SlideShare una empresa de Scribd logo
FÍSICA II - COLOQUIO – 27/12/2006.- TEMA: 1
Apellido y Nombre: ………....………………………… Padrón N°: ………........Física II A/ B
Cuatrimestre y año: ………….... Jefe TP: ……….……....……Profesor:….....………………..
______________________________________________________________________________
1- La figura muestra una configuración electrostática de cargas, que
puede aproximarse a una carga puntual Q (+) y a un disco de radio d/2,
con densidad de carga Φ (+) uniforme. Suponiendo que la carga
puntual se encuentra a una distancia d del centro del disco y ubicada
sobre la normal al mismo que pasa por su centro; se pide:
a) Calcular el potencial electrostático (V4 = 0) en el punto S, ubicado
sobre la recta que pasa por la carga puntual y por el centro del disco
(equidistante a dichos puntos) , y la fuerza (módulo, dirección y
sentido) que la carga ejerce sobre el disco.
b) Calcular el flujo del campo electrostático sobre una superficie
esférica, con centro en la carga puntual y radio 2.d.
c) Si ahora se coloca una esfera dieléctrica descargada de radio d/4, con centro en el punto S
indicar cuanto vale el flujo sobre la superficie esférica indicado en el punto b).
d) Suponiendo que la esfera dieléctrica tiene polarización homogénea isotrópica y lineal, calcular
la divergencia del vector desplazamiento eléctrico dentro de dicha esfera, la densidad
volumétrica de carga de polarización y el valor total de la densidad superficial de carga de
polarización sobre la misma.
2- El circuito magnético de la figura (toroide circular de sección cuadrada), está constituido por
un material ferromagnético inicialmente desmagnetizado (llave
abierta). Sobre el mismo se colocan dos bobinados ideales como se
indican en la figura. Suponiendo conocidos los radios R1 y R2, el
número de espiras N1 y N2 y los valores de la resistencia R y la fem de
la pila ideal E, se pide:
a) Para la hipótesis de permeabilidad magnética relativa constante y de
valor :r >> 1, calcular los valores de las autoinductancias L1 y L2, el
valor absoluto del coeficiente M de inducción mutua y la reluctancia R asociada a los bobinados.
b) Con las mismas hipótesis del punto a), si en el instante t = 0, se cierra la llave calcular la
corriente I(t) y la diferencia de voltaje (vA - vB)(t).
c) Suponiendo ahora conocida la curva B - H de primera imanación del material (no lineal),
explicar como se obtendría el coeficiente de autoinducción incremental L1inc en función de la
corriente L1inc(I)
d) A partir de la obtención de L1inc(I) explicar como se obtendría ahora la corriente I(t) que se
indicara en b).
3- El circuito mostrado en la figura, es excitado por un generador de corriente alterna cuyo valor
pico es Vp = 14,14 V, y su frecuencia igual al doble de la frecuencia a la que resuena la rama
serie A-B formada por el inductor L2 = 40 mH y el capacitor C2 = 1 :F. El voltímetro ideal (Zv =
4) de valor eficaz conectado entre los bornes del inductor de valor L3 = 1 mH indica VL = 10 V.
Sabiendo que R = 10 Σ, y que la potencia reactiva entregada por el generador es Q = 10 VAR
(inductiva), se pide, considerando ideales todos los inductores ( r = 0 Σ):
COLOQUIO FISICA II 23/02/07 TEMA I
Nombre y apellido: Padrón: Física II A/B
Cuatrimestre y año: JTP: Profesor:
1) Dos imanes largos e
idénticos son puestos bajo una
hoja de papel como muestra la
figura. La hoja de papel es
espolvoreada con limaduras de
hierro que se acomodan
siguiendo aproximadamente las
líneas de campo. Elegir,
justificando, cuál de las figuras
A, B, C o D es la que mejor
describe la situación. Ayuda: piense cómo sería la proyección de las líneas de campo de los
imanes en conjunto sobre el plano del papel.
