol O; ———— = 13 mol H
16 g/mol 1 g/mol
52,2 g
———— = 4,35 mol C
12 g/mol
• Dividiendo todos por el menor (2,175) obtenemos
• 1 mol de O, 6 moles de H y 2 moles de C lo que
da una fórmula empírica:
C2H6O

Más contenido relacionado

PPT
01 leyes fundamentales
PPT
Leyes fundamentales
PDF
1. leyes fundamentales de la química
PPT
01 leyes fundamentales
PPT
Leyes fundamentales de la Química
PPT
Desempeño d2 leyes fundamentales de la química
PPT
Desempeño d2 leyes fundamentales de la química
PPT
Q01 teoria.atomico molecular
01 leyes fundamentales
Leyes fundamentales
1. leyes fundamentales de la química
01 leyes fundamentales
Leyes fundamentales de la Química
Desempeño d2 leyes fundamentales de la química
Desempeño d2 leyes fundamentales de la química
Q01 teoria.atomico molecular

Similar a 01 Leyes fundamentales.ppt (20)

PPT
Leyes fundamentales de química por patricio barragán
PDF
Leyes de química
PPT
Leyes fundamentales de la quimica
PDF
010 leyes fundamentales-grs-3 primero medio
PDF
010 leyes fundamentales-grs-3 primero medio
PDF
Leyes ponderales, leyes de la quimica aprende
PPT
factores de conversión, sistema internacional de unidades, teoría atómica de ...
PDF
quimica cuantica aplicada al negocio.pdf
PDF
tema_1.pdf
PDF
Quimica básica.pdf
PDF
atomos.pdf
PDF
For quimica(basico)
PPT
La materia y la teoria atomico molecular(cole)
PPTX
Parte 2 CONCEPTOS BÁSICOS EN QUÍMICA_1.pptx
PPTX
Clase 10 Estequiometría I leyes y conceptos de la estequiometría 2016.pptx
PDF
Seminario 3-Estequiometría
PPTX
Leyes y conceptos de la estequiometría.pptx
PDF
Leyes-y-conceptos-de-la-estequiometría-PPT.pdf
Leyes fundamentales de química por patricio barragán
Leyes de química
Leyes fundamentales de la quimica
010 leyes fundamentales-grs-3 primero medio
010 leyes fundamentales-grs-3 primero medio
Leyes ponderales, leyes de la quimica aprende
factores de conversión, sistema internacional de unidades, teoría atómica de ...
quimica cuantica aplicada al negocio.pdf
tema_1.pdf
Quimica básica.pdf
atomos.pdf
For quimica(basico)
La materia y la teoria atomico molecular(cole)
Parte 2 CONCEPTOS BÁSICOS EN QUÍMICA_1.pptx
Clase 10 Estequiometría I leyes y conceptos de la estequiometría 2016.pptx
Seminario 3-Estequiometría
Leyes y conceptos de la estequiometría.pptx
Leyes-y-conceptos-de-la-estequiometría-PPT.pdf
Publicidad

Más de RalOlave (6)

PPTX
Coloides.pptx
PPTX
animalesenviadeextincioncolombia-140930175015-phpapp01.pptx
PPT
AMINOACIDOS Y PROTEINAS.ppt
PPT
CALOR ESPECÍFICO.ppt
PPT
.estados de agregacion plasma.ppt
PPT
ALDEHIDOS Y CETONAS.ppt
Coloides.pptx
animalesenviadeextincioncolombia-140930175015-phpapp01.pptx
AMINOACIDOS Y PROTEINAS.ppt
CALOR ESPECÍFICO.ppt
.estados de agregacion plasma.ppt
ALDEHIDOS Y CETONAS.ppt
Publicidad

Último (20)

PDF
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
PDF
IPERC...................................
PDF
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
PDF
Atencion prenatal. Ginecologia y obsetricia
PDF
Tomo 1 de biologia gratis ultra plusenmas
DOCX
Programa_Sintetico_Fase_4.docx 3° Y 4°..
DOCX
V UNIDAD - PRIMER GRADO. del mes de agosto
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
PDF
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
DOC
Manual de Convivencia 2025 actualizado a las normas vigentes
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
Integrando la Inteligencia Artificial Generativa (IAG) en el Aula
IPERC...................................
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
Atencion prenatal. Ginecologia y obsetricia
Tomo 1 de biologia gratis ultra plusenmas
Programa_Sintetico_Fase_4.docx 3° Y 4°..
V UNIDAD - PRIMER GRADO. del mes de agosto
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PLAN DE CASTELLANO 2021 actualizado a la normativa
Teologia-Sistematica-Por-Lewis-Sperry-Chafer_060044.pdf
LIBRO 2-SALUD Y AMBIENTE-4TO CEBA avanzado.pdf
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
Iniciación Al Aprendizaje Basado En Proyectos ABP Ccesa007.pdf
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
Manual de Convivencia 2025 actualizado a las normas vigentes
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf

