¿Por qué dos o más científicos, ignorantes del trabajo de los otros, dan a menudo simultáneamente con la misma teoría? La manera más
simple de contestar a esto es decir que los científicos no trabajan en el vacío. Están inmersos, por así decirlo, en la estructura y progreso
evolutivo de la ciencia, y todos ellos encaran los mismos problemas en cada momento. Así, en la primera mitad del siglo XIX el problema
de la evolución de las especies estaba «en el candelero». Algunos biólogos se oponían acaloradamente a la idea misma, mientras que
otros especulaban ávidamente con sus consecuencias y trataban de encontrar pruebas que la apoyaran. Pero lo cierto es que, cada uno
a su manera, casi todos los biólogos pensaban sobre la misma cuestión. La clave del problema era ésta: Si la evolución es un hecho,
¿qué es lo que la motiva? En Gran Bretaña, Charles Darwin pensaba sobre ello. En las Indias Orientales, Alfred Wallace, inglés también,
pensaba sobre el mismo problema. Ambos habían viajado por todo el mundo; ambos habían hecho observaciones similares; y sucedió
que ambos, en un punto crucial de su pensamiento, leyeron un libro de Thomas Malthus que describía los efectos de la presión
demográfica sobre los seres humanos. Tanto Darwin como Wallace empezaron a pensar sobre la presión demográfica en todas las
especies. ¿Qué individuos sobrevivirían y cuáles no? Ambos llegaron a la teoría de la evolución por selección natural. Lo cual no tiene en
realidad nada de sorprendente. Dos hombres que trabajan sobre el mismo problema y con los mismos métodos, encarados con los
mismos hechos a observar y disponiendo de los mismos libros de consulta, es muy probable que lleguen a las mismas soluciones. Lo que
ya me sorprende más es que el segundo nombre de Darwin, Wallace y Malthus empezase en los tres casos por R. A finales del siglo XIX
eran muchos los biólogos que trataban de poner en claro la mecánica de la genética. Tres hombres, trabajando los tres en el mismo
problema, al mismo tiempo y de la misma manera, pero en diferentes países, llegaron a las mismas conclusiones. Pero entonces los tres,
repasando la literatura, descubrieron que otro, Gregor Mendel, había obtenido treinta y cuatro años antes las leyes de la herencia y
habían pasado inadvertido. Una de las aspiraciones más ambiciosas de los años 1880-1889 era la producción barata de aluminio. Se
conocían los usos y la naturaleza del metal, pero resultaba difícil prepararlo a partir de sus minerales. Millones de dólares dependían
literalmente de la

obtención de una técnica sencilla. Es difícil precisar el número de químicos que se hallaban trabajando en el mismo problema,
apoyándose en las mismas experiencias de otros científicos. Dos de ellos: Charles Hall en los Estados Unidos y Paul Héroult en Francia,
obtuvieron la misma respuesta en el mismo año de 1886. Nada más natural. Pero ¿y esto?: los apellidos de ambos empezaban por H,
ambos nacieron en 1863 y ambos murieron en 1914. Hoy día son muchos los que tratan de idear teorías que expliquen el
comportamiento de las partículas subatómicas. Murray Gell-Man y Yuval Ne'emen, uno en América y otro en Israel, llegaron
simultáneamente a teorías parecidas. El principio del máser se obtuvo simultáneamente en Estados Unidos y en la Unión Soviética. Y
estoy casi seguro de que el proceso clave para el aprovechamiento futuro de la potencia de la fusión nuclear será obtenido independiente
y simultáneamente por dos o más personas. Naturalmente, hay veces en que el rayo brilla una sola vez. Gregor Mendel no tuvo
competidores, ni tampoco Newton ni Einstein. Sus grandes ideas sólo se les ocurrieron a ellos y el resto del mundo les siguió.