2) Una lámina infinita con densidad de carga superficial σ es cortada
por una superficie gaussiana esférica de radio R a una distancia x del
centro de la esfera. El flujo del campo eléctrico a través de la esfera
es: (Justifique)
a)
0
2
ε
σπR
b)
0
2
R2
ε
σπ
c)
0
2
) σ(
ε
xR −π
d)
0
22
)(
ε
σxR −π
e)
0
22
)(2
ε
σπ xR −
f) Imposible de calcular por la falta de simetría
3) (Sólo F II A) Un gas ideal se expande en forma cuasi estática y adiabática entre un estado
inicial i y uno final f. Señalar verdadero o falso y justificar:
a) No hay cambio en la energía interna del gas.
b) La entropía del estado i es igual a la del f.
c) El trabajo realizado por el gas es negativo
d) La temperatura permanece constante
Un gas ideal, en contacto con una fuente térmica, se expande libremente contra vacío entre un
estado inicial i y uno final f. Señalar verdadero o falso y justificar:
a) La energía interna del gas aumenta.
b) La entropía del estado i es mayor que la del f.
c) El trabajo realizado por el gas es positivo.
d) La cantidad de calor intercambiada es nula.
(Sólo F II B) Un capacitor C = 100 μF se encuentra cargado con 200 μC, en t = 0 se conecta a
una resistencia R = 100 kΩ. Halle y grafique la dependencia temporal de la energía del capacitor
y la disipada en la resistencia.
4) Un circuito RLC serie con C = 10 μF está alimentado por un generador de 220 V, 50 Hz. En
este circuito se mide una potencia activa P = 76 W, una reactiva Q = 76 VA de carácter
inductivo. Determinar: R y L. La inductancia es construida con un material magnético de μr =
100. Dar dimensiones y número de vueltas que satisfagan el valor de L.
5) Describa detalladamente los objetivos, elementos y metodología correspondientes al trabajo
práctico de medida de fuerzas magnéticas. Haga un bosquejo del arreglo experimental al describir
los procedimientos así como un bosquejo de los resultados obtenidos. Estime una cota de error de
la medida en base a las características del instrumental utilizado.
COLOQUIO FISICA II 23/02/07 TEMA II
Nombre y apellido: Padrón: Física II A/B
Cuatrimestre y año: JTP: Profesor:
1) Dos imanes largos e
idénticos son puestos bajo una
hoja de papel como muestra la
figura. La hoja de papel es
espolvoreada con limaduras de
hierro que se acomodan
siguiendo aproximadamente las
líneas de campo. Elegir,
justificando, cuál de las figuras
A, B, C o D es la que mejor describe la situación. Ayuda: piense cómo sería la proyección de las
líneas de campo de los imanes en conjunto sobre el plano del papel.
2) Una lámina infinita con densidad de carga superficial
σ es cortada por una superficie gaussiana cónica de altura
H y diámetro D a una distancia x del vértice del cono. El
flujo del campo eléctrico a través del cono es: (Justifique)
a)
0
2
)2/(
ε
σπ D b) ( )
0
222
22
2
ε
π
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎠
⎞
⎜
⎝
⎛
+
+ DDDH
c) ( )
0
22
2
2
ε
σπ
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡ + DDH d) ( )
0
2
2
ε
σ
⎥
⎥
⎦
⎤
⎢⎣
⎡ − DDH 2
2
π
⎢
e)
2
0 2 ⎥
⎦
⎤
⎢
⎣
⎡
H
Dx
ε
σπ f) Imposible de calcular por la falta de simetría
3) (Sólo F II A) Un gas ideal se expande en forma cuasi estática e isotérmica entre un estado
inicial i y uno final f. Señalar verdadero o falso y justificar:
a) No hay cambio en la energía interna del gas.
b) La entropía del estado i es menor que la del f.
c) El trabajo realizado por el gas es negativo
d) La cantidad de calor intercambiada es negativa.
Un gas ideal, aislado térmicamente, se expande libremente contra vacío, entre un estado inicial i
y uno final f. Señalar verdadero o falso y justificar:
a) La energía interna del gas disminuye.
b) La entropía del estado i es igual a la del f.
c) El trabajo realizado por el gas es nulo.
d) La temperatura permanece constante.
(Sólo F II B) Un capacitor C = 100 μF se encuentra cargado con 200 μC, en t = 0 se conecta a
una resistencia R = 100 kΩ. Halle y grafique la dependencia temporal de la energía del capacitor
y la disipada en la resistencia.
