TERMODINÁMICA
CONTENIDOS.
1.- Transferencias de energía.
2.- Trabajo en sistemas gaseosos.
3.- Temperatura y calor.
4.- Equilibrio térmico.
5.- Equivalencia calor-trabajo.
6.- Energía interna (U).
7.- Primer principio de la Termodinámica.
8.- Tipos de procesos termodinámicos.
TRANSFERENCIAS DE ENERGÍA.
Puede producirse de dos formas principales:
• En forma de trabajo.
• En forma de calor.
TRABAJO EN SISTEMAS GASEOSOS
W = €F · dr = € p · S · dr = €– p · dV
En el caso de que la presión sea constante (sistemas isobáricos), la integral es
inmediata:
W = – p · ∆V
El signo menos se debe al actual criterio de signos que decide que sea negativa
toda la energía que salga de un sistema (vector superficie y desplazamientos de sentidos
contrarios, con lo que el producto escalar al multiplicarlo por cos 180º sale negativo). Si un
sistema realiza un trabajo hacia el exterior es porque ha perdido energía.
TEMPERATURA Y CALOR.
Temperatura (Temperatura (TT))
Es una medida de la energía cinética media que tienen las moléculas. A mayor
temperatura mayor agitación térmica (mayor energía cinética media).
Es una magnitud “intensivaintensiva”, es decir, no depende de la masa del sistema.
Dos cuerpos con diferentes temperaturas evolucionan siempre de forma que traten
de igualar sus temperaturas (equilibrio térmico).
Para medir T se utilizan los termómetros que se basan en la dilatación de los
líquidos (normalmente mercurio).
Calor (Calor (QQ).).
Al igual que el trabajo, el calor es una medida de la energía transferida a un sistema
o aportada por el mismo. Un sistema no tiene calor recibe o aporta calor.
Es una magnitud “extensivaextensiva”, es decir, depende de la masa del sistema.
Cuando un cuerpo recibe calor puede:
• Aumentar su temperatura.
• Cambiar de estado físico.
• Ambas cosas.
2
Aumento de temperatura.Aumento de temperatura.
En este caso, el calor recibido o aportado por el sistema dependerá de:
• Lo que se quiera variar T (∆T)
• De la masa a calentar (m)
• Del tipo de sustancia (ce = calor específico)
El calor absorbido o cedido por un sistema viene dado por la siguiente fórmula:
Q = m x ce x ∆T = m x ce x (Tf –Ti)
siendo ce el calor específico de la sustancia.
Si el sistema absorbe calor (Q > 0) y por tanto Tf > Ti, mientras que si el sistema
cede calor (Q < 0) entonces Tf < Ti.
Algunos calores específicos
SUSTANCIA cal/g ºC J/kg ·K
Agua (líquida) 1,00 4180
Agua (hielo) 0,49 2050
Agua (vapor) 0,47 1960
Aceite de oliva 0,47 2000
Aire 0,24 1010
Aluminio 0,22 900
Alcohol etílico 0,59 2450
Oro 0,03 130
Granito 0,19 800
Hierro 0,11 460
Plata 0,06 240
Acero inoxidable 0,12 510
Madera 0,42 1760
3
Ejemplo:
Calcula el calor que se necesita aportar a 0,5 litros de mercurio para que su temperatura
aumente de 20 a 50ºC. Datos: d(Hg) = 13600 kg·m–3
; ce(Hg) = 140 J·kg–1
·K–1
.
Q = m x ce x ∆T = 0,5 x 10-3
m3
x 13600 kg·m–3
x 140 J·kg–1
·K–1
x (323 k – 293 K)
Q = 28560 J
Cambiar de estado físico.Cambiar de estado físico.
En este caso la temperatura no varía, y el calor recibido dependerá de:
• De la masa a cambiar de estado (m)
• Del tipo de sustancia (LF o Lv = calor latente de fusión o vaporización)
El calor absorbido o cedido por un sistema viene dado por las siguientes fórmulas:
QF = LF x m QV = LV x m
EQUILIBRIO TÉRMICO.