. ¿Qué dice el teorema de Gödel? ¿Demuestra que la verdad es inalcanzable? Desde los tiempos de Euclides, hace ya dos mil doscientos
años, los matemáticos han intentado partir de ciertos enunciados llamados «axiomas» y deducir luego de ellos toda clase de conclusiones
útiles. En ciertos aspectos es casi como un juego, con dos reglas. En primer lugar, los axiomas tienen que ser los menos posibles. En
segundo lugar, los axiomas tienen que ser consistentes. Tiene que ser imposible deducir dos conclusiones que se contradigan
mutuamente. Cualquier libro de geometría de bachillerato comienza con un conjunto de axiomas: por dos puntos cualesquiera sólo se
puede trazar una recta; el total es la suma de las partes, etc. Durante mucho tiempo se supuso que los axiomas de Euclides eran los
únicos que podían constituir una geometría consistente y que por eso eran «verdaderos». Pero en el siglo XIX se demostró que
modificando de cierta manera los axiomas de Euclides se podían construir geometrías diferentes, «no euclidianas». Cada una de estas
geometrías difería de las otras, pero todas ellas eran consistentes. A partir de entonces no tenía ya sentido preguntar cuál de ellas era
«verdadera». En lugar, de ello había que preguntar cuál era útil. De hecho, son muchos los conjuntos de axiomas a partir de los cuales se
podría construir un sistema matemático consistente: todos ellos distintos y todos ellos consistentes. En ninguno de esos sistemas
matemáticos tendría que ser posible deducir, a partir de sus axiomas, que algo es a la vez así y no así, porque entonces las matemáticas
no serían consistentes, habría que desecharlas. ¿Pero qué ocurre si establecemos un enunciado y comprobamos que no podemos
demostrar que es o así o no así? Supongamos que digo: «El enunciado que estoy haciendo es falso.» ¿Es falso? Si es falso, entonces es
falso que esté diciendo algo falso y tengo que estar diciendo algo verdadero. Pero si estoy diciendo algo verdadero, entonces es cierto
que estoy diciendo algo falso y sería verdad que estoy diciendo algo falso. Podría estar yendo de un lado para otro indefinidamente. Es
imposible demostrar que lo que he dicho es o así o no así. Supongamos que ajustamos los axiomas de la lógica a fin de eliminar la
posibilidad de hacer enunciados de ese tipo. ¿Podríamos encontrar otro modo de hacer enunciados del tipo «ni así ni no así»? En 1931 el
matemático austriaco Kurt Gödel presentó una demostración válida de que para cualquier conjunto de axiomas siempre es posible hacer
enunciados que, a partirde esos axiomas, no puede demostrarse ni que son así ni que no son así. En ese sentido, es imposible elaborar
jamás un conjunto de axiomas a partir de los cuales se pueda deducir un sistema matemático completo. ¿Quiere decir esto que nunca
podremos encontrar la «verdad»? ¡Ni hablar! Primero: el que un sistema matemático no sea completo no quiere decir que lo que contiene
sea «falso». El sistema puede seguir siendo muy útil, siempre que no intentemos utilizarlo más allá de sus límites. Segundo: el teorema
de Gödel sólo se aplica a sistemas deductivos del tipo que se utiliza en matemáticas. Pero la deducción no es el único modo de descubrir
la «verdad». No hay axiomas que nos permitan deducir las dimensiones del sistema solar. Estas últimas fueron obtenidas mediante
observaciones y medidas —otro camino hada la «verdad».

Más contenido relacionado

DOCX
Modelo standard del bing bang y contexto social
PDF
Análisis y síntesis de El Gran Diseño, Leonard Mlodinow
PDF
Crees en los universos paralelos
PDF
Semana 16 2010 ii
PDF
Semana 11 2010 ii
PDF
N 20150303 la idea que cambió el universo
PDF
El geómetra fractal sobre mandelbrot y sus nubes
PPTX
Galileo galilei
Modelo standard del bing bang y contexto social
Análisis y síntesis de El Gran Diseño, Leonard Mlodinow
Crees en los universos paralelos
Semana 16 2010 ii
Semana 11 2010 ii
N 20150303 la idea que cambió el universo
El geómetra fractal sobre mandelbrot y sus nubes
Galileo galilei