4) Un circuito RLC serie con C = 2.5 μF está alimentado por un generador de 220 V, 50 Hz. En
este circuito se mide una potencia activa P = 76 W, una reactiva Q = 76 VA de carácter
capacitivo. Determinar:
R y L. La inductancia es construida con un material magnético de μr = 50. Dar dimensiones y
número de vueltas que satisfagan el valor de L.
5) Describa detalladamente los objetivos, elementos y metodología correspondientes al trabajo
práctico de medida de fuerzas magnéticas. Haga un bosquejo del arreglo experimental al describir
los procedimientos así como un bosquejo de los resultados obtenidos. Estime una cota de error de
la medida en base a las características del instrumental utilizado.
FÍSICA II - COLOQUIO – 16 de febrero de 2007- TEMA 1
Apellido y Nombre: ……………………………. Padrón N°: ………………. Física II A/ B
Cuatrimestre y año: ………….. Jefe TP: ......…………… Profesor: ………………………..
Ejercicio 1: Sea un capacitor cilíndrico de radio interior 1 cm y exterior 1,5 cm y una longitud de
50 cm (suponer radio<<longitud). El mismo tiene como dieléctrico el vacío y se encuentra
conectado a una fuente de 50 V; se pide calcular:
a) su capacidad, la carga de sus placas, el valor de E, D y P para un radio de 1,25 cm y la energía
almacenada en el capacitor;
b) luego se desconecta la fuente y, sin descargarlo, se llena el espacio entre las placas con un
dieléctrico líquido de εr = 2,5; calcular los mismos valores del punto “a”; justifique lo que sucede
con la energía.
Justificar consideraciones y/o aproximaciones realizadas.
Ejercicio 2: a) ¿Cómo hizo para determinar experimentalmente el valor de la frecuencia de
resonancia en la práctica de alterna? Describa el procedimiento, el instrumental y la expresión usada
para determinarla.
b) ¿Cómo hizo en la práctica de alterna para determinar el coeficiente de inducción mutua M en el
transformador? Describa el procedimiento, el instrumental y la expresión usada para determinarlo.
c) Explique el dispositivo experimental denominado freno magnético. ¿Cómo funciona? ¿En qué
ley se basa? ¿Qué tipo de transformación de la energía ocurre?
Ejercicio 3: Describa el funcionamiento del motor de corriente continua. a) Calcule la cupla
máxima sobre el rotor, si éste está formado por una sola bobina compacta de área A con N vueltas
de alambre por las que circula una corriente I y está inmersa entre los polos de un imán que generan
un campo magnético B.
b) Determine la dependencia de la energía asociada a la rotación en función del ángulo que forman
el campo B y la normal a la superficie del rotor.
Ejercicio 4: Al conjunto de una resistencia de 100 Ω en paralelo con un capacitor C=50 μF se le
conecta en serie un inductor L=150 mHy. Este circuito es alimentado con una fuente de tensión
alterna senoidal, de valor eficaz Vef = 220V y una frecuencia de 50 Hz.
a) Determinar en cada elemento del circuito:
i) tensiones y corrientes, ii) potencia activa, reactiva y aparente.
b) Reiterar el análisis del punto a) para el caso en que se modifique la frecuencia de la fuente, hasta
lograr la condición de resonancia. Calcular dicha frecuencia y los nuevos valores correspondientes
para i y ii.
(FISICA 2 A) Ejercicio 5:
a) Demuestre la equivalencia entre los enunciados de Kelvin-Plank y de Claussius del segundo
pricipio de la termodinámica.
b) Calcule para cada una de las evoluciones indicadas más abajo, la variación de entropía de un gas
ideal monoatómico. Indique en cada caso que información adicional necesita para realizar el
calculo.
i) expansión adiabática reversible ii) expansión isotérmica reversible iii) expansión adiabática
irreversible.
(FISICA 2 B) Ejercicio 6:
Un capacitor C cargado con una carga q es conectado a tiempo t=0 a una resistencia R.
a) Determine la dependencia temporal de la energía del capacitor
b) Calcule la energía total disipada en la resistencia. Que conclusión obtiene?
FÍSICA II - COLOQUIO – 16 de febrero de 2007- TEMA 2
Apellido y Nombre: ……………………………. Padrón N°: ………………. Física II A/ B
Cuatrimestre y año: ………….. Jefe TP: ......…………… Profesor: ………………………..