Cuando dos sistemas a diferente temperatura se ponen en contacto, el sistema que
se encuentre a mayor temperatura cederá energía al sistema que se encuentre a menor
temperatura en forma de calor, hasta que ambos se encuentren a la misma temperatura.
Obviamente, si un cuerpo adquiere calor, es porque otro lo cede, de forma que:
Qabsorbido = – Qcedido
Sea A el cuerpo de menor temperatura (absorberá calor) y el B de mayor
temperatura (cederá calor). Al final, ambos adquirirán la misma temperatura de equilibrio
(Teq):
mA x ceA x (Teq – T0A) = – mB x ceB x (Teq– T0B)
O también se puede escribir como:
mA x ceA x (Teq – T0A) = mB x ceB x (T0B –Teq)
Ejemplo:
Se introduce una bolita de 200 g de hierro a 120ºC en un recipiente con ½ litro de agua a
18ºC. Calcular: a) la temperatura de equilibrio; b) el calor cedido por la bola de hierro.
a) mA x ceA x (Teq – T0A) = mB x ceB x (T0B –Teq)
0,5 kg x 4180 J x K–1
x kg–1
(Teq –18ºC) = 0,2 kg x 460 J x K–1
x kg–1
(120ºC– Teq)
Resolviendo la ecuación obtenemos que: Teq = 22,3ºC
4
b) Qced = mA x ceA x(Teq– T0A) = 0,2 kg x 460 J x K–1
x kg–1
x (22,3ºC –120ºC) = –8990 J
El signo (–) indica que es cedido.
Ejemplo:
Calcula el calor necesario para transformar 1 kg de hielo a –10ºC en vapor de agua a
110ºC a presión atmosférica.(LF = 3,34 x 105
J/kg; LV = 2,26 x 106
J/kg)
El calor total será la suma del necesario para pasar de hielo a –10ºC a hielo a 0ºC
(Q1), de fundir el hielo (Q2), de pasar el agua líquida a 0ºC a agua líquida a 100ºC (Q3), de
vaporizar el agua (Q4) y de aumentar la temperatura del vapor hasta los 110ºC (Q5):
Q1 = m x ce x (T1 – T0) = 1 kg x 2,05 kJ x K–1
x kg–1
x 10 K = 20,5 kJ
Q2 = m x LF = 1 kg x 3,34 ·105
J x K–1
= 334 kJ
Q3 = m x ce x (T2 – T1) = 1 kg x 4,18 kJ x K–1
x kg–1
x 100 K = 418 kJ
Q4 = m x LV = 1 kg x 2,26 x 106
J x K–1
= 2260 kJ
Q5 = m x ce x (T3 – T2) = 1 kg x 1,96 kJ x K–1
x kg–1
x 10 K = 19,6 kJ
QTOTAL= Q1 + Q2 + Q3 + Q4 + Q5 = 20,5 kJ + 334 kJ + 418 kJ + 2260 kJ + 19,6 kJ
QTOTAL = 3052,1 kJ
EQUIVALENCIA CALOR-TRABAJO.
A principios del siglo XIX se pensaba que el calor
era una sustancia fluida material que pasaba de unos
cuerpos a otros (teoría del “calórico”).
Joule demostró que el calor era una forma de
energía y calculó la equivalencia entre la caloría
(unidad de calor) y el julio (unidad de trabajo-energía),
lo que se conoce normalmente como “equivalente
mecánico del calor”.
Utilizó un aparato similar al del dibujo de la
derecha mediante el cual, mediante el trabajo realizado
por las pesas, fácilmente mensurable, comprobó el
aumento de la temperatura del agua.
5
1 J = 0’24 cal ; 1 cal = 4’18 J
Aparato para el cálculo del
“equivalente mecánico del calor”
SISTEMAS Y VARIABLES
TERMODINÁMICAS.