La actualidad más candente (20)

PDF
RAZON Y REVOLUCION
PPTX
Falsacionismo de Karl Popper
PDF
El falsacionismo de popper
DOC
N 20150303 la idea que cambió el universo
PPTX
Galileo galilei
PPTX
Aportaciones Caída Libre Aristóteles y Galileo
PPTX
La crisis y el surgimiento de las teorías
DOCX
Citas celebres
PDF
Stephen hawking el universo en una cascara de nuez
PPS
El universo de Galileo Galilei
PPTX
Karl popper
DOC
La Convergencia De La Ciencia Y De La ReligióN
PPTX
origen de la teoría atómica
PDF
Más allá hay dragones
PDF
Modelos y conocimiento científico
PDF
¿EVOLUCIONISMO... O “FEVOLUCIONISMO”?... - Dr. Ing. Raúl C. Pérez
DOCX
Sabías que un sacerdote católico fue quien propuso la teoría del Big Bang Y C...
PPTX
Galileo galilei diapositivas
PPT
Trabajo de ciencias galileo
DOC
Trabajos
RAZON Y REVOLUCION
Falsacionismo de Karl Popper
El falsacionismo de popper
N 20150303 la idea que cambió el universo
Galileo galilei
Aportaciones Caída Libre Aristóteles y Galileo
La crisis y el surgimiento de las teorías
Citas celebres
Stephen hawking el universo en una cascara de nuez
El universo de Galileo Galilei
Karl popper
La Convergencia De La Ciencia Y De La ReligióN
origen de la teoría atómica
Más allá hay dragones
Modelos y conocimiento científico
¿EVOLUCIONISMO... O “FEVOLUCIONISMO”?... - Dr. Ing. Raúl C. Pérez
Sabías que un sacerdote católico fue quien propuso la teoría del Big Bang Y C...
Galileo galilei diapositivas
Trabajo de ciencias galileo
Trabajos
Publicidad

Similar a 100 preguntas sobre la ciencia resumen (20)

DOCX
Qué es la matematica
RTF
Bunge mario la ciencia, su metodo y filosofia
PDF
Mario-Bunge-la-Ciencia-su-Metodo-y-Filosofia.pdf
PDF
Mario-Bunge-la-Ciencia-su-Metodo-y-Filosofia.pdf
RTF
Mario bunge Ciencia Metodo y Filosofia
PDF
bunge_libro de en ciencia.investigacion pdf
PDF
laciencia dsfsdg dsat rt wera werwe w wer
PDF
bunge_ciencia.pdf
PDF
05.-BUNGElahistoriadesconocidaxxxx-1.pdf
PDF
Bunge_Que es la ciencia-1-12.pdfffffffff
PDF
3 bunge y ciencia
PDF
Mario Bunge.pdf
PDF
Mario Bunge - La ciencia
PDF
La ciencia. Su Método y su Filosofía
PDF
Bunge ciencia
PDF
Bunge ciencia
PDF
05.-BUNGE-1.pdf
PDF
BUNGE, Mario, La Ciencia (Su Metodo y su Filosofia) Metodología - Juan Alfon...
PDF
bunge_ciencia.pdf
PDF
bunge_ciencia (1) (1).pdf
Qué es la matematica
Bunge mario la ciencia, su metodo y filosofia
Mario-Bunge-la-Ciencia-su-Metodo-y-Filosofia.pdf
Mario-Bunge-la-Ciencia-su-Metodo-y-Filosofia.pdf
Mario bunge Ciencia Metodo y Filosofia
bunge_libro de en ciencia.investigacion pdf
laciencia dsfsdg dsat rt wera werwe w wer
bunge_ciencia.pdf
05.-BUNGElahistoriadesconocidaxxxx-1.pdf
Bunge_Que es la ciencia-1-12.pdfffffffff
3 bunge y ciencia
Mario Bunge.pdf
Mario Bunge - La ciencia
La ciencia. Su Método y su Filosofía
Bunge ciencia
Bunge ciencia
05.-BUNGE-1.pdf
BUNGE, Mario, La Ciencia (Su Metodo y su Filosofia) Metodología - Juan Alfon...
bunge_ciencia.pdf
bunge_ciencia (1) (1).pdf
Publicidad

