SlideShare una empresa de Scribd logo
, queremos ver como estos errores se acumulan durante el proceso. El análisis que
presentamos generaliza al problema del cálculo de productos interiores.
Conceptos en que se basan los Métodos Numéricos, Importancia de utilizar Métodos
Numéricos.
Hoy en día, las computadoras y los métodos numéricos proporcionan una alternativa para
cálculos complicados. Un especialista en análisis numéricos se interesa en la creación y
comprensión de buenos métodos que resuelvan problemas numéricamente, el análisis
numérico es una herramienta muy útil para un ingeniero ya facilita su trabajo a la hora de
cálculo de operaciones muy pequeñas y grandes, tomando en cuenta las características
especiales de los instrumentos de cálculo (como calculadoras, computadoras). el cálculo
numérico ha sido muy importante para el avance muy importante en todo a que va desde a
economía hasta la industria aeroespacial.
Cálculo Numérico y el Manejo de Errores
Gracias al cálculo numérico y los manejos de errores son muy importante para todas las ramas
de ingeniería en general ya que optimiza el cálculo, reduce márgenes de errores y al también
importante como es reducir el costo computacional.
Definición de Análisis Numérico “Consiste en procedimientos que resuelven problemas y realizan
cálculos puramente aritméticos, tomando en cuenta las características especiales de los instrumentos
de cálculo (como calculadoras, computadoras) que nos ayudan en la ejecución de las instrucciones del
algoritmo con el fin de calcular o aproximar alguna cantidad o función, para el estudio de errores en los
cálculos"
Números de Maquinas a Decimales.
La mayoría de las computadoras hacen los cálculos aritméticos usando el sistema binario (base
2) y no el sistema decimal (base 10). Cuando se introducen números en base 10, la
computadora los convierte en números en base 2 (0 quizás en base 16), lleva a cabo los
cálculos en base 2 y finalmente presenta los resultados en base 10. La computadora al
convertir el número en base 10 a base 2 utiliza la llamada representación de punto flotante y
en muchos casos trabaja con aproximaciones de los números que quiere representar dando
lugar a errores en los cálculos.
Errores Absolutos y Relativos.
Hasta ahora hemos estudiado alguna teoría básica de los métodos numéricos que se
implementarán más adelante, suponiendo condiciones ideales para su implementación. Los
errores asociados con los cálculos y medidas se pueden caracterizar observando su exactitud y
precisión. La precisión se refiere a qué tan cercano está un valor individual medido o calculado
con respecto a los otros. Los métodos numéricos deben ser lo suficientemente exactos o sin
sesgos para que cumplan los requisitos de un problema en particular.
"El Error Absoluto es la diferencia entre el valor exacto (un número determinado, por ejemplo)
y su valor calculado o redondeado, o sea el valor exacto menos el valor calculado”; debido a
que la ecuación se dio en términos del valor absoluto, el error absoluto no es negativo. Así
pues, una colección (suma) de errores siempre se incrementa junta, sin reducirse.
Cotas de Errores
Cota de Errores Absolutos y Relativos.
Normalmente no se conoce p y, por tanto, tampoco se conocerá el error absoluto (ni el
relativo) de tomar p* como una aproximación de p. Se pretende encontrar cotas superiores de
esos errores.
Principales Fuentes de Errores.
Fuentes Básicas de Errores
Existen dos causas principales de errores en los cálculos numéricos: Error de truncamiento y
error de redondeo. El Error de Redondeo se asocia con el número limitado de dígitos con que
se representan los números en una PC (para comprender la naturaleza de estos errores es
necesario conocer las formas en que se almacenan los números y como se llevan a cabo las
sumas y restas dentro de una PC). El Error de Truncamiento, se debe a las aproximaciones