SistemaSistema
Es una parte pequeña del universo que se aísla para
someterla a estudio. El resto se denomina ENTORNO.
Pueden ser:
• Abiertos (intercambia materia y energía con el
entorno).
• Cerrados (no intercambia materia y sí energía).
• Aislados (no intercambia ni materia ni energía).
Variables termodinámicasVariables termodinámicas
Son magnitudes que pueden variar a lo largo de un proceso (por ejemplo, en el
transcurso de una reacción química)
Ejemplos:
• Presión.
• Temperatura.
• Volumen.
• Concentración.
Funciones de estadoFunciones de estado
Son variables termodinámicas que tienen un valor único para cada estado del
sistema.
Su variación sólo depende del estado inicial y final y no del camino desarrollado.
Son funciones de estado: Presión, temperatura, energía interna.
NO lo son: calor, trabajo.
ENERGÍA INTERNA (U)
Es la energía total de las partículas que constituyen un sistema.
Es igual a la suma de todas las energías de rotación, traslación, vibración y enlace
entre los átomos que constituyen las moléculas.
6
Es una magnitud “extensivaextensiva”, es decir, depende de la masa del sistema.
Es muy difícil de medir. En cambio es fácil determinar la variación de ésta (∆U).
PRIMER PRINCIPIO DE LA TERMODINÁMICA
ENERGÍA INTERNA (U): es la energía total del sistema.
• Es imposible medirla.
• En cambio, sí se puede medir su variación.
= +U Q W∆
Actualmente, se sigue el
criterio de que toda energía
aportada al sistema (desde el
entorno) se considera positiva,
mientras que la extraída del
sistema (al entorno) se considera
negativa.
Así, Q y W > 0 si se realizan
a favor del sistema.
U es función de estado.
Ejemplo:
Una masa de 18 g de agua es transformada en vapor a 101300 Pa y 100ºC
convirtiéndose en 30,6 litros de vapor a esta misma presión. Si LV (agua) es 2,26 ·106
J/kg, calcula: a) la energía suministrada en forma de calor; b) el trabajo realizado por el
sistema; c) la variación de energía interna.
a) Q = m x LV = 0,018 kg x 2,26 x 106
J x K–1
= 40,68 kJ
b) El volumen del agua líquida se puede despreciar frente al del gas: 1,8x10–2
L << 30,6 L
W = – p x ∆V = –101300 N x m –2
x (30,6 x 10–3
m3
) = –3,1 kJ
c) ∆U = Q + W = 40,68 kJ – 3,1 kJ = 37,58 kJ
TIPOS DE PROCESOS TERMODINÁMICOS.
• Adiabáticos: (Q = 0) No tiene lugar intercambio de calor con el exterior .
Por ejemplo, un termo. En estos procesos se cumple que: ∆U = W
7
• Isócoros: (V = constante). Tienen lugar en un recipiente cerrado.
Como ∆V = 0 ⇒ W = 0 ⇒ Qv = ∆U
• Isobáricos: (p = constante)
∆U = Qp – p x ∆V ; U2 – U1 = Qp – (p x V2 – p x V1) ⇒ U2 + p x V2 = Qp + U1 + p x V1
U2 + p x V2 = Qp + U1 + p x V1
Si llamamos H = U + p x V ⇒ Qp = H2 – H1 = ∆H
• Isotérmicos: (T = constante)
MÁQUINAS TÉRMICAS
Las máquinas térmicas son las encargadas
de transformar Q en W y tienen un rendimiento
inferior al 100 % ya que, aparte de realizar un
trabajo, siempre ceden parte de su energía al
foco frío (Q2).
Los principales tipos de máquinas térmicas
son:
• Máquina de vapor.
• Turbina de vapor.
• Motor de cuatro tiempos.
- Aspiración o admisión
- Compresión
- Explosión.
- Expulsión.
• Motor Diesel.