Más de delly zabaleta figueroa (8)

DOCX
Resumen de las cien preguntas del metodo cientifico de edelmira
PPTX
Resumen de 7 utopias para cambiar el mundo delly
DOCX
Planta de producción de pañales de bebe
PPT
Resumen de la revolucion industrial delly zabaleta
PPT
Resumen de la revolucion industrial delly zabaleta
DOCX
Plantilla del proyecto colaborativo delly
DOCX
Propuestadidactica delly buscadores y metabuscadores
PPTX
Delly u. actualidad en celulares
Resumen de las cien preguntas del metodo cientifico de edelmira
Resumen de 7 utopias para cambiar el mundo delly
Planta de producción de pañales de bebe
Resumen de la revolucion industrial delly zabaleta
Resumen de la revolucion industrial delly zabaleta
Plantilla del proyecto colaborativo delly
Propuestadidactica delly buscadores y metabuscadores
Delly u. actualidad en celulares

Último (20)

PDF
Dialnet-LaEconomiaYSuRelacionConElMarketing-6197598.pdf
PPTX
Presentación tema 6 Estudios de contabilidades especiales3 (1).pptx
PPT
Estudio de la administracion publica.ppt
PDF
Artículo LA EVOLUCIÓN DEL MARKETING- UNA APROXIMACIÓN INTEGRAL.pdf
PDF
MERCADOS_FINANCIEROS_Y_ESTRATEGIA_FINANC.pdf
PPTX
contabilidad básica, contabilidad basica
DOCX
CUIDADOS DE ENFERMERIA EN EL PACIENTE CON CETOACIDOSIS DIABÉTICA.docx
DOCX
Glosario_Contable_Con_Imagenes2025 (1).docx
PPTX
Fundamentos para la regulacion economica
PPTX
T01_01_A_Introduccion a la Contabilidad.pptx
PPTX
“El arte de la chocoteja peruana el pn .pptx
PPTX
Diapositivas_Libretas_Ecologissscas.pptx
DOCX
ANALISIS PESTEL, PEGAMENTO PARA ACABADOS RUSTICOS (3).docx
PPTX
SEGUNDA CLASE MAESTRIA DE GESTIÓN DE SERVICIOS DE SALUD USMP.pptx
PPTX
clase management diplomatura en gestion empresarial
PDF
GT_Codigo_Aduanero_CAUCA-actualizado con referencias
PPTX
econometria aplicada clase numero uno- Clase 01
DOCX
GRANDES ECONOMISTAS (III/IV). JOHN KENNETH GALBRAITH, EL CRÍTICO DE LA OPULE...
PPTX
II Guerra Mundial ybygygygigggiiggi.pptx
PPTX
Presentacion Final de Auditoria II [Autoguardado].pptx
Dialnet-LaEconomiaYSuRelacionConElMarketing-6197598.pdf
Presentación tema 6 Estudios de contabilidades especiales3 (1).pptx
Estudio de la administracion publica.ppt
Artículo LA EVOLUCIÓN DEL MARKETING- UNA APROXIMACIÓN INTEGRAL.pdf
MERCADOS_FINANCIEROS_Y_ESTRATEGIA_FINANC.pdf
contabilidad básica, contabilidad basica
CUIDADOS DE ENFERMERIA EN EL PACIENTE CON CETOACIDOSIS DIABÉTICA.docx
Glosario_Contable_Con_Imagenes2025 (1).docx
Fundamentos para la regulacion economica
T01_01_A_Introduccion a la Contabilidad.pptx
“El arte de la chocoteja peruana el pn .pptx
Diapositivas_Libretas_Ecologissscas.pptx
ANALISIS PESTEL, PEGAMENTO PARA ACABADOS RUSTICOS (3).docx
SEGUNDA CLASE MAESTRIA DE GESTIÓN DE SERVICIOS DE SALUD USMP.pptx
clase management diplomatura en gestion empresarial
GT_Codigo_Aduanero_CAUCA-actualizado con referencias
econometria aplicada clase numero uno- Clase 01
GRANDES ECONOMISTAS (III/IV). JOHN KENNETH GALBRAITH, EL CRÍTICO DE LA OPULE...
II Guerra Mundial ybygygygigggiiggi.pptx
Presentacion Final de Auditoria II [Autoguardado].pptx