utilizadas en la fórmula matemática del modelo (la serie de Taylor es el medio más importante
que se emplea para obtener modelos numéricos y analizar los errores de truncamiento). Otro
caso donde aparecen errores de truncamiento es al aproximar un proceso infinito por uno
finito (por ejemplo, truncando los términos de una serie).
Errores de Redondeo y Truncamiento.
Redondeo y Truncamiento
Los errores numéricos se generan al realizar aproximaciones de los resultados de los cálculos
matemáticos y se pueden dividir en dos clases fundamentalmente: errores de truncamiento,
que resultan de representar aproximadamente un procedimiento matemático exacto, y los
errores de redondeo, que resultan de representar aproximadamente números exactos. En
cualquier caso, la relación entre el resultado exacto y el aproximado está dada por: Valor
verdadero = valor aproximado + error, de donde se observa que el error numérico está dado
por: Ev = valor verdadero - valor aproximado. Donde Ev significa el valor exacto del error. La
deficiencia del truncamiento o cortado, es atribuida al hecho de que los altos términos en la
representación decimal completa no tienen relevancia en la versión de cortar o truncar; por lo
tanto el redondeo produce un error bajo en comparación con el truncamiento o cortado. Para
que obtengas información, esta es la conexión: Aritmética de Punto Flotante
Error De Redondeo
El error de redondeo se debe a la naturaleza discreta del sistema numérico de máquina de
punto flotante, el cual a su vez se debe a su longitud de palabra finita. Cada número (real) se
reemplaza por el número de máquina más cercano. Esto significa que todos los números en un
intervalo local están representados por un solo número en el sistema numérico de punto
flotante.
"Cualquier número real positivo y puede ser normalizado a:
y= 0, d1 d2 d3..., dk, dk+1, dk+2,. . . x 10 n.
El procedimiento se basa en agregar 5 x 10 n - (k+1) a y y después truncar para que resulte un
número de la forma
fl (y)= 0,d1 d2 d3 ..., dk, x 10 n.
Error De Truncamiento
"Cualquier número real positivo y puede ser normalizado a:
y= 0, d1 d2 d3..., dk, dk+1, dk+2,. . . x 10 n.
Si y está dentro del rango numérico de la máquina, la forma de punto flotante de y, que se
representará por fl (y), se obtiene terminando la mantisa de y en k cifras decimales. Existen
dos formas de llevar a cabo la terminación. Un método es simplemente truncar los dígitos
dk+1, dk+2,. . . para obtener
fl (y)= 0, d1 d2 d3 ..., dk, x 10 n.
Este método es bastante preciso y se llama truncar el número.
Errores De Una Suma Y Una Resta
En esta sección estudiamos el problema de sumar y restar muchos números en la
computadora. Como cada suma introduce un error, proporcional al épsilon de la máquina
Errores de Suma y Resta
Errores De Una Suma Y Una Resta
U1T1imgsuma.jpgEn esta sección estudiamos el problema de sumar y restar muchos números
en la computadora. Como cada suma introduce un error, proporcional al epsilon de la
máquina, queremos ver como estos errores se acumulan durante el proceso. El análisis que
presentamos generaliza al problema del cálculo de productos interiores.
Cálculos Estables e Inestables
Estabilidad e Inestabilidad
La condición de un problema matemático relaciona a su sensibilidad los cambios en los datos
de entrada. Puede decirse que un cálculo es numéricamente inestable si la incertidumbre de
los valores de entrada aumenta considerablemente por el método numérico.
El que un proceso sea numéricamente estable o inestable debería decidirse con base en los
errores relativos, es decir investigar la inestabilidad o mal condicionamiento, lo cual significa
que un cambio relativamente pequeño en la entrada, digamos del 0,01%, produce un cambio
relativamente grande en la salida, digamos del 1% o más. Una fórmula puede ser inestable sin
importar con qué precisión se realicen los cálculos.