8
FOCO
CALIENTE
(T1
)
FOCO
CALIENTE
(T1
)
FOCO FRÍO
(T2
)
FOCO FRÍO
(T2
)
W
Q1
Q1
– Q2
–
Q2
Q2
Esquema de una máquina térmica
Máquina de vaporMáquina de vapor
Turbina de vaporTurbina de vapor
Motor de cuatro tiemposMotor de cuatro tiempos
Esquema de una máquina de vapor. Imagen cedida por © Editorial Santillana
9
Máquina de vaporMáquina de vapor
Turbina de vaporTurbina de vapor
Motor de cuatro tiemposMotor de cuatro tiempos
Esquema de una máquina de vapor. Imagen cedida por © Editorial Santillana
9

Más contenido relacionado

PPT
el calor 1
PPT
16 el calor
PPT
el calor
PPT
16 el calor
PDF
Calor Y Trabajo
PPT
Temp calorterm
PPT
Energia,calor y trabajo
PPTX
Introducción a la termodinámica
el calor 1
16 el calor
el calor
16 el calor
Calor Y Trabajo
Temp calorterm
Energia,calor y trabajo
Introducción a la termodinámica

La actualidad más candente (20)

PPTX
Semana 7 CALOR Y LEYES DE LA TERMODINÁMICA
PPT
EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA
PDF
Ejercicios termodinamica
PDF
Tema ii-primera-ley-de-la-termodinamica
DOC
Balance de energia
PPTX
Primera ley de la Termodinamica
PDF
Conceptos termodinamicos
DOCX
Ecuaciones termodinámica
PPT
PRIMERA LEY DE LA TERMODINAMICA
PPTX
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
PPT
Balance de energia
PPT
Clase de termoquimica
PPT
1º 2º 3º ley de la termodinámica
PDF
Iiq 4 balances_energia_r_e.obs
PDF
Termoquímica
PPT
Balance de Energia - Parte 2
PDF
Calor y primera ley de la termodinamica segundo viaje
PPTX
3. Balance De EnergíA
PDF
PPT
Balances de energia
Semana 7 CALOR Y LEYES DE LA TERMODINÁMICA
EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA
Ejercicios termodinamica
Tema ii-primera-ley-de-la-termodinamica
Balance de energia
Primera ley de la Termodinamica
Conceptos termodinamicos
Ecuaciones termodinámica
PRIMERA LEY DE LA TERMODINAMICA
Termoquímica (energia, leyes termodinámicas, entalpia, ecuaciones químicas y ...
Balance de energia
Clase de termoquimica
1º 2º 3º ley de la termodinámica
Iiq 4 balances_energia_r_e.obs
Termoquímica
Balance de Energia - Parte 2
Calor y primera ley de la termodinamica segundo viaje
3. Balance De EnergíA
Balances de energia
Publicidad

Similar a 16 calorenergia (20)

PPT
16 el calor
PPTX
Exposicion de-quimica-fisica
PDF
CALORIMETRÍA.pdf
PPTX
Fisica Las Leyes De La Termodinamica
DOCX
Las Leyes De La Termodinamica Fisica
PDF
Capitulo 2 - Ley cero y primera.pdf
PDF
Termodinámica
PDF
Introducción a la termodinámica inorgánica
PPTX
Conceptos bàsico de termodinámica y transferencia de calor
PPT
Termodinam y termoquímica
PPT
Primera Ley De Termodinamica
PPTX
Unidad 1: Termodinámica
PPTX
17 plantilla
PPTX
17 plantilla
PPT
PPTX
Unidad I: Termodinámica
DOCX
Segunda ley de la termodinámica
DOC