01 Leyes fundamentales.ppt

  • 1. LEYES FUNDAMENTALES DE LA QUÍMICA Unidad 1
  • 2. 2 Contenidos (1) 1.- La Química en la antigüedad. La Alquimia. 2.- Sustancias homogéneas y heterogéneas. Elementos y compuestos. (Repaso). 3.- Leyes fundamentales de la Química. 3.1. Ley de conservación de la masa. 3.2. Ley de las proporciones definidas. 3.3. Ley de proporciones múltiples. 3.4. Ley de proporciones recíprocas. 4.- Teoría atómica de Dalton (postulados).
  • 3. 3 Contenidos (2) 5.- Evolución de la Teoría atómica de Dalton. 5.1. Relaciones volumétricas de Gay-Lussac. 5.2. Hipótesis de Avogadro. 6.- Masas atómicas y moleculares (repaso). 7.- Concepto de mol. 8.- Composición centesimal. 9.- Fórmula empírica y molecular.
  • 4. 4 • Teoría de los cuatro elementos (Empédocles) • Teoría atomística (Leucipo y Demócrito) • Teoría de materia continua (Aristóteles) Un poco de historia Aire Fuego Tierra Agua caliente seco frío húmedo
  • 5. 5 Un poco de historia • Alquimia : Azufre, mercurio y sal – Piedra filosofal – Elixir de la vida. • Siglo XVIII: análisis gravimétrico cuantitativo – Leyes de la química.
  • 6. 6 Sustancias químicas (clasificación) Elementos Compuestos Sustancias puras Disoluciones Homogéneas Heterogéneas SUSTANCIAS QUÍMICAS
  • 7. 7 Leyes fundamentales de la Química. • Ley de conservación de la masa (Lavoisier). • Ley de proporciones definidas (Proust). • Ley de proporciones múltiples (Dalton). • Ley de proporciones recíprocas (Ritcher) • Ley de volúmenes de combinación (Gay-Lussac). • Hipótesis de Avogadro TEORÍAATÓMICA DE DALTON
  • 8. 8 Ley de conservación de la masa (Lavoisier). • “En toda transformación química la masa se conserva, es decir, la masa total de los reactivos es igual a la masa total de los productos de la reacción”. • Ejemplo:2 gramos de cloro y 3 gramos de sodio producen 5 gramos de cloruro de sodio.
  • 9. 9 Ley de proporciones definidas (Proust). • “Los elementos se combinan para formar compuestos en una proporción de masa fija y definida”. • Ejemplo: El azufre y el hierro se combinan para formar sulfuro de hierro (II) en la siguiente proporción: 4 gramos de azufre por cada 7 gramos de hierro.
  • 10. 10 Ley de proporciones definidas (Proust). Ejemplos. • Azufre + Hierro  Sulfuro de hierro • 4 g 7 g 0 g Inicial • 11 g Final • 4 g 10 g 0 g Inicial • 3 g 11 g Final • 8 g 7 g 0 g Inicial • 4 g 11 g Final
  • 11. 11 Ley de proporciones definidas (Proust). Ejemplos. • Azufre + Hierro  Sulfuro de hierro • 12 g 30 g 0 g Inicial • 9 g 33 g Final • 25 g 35 g 0 g Inicial • 5 g 55 g Final • 13’5 g 24’9 g 0 g Inicial • 1’275 g 37’125 g Final
  • 12. 12 Ejemplo: Se sabe que 8 g de azufre reacciona con con 12 g de oxígeno para dar 20 g de trióxido de azufre: a) ¿Cuántos gramos de oxígeno reaccionarán con 1 g de azufre y qué cantidad de trióxido de azufre se obtendrá; b) si se descompo- nen 100 g de trióxido de azufre ¿cuántos gramos de azufre y de oxígeno se obtendrán? a)Azufre + Oxígeno  Trióxido de azufre 8 g 12 g 20 g 1 g m(O2) m(SO3) 1g · 12 g 1 g · 20 g m(O2) = ———— = 1,5 g ; m(SO2) = ———— = 2,5 g 8 g 8 g b) m(S) m(O2) 100 g 100 g · 8 g 100 g · 12 g m(S) = ———— = 40 g ; m(O2) = ————— = 60 g 20 g 20 g
  • 13. 13 Ley de proporciones múltiples (Dalton). • “Cuando dos elementos se combinan entre sí para dar compuestos diferentes, las diferentes masas de uno de ellos que se combinan con una masa fija de otro, guardan entre sí una relación de números sencillos”.