Más contenido relacionado

PPTX
Analisis numerico y manejo de errores
DOCX
Calculo numerico y manejo de errores (Resumen)
PPTX
Presentacion analisis numericos
PPTX
Introduccion al calculo numerico y manejo de errores
PPTX
Analisis numerico
DOCX
TRABAJO ANALISIS NUMERICO
DOCX
Analisis numericos
PPTX
Análisis numérico
Analisis numerico y manejo de errores
Calculo numerico y manejo de errores (Resumen)
Presentacion analisis numericos
Introduccion al calculo numerico y manejo de errores
Analisis numerico
TRABAJO ANALISIS NUMERICO
Analisis numericos
Análisis numérico

La actualidad más candente (20)

DOC
Slider share
DOCX
DOCX
Analisis numerco
PPTX
Calculo Numerico y Analisis de Errores
DOCX
Analisis numerico (maria daniela alvarado) i
DOCX
Analisis numerico
PPTX
Analisis numerico y Teorias de errores
PPTX
Análisis numérico-Leonardo Medina saia B
PPTX
Calculo numerico y manejo de errores
PPTX
ANALISIS NUMERICO
PDF
Introduccion al analisis numerico
PDF
Analisis Numerico
PDF
Análisis numérico y teorias de errores
PPTX
Oreanna Yaraure.
DOCX
Analisis numerico.
PPTX
Analisi numerico
DOCX
Analisis numérico
DOCX
INTRODUCCIÓN AL CÁLCULO NUMÉRICO Y MANEJO DE ERRORES
PPT
Calculo numérico y manejo de errores
DOCX
Introducción a los Métodos Numéricos
Slider share
Analisis numerco
Calculo Numerico y Analisis de Errores
Analisis numerico (maria daniela alvarado) i
Analisis numerico
Analisis numerico y Teorias de errores
Análisis numérico-Leonardo Medina saia B
Calculo numerico y manejo de errores
ANALISIS NUMERICO
Introduccion al analisis numerico
Analisis Numerico
Análisis numérico y teorias de errores
Oreanna Yaraure.
Analisis numerico.
Analisi numerico
Analisis numérico
INTRODUCCIÓN AL CÁLCULO NUMÉRICO Y MANEJO DE ERRORES
Calculo numérico y manejo de errores
Introducción a los Métodos Numéricos
Publicidad

Similar a Analisis numerico (20)

DOCX
Análisis numérico 1
DOCX
Investigacion
PPTX
Analisis
PPTX
Teoría de errores
PPTX
Calculo numerico y manejo de errores
PPTX
Actividad1
PPTX
Calculo numérico y Manejo de errores
PPT
Angelica garcia
PPTX
Analisisnumericoact1
PPTX
Analisisnumericoact1
PPTX
Análisis numérico
PPTX
Presentacion analisis numerico
PPTX
Analisis numerico
DOC
Slider share
PPT
Análisis numerico
PPTX
Presentación de analisis
PPTX
Investigación Análisis Numérico - Alex Pérez
PPTX
Calculo numérico y manejo de errores jose
PPTX
Resumen analisis numerico
PPTX
Calculo numérico y manejo de errores
Análisis numérico 1
Investigacion
Analisis
Teoría de errores
Calculo numerico y manejo de errores
Actividad1
Calculo numérico y Manejo de errores
Angelica garcia
Analisisnumericoact1
Analisisnumericoact1
Análisis numérico
Presentacion analisis numerico
Analisis numerico
Slider share
Análisis numerico
Presentación de analisis
Investigación Análisis Numérico - Alex Pérez
Calculo numérico y manejo de errores jose
Resumen analisis numerico
Calculo numérico y manejo de errores
Publicidad

Último (20)

PDF
TEST DE ORIENTACION VOCACIONAL DILAN MAHECHA
DOCX
LAS DROGAS, SU CONSUMO Y LAS ADICCIONES.docx
PPTX
Curriculo-de-Matematica-Un-Enfoque-por-Competencias.pptx
PPTX
DIAPOSITIVA DE ADELA CORTINA - RAMOS ALANIA ANA MARIA.pptx
PDF
Rendición_Pública_de_Cuentas_Inicial_2019.pdf
PPTX
Inteligencia_Artificialdelosk_Mujer.pptx
PPTX
Las buenas costumbres en la familiaaaaaaa
PPTX
Milder Antoni quirhuayo segura trabajo de investigación .pptx
PDF
NORMA_1887_LEY_27269_Modificada_por_LEY_27310.pdf
PDF
Mapa mental de cultura social Historia Economica
PPTX
Embarazo en adolescentes ksjsjjdkxkxkxkxxj
PPTX
EXPOSICIÓN 2021.pptxhgdfshdghsdgshdghsds
PDF
Manual de presentacion de la aplicacion Plugbot
PPSX
Unidad II - Diseño de una solucion 2025.ppsx
PDF
Unidad Nº 1 Introduccion a Estadísticas
DOCX
Estratégias de Ventas para WhatsApp paso a paso
PDF
REPORTE DE INCIDENCIA DELICTIVA IRAPUATO 1ER SEMESTRE 2025
PPTX
GOOGLE SHEETS IMPORTANCIA Y CARACTERISITICAS
PDF
Mapa mental.pdf esquema de realización en general
PDF
RADIOGRAFIA DEL PARQUE AUTOMOTOR EN BOLIVA Y PROYECCIONES 2025-2030.pdf
TEST DE ORIENTACION VOCACIONAL DILAN MAHECHA
LAS DROGAS, SU CONSUMO Y LAS ADICCIONES.docx
Curriculo-de-Matematica-Un-Enfoque-por-Competencias.pptx
DIAPOSITIVA DE ADELA CORTINA - RAMOS ALANIA ANA MARIA.pptx
Rendición_Pública_de_Cuentas_Inicial_2019.pdf
Inteligencia_Artificialdelosk_Mujer.pptx
Las buenas costumbres en la familiaaaaaaa
Milder Antoni quirhuayo segura trabajo de investigación .pptx
NORMA_1887_LEY_27269_Modificada_por_LEY_27310.pdf
Mapa mental de cultura social Historia Economica
Embarazo en adolescentes ksjsjjdkxkxkxkxxj
EXPOSICIÓN 2021.pptxhgdfshdghsdgshdghsds
Manual de presentacion de la aplicacion Plugbot
Unidad II - Diseño de una solucion 2025.ppsx
Unidad Nº 1 Introduccion a Estadísticas
Estratégias de Ventas para WhatsApp paso a paso
REPORTE DE INCIDENCIA DELICTIVA IRAPUATO 1ER SEMESTRE 2025
GOOGLE SHEETS IMPORTANCIA Y CARACTERISITICAS
Mapa mental.pdf esquema de realización en general
RADIOGRAFIA DEL PARQUE AUTOMOTOR EN BOLIVA Y PROYECCIONES 2025-2030.pdf