100 preguntas sobre la ciencia resumen

  • 1. ¿Por qué dos o más científicos, ignorantes del trabajo de los otros, dan a menudo simultáneamente con la misma teoría? La manera más simple de contestar a esto es decir que los científicos no trabajan en el vacío. Están inmersos, por así decirlo, en la estructura y progreso evolutivo de la ciencia, y todos ellos encaran los mismos problemas en cada momento. Así, en la primera mitad del siglo XIX el problema de la evolución de las especies estaba «en el candelero». Algunos biólogos se oponían acaloradamente a la idea misma, mientras que otros especulaban ávidamente con sus consecuencias y trataban de encontrar pruebas que la apoyaran. Pero lo cierto es que, cada uno a su manera, casi todos los biólogos pensaban sobre la misma cuestión. La clave del problema era ésta: Si la evolución es un hecho, ¿qué es lo que la motiva? En Gran Bretaña, Charles Darwin pensaba sobre ello. En las Indias Orientales, Alfred Wallace, inglés también, pensaba sobre el mismo problema. Ambos habían viajado por todo el mundo; ambos habían hecho observaciones similares; y sucedió que ambos, en un punto crucial de su pensamiento, leyeron un libro de Thomas Malthus que describía los efectos de la presión demográfica sobre los seres humanos. Tanto Darwin como Wallace empezaron a pensar sobre la presión demográfica en todas las especies. ¿Qué individuos sobrevivirían y cuáles no? Ambos llegaron a la teoría de la evolución por selección natural. Lo cual no tiene en realidad nada de sorprendente. Dos hombres que trabajan sobre el mismo problema y con los mismos métodos, encarados con los mismos hechos a observar y disponiendo de los mismos libros de consulta, es muy probable que lleguen a las mismas soluciones. Lo que ya me sorprende más es que el segundo nombre de Darwin, Wallace y Malthus empezase en los tres casos por R. A finales del siglo XIX eran muchos los biólogos que trataban de poner en claro la mecánica de la genética. Tres hombres, trabajando los tres en el mismo problema, al mismo tiempo y de la misma manera, pero en diferentes países, llegaron a las mismas conclusiones. Pero entonces los tres, repasando la literatura, descubrieron que otro, Gregor Mendel, había obtenido treinta y cuatro años antes las leyes de la herencia y habían pasado inadvertido. Una de las aspiraciones más ambiciosas de los años 1880-1889 era la producción barata de aluminio. Se conocían los usos y la naturaleza del metal, pero resultaba difícil prepararlo a partir de sus minerales. Millones de dólares dependían literalmente de la obtención de una técnica sencilla. Es difícil precisar el número de químicos que se hallaban trabajando en el mismo problema, apoyándose en las mismas experiencias de otros científicos. Dos de ellos: Charles Hall en los Estados Unidos y Paul Héroult en Francia, obtuvieron la misma respuesta en el mismo año de 1886. Nada más natural. Pero ¿y esto?: los apellidos de ambos empezaban por H, ambos nacieron en 1863 y ambos murieron en 1914. Hoy día son muchos los que tratan de idear teorías que expliquen el comportamiento de las partículas subatómicas. Murray Gell-Man y Yuval Ne'emen, uno en América y otro en Israel, llegaron simultáneamente a teorías parecidas. El principio del máser se obtuvo simultáneamente en Estados Unidos y en la Unión Soviética. Y estoy casi seguro de que el proceso clave para el aprovechamiento futuro de la potencia de la fusión nuclear será obtenido independiente y simultáneamente por dos o más personas. Naturalmente, hay veces en que