Módulo de física 2010 parte 13 (termodinamica)
16 el calor
Exposicion de-quimica-fisica
CALORIMETRÍA.pdf
Fisica Las Leyes De La Termodinamica
Las Leyes De La Termodinamica Fisica
Capitulo 2 - Ley cero y primera.pdf
Termodinámica
Introducción a la termodinámica inorgánica
Conceptos bàsico de termodinámica y transferencia de calor
Termodinam y termoquímica
Primera Ley De Termodinamica
Unidad 1: Termodinámica
17 plantilla
17 plantilla
Unidad I: Termodinámica
Segunda ley de la termodinámica
Módulo de física 2010 parte 13 (termodinamica)
Publicidad

Último (20)

PPTX
bioetica etica e investigacion. Aspectos legales inherentes a la etica medica
PPT
ASEPSIA Y ANTISEPSIA - DR. CARLOS ALBERTO FLORES
PPTX
tema 3 INMUNOLOGIA UNIDAD BIOQUIMICA.pptx
PDF
ATLAS DEL SITEMA NERVIOSO para el cu.pdf
PPTX
Sesión 2 Vigilancia Epidemiológica.pptxt
PDF
Clase 2- Diversidad botanica - Tejidos vegetales.pdf
PPTX
SESIÓN 2 ALIMENTACION Y NUTRICION SALUDABLE JULY.pptx
PDF
Audicion, sonido del viaje como los sonidos viajan
PPTX
Formulación de Objetivos en Investigaciones Cuantitativas.pptx
PPTX
Diapositiva- la Revolución Francesa.pptx
PDF
BIOQ1054 Introduccion a la Fisiología vegetal (1).pdf
PDF
Los años peronistas, Entre los conflictos políticos y la construcción de un e...
PPTX
INSTRUMENTAL BÁSICO DE CIRUGÍA COLOCACIÓN DE MESAS… UN RECORRIDO VISUAL .pptx
PPTX
Infección de transmisión sexual clase.pptx
PPTX
ENFERMEDADES PERIODONTALES EN ODONTOLOGIA.pptx
PDF
Conferencia Protozoos coccidios (1).pdf medicina
PPTX
Sesión 1 Epidemiologia.pptxxxxxxxxxxxxxxxx
PDF
Beige Green Simple Minimalist Social Media Marketing Project Presentation_com...
PDF
Presentación Centro de Estética Orgánico Verde (2).pdf
PPTX
Circuitos en corriente alterna capacitores e inductores
bioetica etica e investigacion. Aspectos legales inherentes a la etica medica
ASEPSIA Y ANTISEPSIA - DR. CARLOS ALBERTO FLORES
tema 3 INMUNOLOGIA UNIDAD BIOQUIMICA.pptx
ATLAS DEL SITEMA NERVIOSO para el cu.pdf
Sesión 2 Vigilancia Epidemiológica.pptxt
Clase 2- Diversidad botanica - Tejidos vegetales.pdf
SESIÓN 2 ALIMENTACION Y NUTRICION SALUDABLE JULY.pptx
Audicion, sonido del viaje como los sonidos viajan
Formulación de Objetivos en Investigaciones Cuantitativas.pptx
Diapositiva- la Revolución Francesa.pptx
BIOQ1054 Introduccion a la Fisiología vegetal (1).pdf
Los años peronistas, Entre los conflictos políticos y la construcción de un e...
INSTRUMENTAL BÁSICO DE CIRUGÍA COLOCACIÓN DE MESAS… UN RECORRIDO VISUAL .pptx
Infección de transmisión sexual clase.pptx
ENFERMEDADES PERIODONTALES EN ODONTOLOGIA.pptx
Conferencia Protozoos coccidios (1).pdf medicina
Sesión 1 Epidemiologia.pptxxxxxxxxxxxxxxxx
Beige Green Simple Minimalist Social Media Marketing Project Presentation_com...