  • 14. 14 Ley de proporciones múltiples (Dalton). Ejemplo. • Óxidos de cobre % cobre % oxígeno • I 88’83 11’17 • II 79’90 20’10 • masa cobre masa oxígeno • I 7’953 (masa de cobre que II 3’975 se combina con 1g de oxígeno) 7’953 / 3’975  2 / 1
  • 15. 15 Ejemplo: Dependiendo de las condiciones experimentales 14 g de nitrógeno pueden reaccionar con 8 g, 16 g, 24 g, 32 g y 40 g de oxígeno para dar cinco óxidos diferentes. Comprobar que se cumple la ley de Dalton. • Sean los óxidos I, II, III, IV y V respectivamente. • Las distintas masas de O que se combinan con una cantidad fija de N (14 g) guardan las relaciones: • m Ox. (V) 40g 5 m Ox. (IV) 32 g 4 ————— = —— = — ; ————— = —— = — m Ox. (I) 8 g 1 m Ox. (I) 8 g 1 • m Ox. (III) 24g 3 m (II) Ox. 16 g 2 ————— = —— = — ; ————— = —— = — m Ox. (I) 8 g 1 m (I) Ox. 8 g 1
  • 16. 16 Ley de proporciones recíprocas (Ritcher) • “Las masas de dos elementos que se combinan con una masa de un tercero, guardan la misma relación que las masas de los dos cuando se combinan entre sí”.
  • 17. 17 Ley de proporciones recíprocas (Ritcher). Ejemplo. • Si 2 g de hidrógeno se combinan con 16 g de oxígeno para dar agua, y 6 g de carbono se combinan también con 16 gramos de oxígeno para dar dióxido de carbono, entonces 2 g de hidrógeno se combinarán con 6 g de carbono al formar metano.
  • 18. 18 Hipótesis de Avogadro. • “A una presión y a una temperatura determinados en un volumen concreto habrá el mismo número de moléculas de cualquier gas”. • Ejemplo: Un mol de cualquier gas, es decir, 6,022 x 1023 moléculas, ocupa en condiciones normales (p = 1 atm; T = 0 ºC) un volumen de 22’4 litros.
  • 19. 19 Ley de volúmenes de combinación (Gay-Lussac). • “A temperatura y presión constantes, los volúmenes de los gases que participan en una reacción química guardan entre sí relaciones de números sencillos”.
  • 20. 20 Ejemplo de la ley de volúmenes de combi- nación (Gay-Lussac). • 1 litro de hidrógeno se combina con 1 litro de cloro para dar 2 litros de cloruro de hidrógeno. • 1 litro de nitrógeno se combina con 3 litros de hidrógeno para dar 2 litros de amoniaco. • 1 litro de oxígeno se combina con 2 litros de hidrógeno para dar 2 litros de agua (gas).
  • 21. 21 Postulados de la teoría atómica de Dalton. • Los elementos químicos están constituidos por partículas llamadas átomos, que son indivisibles e inalterables en cualquier proceso físico o químico. • Los átomos de un elemento son todos idénticos en masa y en propiedades. • Los átomos de diferentes elementos son diferentes en masa y en propiedades. • Los compuestos se originan por la unión de átomos de distintos elementos en una proporción constante.
  • 22. 22 Ley de Dalton Ley de Proust Explicación visual de las leyes de Proust y Dalton a partir de la Teoría atómica
  • 23. 23 Masas atómicas y moleculares • La masa atómica de un átomo se calcula hallando la masa media ponderada de la masa de todos los isótopos del mismo. • La masa molecular (M) se obtiene sumando la masas atómicas de todos los átomos que componen la molécula. • Ejemplo:Calcular la masa molecular del H2SO4 • M (H2SO4) = 1,008 u · 2 + 32,06 u · 1 + 16,00 u · 4 = 98,076 u que es la masa de una molécula. • Normalmente, suele expresarse como M (H2SO4) = 98,076 g/mol
  • 24. 24 Concepto de mol • Es un número de Avogadro (NA= 6,022 · 1023) de átomos o moléculas. • En el caso de un NA de átomos también suele llamarse átomo-gramo. • Es, por tanto, la masa atómica o molecular expresada en gramos. • Definición actual: El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales (átomos, moléculas, iones...) como átomos hay en 0,012 kg de carbono-12 (12C).