Analisis numerico

  • 1. , queremos ver como estos errores se acumulan durante el proceso. El análisis que presentamos generaliza al problema del cálculo de productos interiores. Conceptos en que se basan los Métodos Numéricos, Importancia de utilizar Métodos Numéricos. Hoy en día, las computadoras y los métodos numéricos proporcionan una alternativa para cálculos complicados. Un especialista en análisis numéricos se interesa en la creación y comprensión de buenos métodos que resuelvan problemas numéricamente, el análisis numérico es una herramienta muy útil para un ingeniero ya facilita su trabajo a la hora de cálculo de operaciones muy pequeñas y grandes, tomando en cuenta las características especiales de los instrumentos de cálculo (como calculadoras, computadoras). el cálculo numérico ha sido muy importante para el avance muy importante en todo a que va desde a economía hasta la industria aeroespacial. Cálculo Numérico y el Manejo de Errores Gracias al cálculo numérico y los manejos de errores son muy importante para todas las ramas de ingeniería en general ya que optimiza el cálculo, reduce márgenes de errores y al también importante como es reducir el costo computacional. Definición de Análisis Numérico “Consiste en procedimientos que resuelven problemas y realizan cálculos puramente aritméticos, tomando en cuenta las características especiales de los instrumentos de cálculo (como calculadoras, computadoras) que nos ayudan en la ejecución de las instrucciones del algoritmo con el fin de calcular o aproximar alguna cantidad o función, para el estudio de errores en los cálculos" Números de Maquinas a Decimales. La mayoría de las computadoras hacen los cálculos aritméticos usando el sistema binario (base 2) y no el sistema decimal (base 10). Cuando se introducen números en base 10, la computadora los convierte en números en base 2 (0 quizás en base 16), lleva a cabo los cálculos en base 2 y finalmente presenta los resultados en base 10. La computadora al convertir el número en base 10 a base 2 utiliza la llamada representación de punto flotante y en muchos casos trabaja con aproximaciones de los números que quiere representar dando lugar a errores en los cálculos. Errores Absolutos y Relativos. Hasta ahora hemos estudiado alguna teoría básica de los métodos numéricos que se implementarán más adelante, suponiendo condiciones ideales para su implementación. Los errores asociados con los cálculos y medidas se pueden caracterizar observando su exactitud y precisión. La precisión se refiere a qué tan cercano está un valor individual medido o calculado con respecto a los otros. Los métodos numéricos deben ser lo suficientemente exactos o sin sesgos para que cumplan los requisitos de un problema en particular. "El Error Absoluto es la diferencia entre el valor exacto (un número determinado, por ejemplo) y su valor calculado o redondeado, o sea el valor exacto menos el valor calculado”; debido a
  • 2. que la ecuación se dio en términos del valor absoluto, el error absoluto no es negativo. Así pues, una colección (suma) de errores siempre se incrementa junta, sin reducirse. Cotas de Errores Cota de Errores Absolutos y Relativos. Normalmente no se conoce p y, por tanto, tampoco se conocerá el error absoluto (ni el relativo) de tomar p* como una aproximación de p. Se pretende encontrar cotas superiores de esos errores. Principales Fuentes de Errores. Fuentes Básicas de Errores Existen dos causas principales de errores en los cálculos numéricos: Error de truncamiento y error de redondeo. El Error de Redondeo se asocia con el número limitado de dígitos con que se representan los números en una PC (para comprender la naturaleza de estos errores es necesario conocer las formas en que se almacenan los números y como se llevan a cabo las sumas y restas dentro de una PC). El Error de Truncamiento, se debe a las aproximaciones