Presentación Centro de Estética Orgánico Verde (2).pdf
Circuitos en corriente alterna capacitores e inductores

16 calorenergia

  • 1. TERMODINÁMICA CONTENIDOS. 1.- Transferencias de energía. 2.- Trabajo en sistemas gaseosos. 3.- Temperatura y calor. 4.- Equilibrio térmico. 5.- Equivalencia calor-trabajo. 6.- Energía interna (U). 7.- Primer principio de la Termodinámica. 8.- Tipos de procesos termodinámicos. TRANSFERENCIAS DE ENERGÍA. Puede producirse de dos formas principales: • En forma de trabajo. • En forma de calor. TRABAJO EN SISTEMAS GASEOSOS W = €F · dr = € p · S · dr = €– p · dV En el caso de que la presión sea constante (sistemas isobáricos), la integral es inmediata: W = – p · ∆V El signo menos se debe al actual criterio de signos que decide que sea negativa toda la energía que salga de un sistema (vector superficie y desplazamientos de sentidos contrarios, con lo que el producto escalar al multiplicarlo por cos 180º sale negativo). Si un sistema realiza un trabajo hacia el exterior es porque ha perdido energía.
  • 2. TEMPERATURA Y CALOR. Temperatura (Temperatura (TT)) Es una medida de la energía cinética media que tienen las moléculas. A mayor temperatura mayor agitación térmica (mayor energía cinética media). Es una magnitud “intensivaintensiva”, es decir, no depende de la masa del sistema. Dos cuerpos con diferentes temperaturas evolucionan siempre de forma que traten de igualar sus temperaturas (equilibrio térmico). Para medir T se utilizan los termómetros que se basan en la dilatación de los líquidos (normalmente mercurio). Calor (Calor (QQ).). Al igual que el trabajo, el calor es una medida de la energía transferida a un sistema o aportada por el mismo. Un sistema no tiene calor recibe o aporta calor. Es una magnitud “extensivaextensiva”, es decir, depende de la masa del sistema. Cuando un cuerpo recibe calor puede: • Aumentar su temperatura. • Cambiar de estado físico. • Ambas cosas. 2
  • 3. Aumento de temperatura.Aumento de temperatura. En este caso, el calor recibido o aportado por el sistema dependerá de: • Lo que se quiera variar T (∆T) • De la masa a calentar (m) • Del tipo de sustancia (ce = calor específico) El calor absorbido o cedido por un sistema viene dado por la siguiente fórmula: Q = m x ce x ∆T = m x ce x (Tf –Ti) siendo ce el calor específico de la sustancia. Si el sistema absorbe calor (Q > 0) y por tanto Tf > Ti, mientras que si el sistema cede calor (Q < 0) entonces Tf < Ti. Algunos calores específicos SUSTANCIA cal/g ºC J/kg ·K Agua (líquida) 1,00 4180 Agua (hielo) 0,49 2050 Agua (vapor) 0,47 1960 Aceite de oliva 0,47 2000 Aire 0,24 1010 Aluminio 0,22 900 Alcohol etílico 0,59 2450 Oro 0,03 130 Granito 0,19 800 Hierro 0,11 460 Plata 0,06 240 Acero inoxidable 0,12 510 Madera 0,42 1760 3
