Este documento describe los métodos de Runge-Kutta para la integración numérica de ecuaciones diferenciales ordinarias. Explica que estos métodos aproximan la solución mediante el cálculo de pendientes en puntos intermedios dentro de cada paso, lo que los hace más precisos que el método de Euler. Luego describe variaciones específicas de Runge-Kutta de segundo, tercer y cuarto orden, incluidos sus parámetros y ejemplos numéricos. Finalmente, compara la precisión de estos métodos para diferentes tamaños de paso.