  • 25. 25 Cálculo del número de moles. • Si en M (masa atómica o molecular)(g) hay 1 mol en m (g) habrá n moles. • m (g) n (mol) = ————— M (g/mol) • Ejemplo: Calcular cuantos moles de CO2 habrá en 100 g de dicha sustancia. • m (g) 100 g n = ————— = ———— = 2,27 moles CO2 M (g/mol) 44 g/mol
  • 26. 26 Ejercicio: ¿ Cuántas moléculas de Cl2 hay en 12 g de cloro molecular? Si todas las moléculas de Cl2 se disociaran para dar átomos de cloro, ¿Cuántos átomos de cloro atómico se obtendrían? La masa molecular de Cl2 es 35,45 · 2 =70,9 u. Luego un mol de Cl2 son 70,9 g. En los 12 g de Cl2 hay: 12 g  = 0,169 moles de Cl2 70,9 g/mol Teniendo en cuenta que en un mol 6,02 · 1023 moléc. 0,169 moles contienen: 0,169 moles · 6,02 ·1023 moléculas/mol = = 1,017 · 1023 moléculas Cl2 2 át. Cl 1,017·1023 moléc. Cl2 ·  = 2,034·1023 át. Cl moléc. Cl2
  • 27. 27 Composición centesimal • A partir de la fórmula de un compuesto podemos deducir la composición centesimal de cada elemento que contiene aplicando simples proporciones. • Sea el compuesto AaBb. M (masa molecular) = a·Mat(A) + b·Mat(B) • M (AaBb) a·Mat(A) b·Mat(B) ———— = ———— = ———— 100 % (A) % (B) • La suma de las proporciones de todos los elementos que componen una sustancia debe dar el 100 %.
  • 28. 28 Ejemplo: Calcular el % de plata, nitrógeno y oxígeno que contiene el nitrato de plata. • M (AgNO3) = 107,9 u +14,01 u + 16,00 u • 3 = 169,91 u ; M (AgNO3) = 169,91 g/mol • 169,91 g (AgNO3) 107,9 g (Ag) 14,01 g (N) 48,0 g O ——————— = ————— = ————— = ——— 100 % Ag % N % O • 107,9 g (Ag) · 100 % Ag = ———————— = 63,50 % de Ag 169,91 g (AgNO3) • 14,01 g (N) · 100 % N = ———————— = 8,25 % de N 169,91 g (AgNO3) • 48,0 g (O) ·100 % O = ———————— = 28,25 % de O 169,91 g (AgNO3)
  • 29. 29 Tipos de fórmulas • Molecular. – Indica el nº de átomos existentes en cada molécula. • Empírica. – Indica la proporción de átomos existentes en una sustancia. – Está siempre reducida al máximo. • Ejemplo: El peróxido de hidrógeno está formado por moléculas con dos átomos de H y dos de O. – Su fórmula molecular es H2O2. – Su fórmula empírica es HO.
  • 30. 30 Ejercicio: Escribir las fórmulas empíricas de: a) Glucosa, conocida también como dextrosa, cuya fórmula molecular es C6H12O6; Óxido de nitrógeno (I), gas usado como anestésico, de fórmula molecular N2O. a) Los subíndices de la fórmula empírica son los números enteros más pequeños que expresan la relación correcta de átomos. Dichos números se obtendrán dividiendo los subíndices da la fórmula molecular por su máximo común divisor, que en este caso es 6. La fórmula empírica resultante es CH2O. b) Los subíndices en N2O son ya los enteros más bajos posibles. Por lo tanto, la fórmula empírica coincide con la molecular.
  • 31. 31 Cálculo de la fórmula empírica. • Supongamos que partimos de 100 g de sustancia. • Si dividimos el % de cada átomo entre su masa atómica (A), obtendremos el nº de moles (átomos- gramo) de dicho átomo. • La proporción en moles es igual a la que debe haber en átomos en cada molécula. • Posteriormente, se divide por el que tenga menor nº de moles. • Por último, si quedan números fraccionarios, se multiplica a todos por un mismo nº con objeto de que queden números enteros.
  • 32. 32 Ejemplo: Calcular la fórmula empírica de un compuesto orgánico cuya composición centesimal es la siguiente: 34’8 % de O, 13 % de H y 52’2 % de C. • 34,8 g 13 g ———— = 2,175 mol O; ———— = 13 mol H 16 g/mol 1 g/mol 52,2 g ———— = 4,35 mol C 12 g/mol • Dividiendo todos por el menor (2,175) obtenemos • 1 mol de O, 6 moles de H y 2 moles de C lo que da una fórmula empírica: C2H6O