  • 4. Ejemplo: Calcula el calor que se necesita aportar a 0,5 litros de mercurio para que su temperatura aumente de 20 a 50ºC. Datos: d(Hg) = 13600 kg·m–3 ; ce(Hg) = 140 J·kg–1 ·K–1 . Q = m x ce x ∆T = 0,5 x 10-3 m3 x 13600 kg·m–3 x 140 J·kg–1 ·K–1 x (323 k – 293 K) Q = 28560 J Cambiar de estado físico.Cambiar de estado físico. En este caso la temperatura no varía, y el calor recibido dependerá de: • De la masa a cambiar de estado (m) • Del tipo de sustancia (LF o Lv = calor latente de fusión o vaporización) El calor absorbido o cedido por un sistema viene dado por las siguientes fórmulas: QF = LF x m QV = LV x m EQUILIBRIO TÉRMICO. Cuando dos sistemas a diferente temperatura se ponen en contacto, el sistema que se encuentre a mayor temperatura cederá energía al sistema que se encuentre a menor temperatura en forma de calor, hasta que ambos se encuentren a la misma temperatura. Obviamente, si un cuerpo adquiere calor, es porque otro lo cede, de forma que: Qabsorbido = – Qcedido Sea A el cuerpo de menor temperatura (absorberá calor) y el B de mayor temperatura (cederá calor). Al final, ambos adquirirán la misma temperatura de equilibrio (Teq): mA x ceA x (Teq – T0A) = – mB x ceB x (Teq– T0B) O también se puede escribir como: mA x ceA x (Teq – T0A) = mB x ceB x (T0B –Teq) Ejemplo: Se introduce una bolita de 200 g de hierro a 120ºC en un recipiente con ½ litro de agua a 18ºC. Calcular: a) la temperatura de equilibrio; b) el calor cedido por la bola de hierro. a) mA x ceA x (Teq – T0A) = mB x ceB x (T0B –Teq) 0,5 kg x 4180 J x K–1 x kg–1 (Teq –18ºC) = 0,2 kg x 460 J x K–1 x kg–1 (120ºC– Teq) Resolviendo la ecuación obtenemos que: Teq = 22,3ºC 4
  • 5. b) Qced = mA x ceA x(Teq– T0A) = 0,2 kg x 460 J x K–1 x kg–1 x (22,3ºC –120ºC) = –8990 J El signo (–) indica que es cedido. Ejemplo: Calcula el calor necesario para transformar 1 kg de hielo a –10ºC en vapor de agua a 110ºC a presión atmosférica.(LF = 3,34 x 105 J/kg; LV = 2,26 x 106 J/kg) El calor total será la suma del necesario para pasar de hielo a –10ºC a hielo a 0ºC (Q1), de fundir el hielo (Q2), de pasar el agua líquida a 0ºC a agua líquida a 100ºC (Q3), de vaporizar el agua (Q4) y de aumentar la temperatura del vapor hasta los 110ºC (Q5): Q1 = m x ce x (T1 – T0) = 1 kg x 2,05 kJ x K–1 x kg–1 x 10 K = 20,5 kJ Q2 = m x LF = 1 kg x 3,34 ·105 J x K–1 = 334 kJ Q3 = m x ce x (T2 – T1) = 1 kg x 4,18 kJ x K–1 x kg–1 x 100 K = 418 kJ Q4 = m x LV = 1 kg x 2,26 x 106 J x K–1 = 2260 kJ Q5 = m x ce x (T3 – T2) = 1 kg x 1,96 kJ x K–1 x kg–1 x 10 K = 19,6 kJ QTOTAL= Q1 + Q2 + Q3 + Q4 + Q5 = 20,5 kJ + 334 kJ + 418 kJ + 2260 kJ + 19,6 kJ QTOTAL = 3052,1 kJ EQUIVALENCIA CALOR-TRABAJO. A principios del siglo XIX se pensaba que el calor era una sustancia fluida material que pasaba de unos cuerpos a otros (teoría del “calórico”). Joule demostró que el calor era una forma de energía y calculó la equivalencia entre la caloría (unidad de calor) y el julio (unidad de trabajo-energía), lo que se conoce normalmente como “equivalente mecánico del calor”. Utilizó un aparato similar al del dibujo de la derecha mediante el cual, mediante el trabajo realizado por las pesas, fácilmente mensurable, comprobó el aumento de la temperatura del agua. 5 1 J = 0’24 cal ; 1 cal = 4’18 J Aparato para el cálculo del “equivalente mecánico del calor”