el rayo brilla una sola vez. Gregor Mendel no tuvo competidores, ni tampoco Newton ni Einstein. Sus grandes ideas sólo se les ocurrieron a ellos y el resto del mundo les siguió. . ¿Qué dice el teorema de Gödel? ¿Demuestra que la verdad es inalcanzable? Desde los tiempos de Euclides, hace ya dos mil doscientos años, los matemáticos han intentado partir de ciertos enunciados llamados «axiomas» y deducir luego de ellos toda clase de conclusiones útiles. En ciertos aspectos es casi como un juego, con dos reglas. En primer lugar, los axiomas tienen que ser los menos posibles. En segundo lugar, los axiomas tienen que ser consistentes. Tiene que ser imposible deducir dos conclusiones que se contradigan mutuamente. Cualquier libro de geometría de bachillerato comienza con un conjunto de axiomas: por dos puntos cualesquiera sólo se puede trazar una recta; el total es la suma de las partes, etc. Durante mucho tiempo se supuso que los axiomas de Euclides eran los únicos que podían constituir una geometría consistente y que por eso eran «verdaderos». Pero en el siglo XIX se demostró que modificando de cierta manera los axiomas de Euclides se podían construir geometrías diferentes, «no euclidianas». Cada una de estas geometrías difería de las otras, pero todas ellas eran consistentes. A partir de entonces no tenía ya sentido preguntar cuál de ellas era «verdadera». En lugar, de ello había que preguntar cuál era útil. De hecho, son muchos los conjuntos de axiomas a partir de los cuales se podría construir un sistema matemático consistente: todos ellos distintos y todos ellos consistentes. En ninguno de esos sistemas matemáticos tendría que ser posible deducir, a partir de sus axiomas, que algo es a la vez así y no así, porque entonces las matemáticas no serían consistentes, habría que desecharlas. ¿Pero qué ocurre si establecemos un enunciado y comprobamos que no podemos demostrar que es o así o no así? Supongamos que digo: «El enunciado que estoy haciendo es falso.» ¿Es falso? Si es falso, entonces es falso que esté diciendo algo falso y tengo que estar diciendo algo verdadero. Pero si estoy diciendo algo verdadero, entonces es cierto que estoy diciendo algo falso y sería verdad que estoy diciendo algo falso. Podría estar yendo de un lado para otro indefinidamente. Es imposible demostrar que lo que he dicho es o así o no así. Supongamos que ajustamos los axiomas de la lógica a fin de eliminar la posibilidad de hacer enunciados de ese tipo. ¿Podríamos encontrar otro modo de hacer enunciados del tipo «ni así ni no así»? En 1931 el matemático austriaco Kurt Gödel presentó una demostración válida de que para cualquier conjunto de axiomas siempre es posible hacer enunciados que, a partirde esos axiomas, no puede demostrarse ni que son así ni que no son así. En ese sentido, es imposible elaborar jamás un conjunto de axiomas a partir de los cuales se pueda deducir un sistema matemático completo. ¿Quiere decir esto que nunca podremos encontrar la «verdad»? ¡Ni hablar! Primero: el que un sistema matemático no sea completo no quiere decir que lo que contiene sea «falso». El sistema puede seguir siendo muy útil, siempre que no intentemos utilizarlo más allá de sus límites. Segundo: el teorema de Gödel sólo se aplica a sistemas deductivos del tipo que se utiliza en matemáticas. Pero la deducción no es el único modo de descubrir la «verdad». No hay axiomas que nos permitan deducir las dimensiones del sistema solar. Estas últimas fueron obtenidas mediante observaciones y medidas —otro camino hada la «verdad».