utilizadas en la fórmula matemática del modelo (la serie de Taylor es el medio más importante que se emplea para obtener modelos numéricos y analizar los errores de truncamiento). Otro caso donde aparecen errores de truncamiento es al aproximar un proceso infinito por uno finito (por ejemplo, truncando los términos de una serie). Errores de Redondeo y Truncamiento. Redondeo y Truncamiento Los errores numéricos se generan al realizar aproximaciones de los resultados de los cálculos matemáticos y se pueden dividir en dos clases fundamentalmente: errores de truncamiento, que resultan de representar aproximadamente un procedimiento matemático exacto, y los errores de redondeo, que resultan de representar aproximadamente números exactos. En cualquier caso, la relación entre el resultado exacto y el aproximado está dada por: Valor verdadero = valor aproximado + error, de donde se observa que el error numérico está dado por: Ev = valor verdadero - valor aproximado. Donde Ev significa el valor exacto del error. La deficiencia del truncamiento o cortado, es atribuida al hecho de que los altos términos en la representación decimal completa no tienen relevancia en la versión de cortar o truncar; por lo tanto el redondeo produce un error bajo en comparación con el truncamiento o cortado. Para que obtengas información, esta es la conexión: Aritmética de Punto Flotante Error De Redondeo El error de redondeo se debe a la naturaleza discreta del sistema numérico de máquina de punto flotante, el cual a su vez se debe a su longitud de palabra finita. Cada número (real) se reemplaza por el número de máquina más cercano. Esto significa que todos los números en un intervalo local están representados por un solo número en el sistema numérico de punto flotante. "Cualquier número real positivo y puede ser normalizado a:
  • 3. y= 0, d1 d2 d3..., dk, dk+1, dk+2,. . . x 10 n. El procedimiento se basa en agregar 5 x 10 n - (k+1) a y y después truncar para que resulte un número de la forma fl (y)= 0,d1 d2 d3 ..., dk, x 10 n. Error De Truncamiento "Cualquier número real positivo y puede ser normalizado a: y= 0, d1 d2 d3..., dk, dk+1, dk+2,. . . x 10 n. Si y está dentro del rango numérico de la máquina, la forma de punto flotante de y, que se representará por fl (y), se obtiene terminando la mantisa de y en k cifras decimales. Existen dos formas de llevar a cabo la terminación. Un método es simplemente truncar los dígitos dk+1, dk+2,. . . para obtener fl (y)= 0, d1 d2 d3 ..., dk, x 10 n. Este método es bastante preciso y se llama truncar el número. Errores De Una Suma Y Una Resta En esta sección estudiamos el problema de sumar y restar muchos números en la computadora. Como cada suma introduce un error, proporcional al épsilon de la máquina Errores de Suma y Resta Errores De Una Suma Y Una Resta U1T1imgsuma.jpgEn esta sección estudiamos el problema de sumar y restar muchos números en la computadora. Como cada suma introduce un error, proporcional al epsilon de la máquina, queremos ver como estos errores se acumulan durante el proceso. El análisis que presentamos generaliza al problema del cálculo de productos interiores. Cálculos Estables e Inestables Estabilidad e Inestabilidad La condición de un problema matemático relaciona a su sensibilidad los cambios en los datos de entrada. Puede decirse que un cálculo es numéricamente inestable si la incertidumbre de los valores de entrada aumenta considerablemente por el método numérico. El que un proceso sea numéricamente estable o inestable debería decidirse con base en los errores relativos, es decir investigar la inestabilidad o mal condicionamiento, lo cual significa que un cambio relativamente pequeño en la entrada, digamos del 0,01%, produce un cambio relativamente grande en la salida, digamos del 1% o más. Una fórmula puede ser inestable sin importar con qué precisión se realicen los cálculos.