  • 6. SISTEMAS Y VARIABLES TERMODINÁMICAS. SistemaSistema Es una parte pequeña del universo que se aísla para someterla a estudio. El resto se denomina ENTORNO. Pueden ser: • Abiertos (intercambia materia y energía con el entorno). • Cerrados (no intercambia materia y sí energía). • Aislados (no intercambia ni materia ni energía). Variables termodinámicasVariables termodinámicas Son magnitudes que pueden variar a lo largo de un proceso (por ejemplo, en el transcurso de una reacción química) Ejemplos: • Presión. • Temperatura. • Volumen. • Concentración. Funciones de estadoFunciones de estado Son variables termodinámicas que tienen un valor único para cada estado del sistema. Su variación sólo depende del estado inicial y final y no del camino desarrollado. Son funciones de estado: Presión, temperatura, energía interna. NO lo son: calor, trabajo. ENERGÍA INTERNA (U) Es la energía total de las partículas que constituyen un sistema. Es igual a la suma de todas las energías de rotación, traslación, vibración y enlace entre los átomos que constituyen las moléculas. 6
  • 7. Es una magnitud “extensivaextensiva”, es decir, depende de la masa del sistema. Es muy difícil de medir. En cambio es fácil determinar la variación de ésta (∆U). PRIMER PRINCIPIO DE LA TERMODINÁMICA ENERGÍA INTERNA (U): es la energía total del sistema. • Es imposible medirla. • En cambio, sí se puede medir su variación. = +U Q W∆ Actualmente, se sigue el criterio de que toda energía aportada al sistema (desde el entorno) se considera positiva, mientras que la extraída del sistema (al entorno) se considera negativa. Así, Q y W > 0 si se realizan a favor del sistema. U es función de estado. Ejemplo: Una masa de 18 g de agua es transformada en vapor a 101300 Pa y 100ºC convirtiéndose en 30,6 litros de vapor a esta misma presión. Si LV (agua) es 2,26 ·106 J/kg, calcula: a) la energía suministrada en forma de calor; b) el trabajo realizado por el sistema; c) la variación de energía interna. a) Q = m x LV = 0,018 kg x 2,26 x 106 J x K–1 = 40,68 kJ b) El volumen del agua líquida se puede despreciar frente al del gas: 1,8x10–2 L << 30,6 L W = – p x ∆V = –101300 N x m –2 x (30,6 x 10–3 m3 ) = –3,1 kJ c) ∆U = Q + W = 40,68 kJ – 3,1 kJ = 37,58 kJ TIPOS DE PROCESOS TERMODINÁMICOS. • Adiabáticos: (Q = 0) No tiene lugar intercambio de calor con el exterior . Por ejemplo, un termo. En estos procesos se cumple que: ∆U = W 7
  • 8. • Isócoros: (V = constante). Tienen lugar en un recipiente cerrado. Como ∆V = 0 ⇒ W = 0 ⇒ Qv = ∆U • Isobáricos: (p = constante) ∆U = Qp – p x ∆V ; U2 – U1 = Qp – (p x V2 – p x V1) ⇒ U2 + p x V2 = Qp + U1 + p x V1 U2 + p x V2 = Qp + U1 + p x V1 Si llamamos H = U + p x V ⇒ Qp = H2 – H1 = ∆H • Isotérmicos: (T = constante) MÁQUINAS TÉRMICAS Las máquinas térmicas son las encargadas de transformar Q en W y tienen un rendimiento inferior al 100 % ya que, aparte de realizar un trabajo, siempre ceden parte de su energía al foco frío (Q2). Los principales tipos de máquinas térmicas son: • Máquina de vapor. • Turbina de vapor. • Motor de cuatro tiempos. - Aspiración o admisión - Compresión - Explosión. - Expulsión. • Motor Diesel. 8 FOCO CALIENTE (T1 ) FOCO CALIENTE (T1 ) FOCO FRÍO (T2 ) FOCO FRÍO (T2 ) W Q1 Q1 – Q2 – Q2 Q2 Esquema de una máquina térmica
  • 9. Máquina de vaporMáquina de vapor Turbina de vaporTurbina de vapor Motor de cuatro tiemposMotor de cuatro tiempos Esquema de una máquina de vapor. Imagen cedida por © Editorial Santillana 9
  • 10. Máquina de vaporMáquina de vapor Turbina de vaporTurbina de vapor Motor de cuatro tiemposMotor de cuatro tiempos Esquema de una máquina de vapor. Imagen cedida por © Editorial Santillana 9