Ejercicio 1: Sea un capacitor esférico de radio interior 1,5 cm y exterior 4,5 cm. El mismo tiene
como dieléctrico el vacío y se encuentra conectado a una fuente de 100 V; se pide calcular:
a) su capacidad, la carga de sus placas, el valor de E, D y P para un radio de 3 cm y la energía
almacenada en el capacitor;
b) luego se desconecta la fuente y, sin descargarlo, se llena el espacio entre las placas con un
dieléctrico líquido de εr = 3; calcular los mismos valores del punto “a”; justifique lo que sucede con
la energía.
Justificar consideraciones y/o aproximaciones realizadas
Ejercicio 2: Describa el funcionamiento del motor de corriente continua. a) Calcule la cupla
máxima sobre el rotor, si éste está formado por una sola bobina compacta de área A con N vueltas
de alambre por las que circula una corriente I y está inmersa entre los polos de un imán que generan
un campo magnético B.
b) Determine la dependencia de la energía asociada a la rotación en función del ángulo que forman
el campo B y la normal a la superficie del rotor.
Ejercicio 3: a) ¿Cómo hizo en la práctica de alterna para determinar el coeficiente de inducción
mutua M en el transformador? Describa el procedimiento, el instrumental y la expresión usada para
determinarlo.
b) Explique el dispositivo experimental denominado freno magnético. ¿Cómo funciona? ¿En qué
ley se basa? ¿Qué tipo de transformación de la energía ocurre?
c) ¿Cómo hizo para determinar experimentalmente el valor de la frecuencia de resonancia en la
práctica de alterna? Describa el procedimiento, el instrumental y la expresión usada para
determinarla.
Ejercicio 4: Al conjunto de una resistencia de 300 Ω en paralelo con un capacitor C=150 μF se le
conecta en serie un inductor L=100 mHy. Este circuito es alimentado con una fuente de tensión
alterna senoidal, de valor eficaz Vef = 110 V y una frecuencia de 60 Hz.
a) Determinar en cada elemento del circuito:
i) tensión y corriente, ii) potencia activa, reactiva y aparente.
b) Reiterar el análisis del punto a) para el caso en que se modifique la frecuencia de la fuente, hasta
lograr la condición de resonancia. Calcular dicha frecuencia y los nuevos valores correspondientes
para i y ii.
(FISICA 2 A) Ejercicio 5:
a) Demuestre la equivalencia entre los enunciados de Kelvin-Plank y de Claussius del segundo
pricipio de la termodinámica.
b) Calcule para cada una de las evoluciones indicadas más abajo, la variación de entropía de un gas
ideal monoatómico. Indique en cada caso que información adicional necesita para realizar el
calculo.
i) expansión adiabática irreversible ii) expansión adiabática reversible iii) expansión isobárica
reversible.
(FISICA 2 B) Ejercicio 6:
Un capacitor C cargado con una carga q es conectado a tiempo t=0 a una resistencia R.
a)Determine la dependencia temporal de la energía del capacitor
b)Calcule la energía total disipada en la resistencia. Que conclusión obtiene?
a) Calcular la frecuencia del generador y la corriente
eficaz sobre el inductor L3.
b) Obtener el factor de potencia del circuito, la
corriente eficaz sobre el generador y la impedancia
del circuito.
c) Obtener los valores instantáneos de voltaje y
corriente del generador.
d) Dibujar un posible diagrama fasorial.
4- Explicar sintéticamente las mediciones efectuadas y las ecuaciones utilizadas para determinar
el campo eléctrico en la práctica sobre líneas de campo.
5- (Sólo para FII A) Un mol de gas ideal monoatómico, evoluciona a través del ciclo reversible
representado en la figura. En el punto A se conocen la presión PA = Pi, y el volumen VA = Vi. En
el punto B se conocen VB = Vi y PB = 2.Pi. En el punto C, VC = 2.Vi y PC = 2.Pi. Para el punto D,
las coordenadas son VD = 2.Vi y PD = Pi. Suponiendo conocida la
constante universal de los gases R, se pide:
a) El calor y el trabajo en cada evolución, indicando si es recibido
o cedido por el gas.
b) El rendimiento motor (o eficiencia motora) del ciclo y el de una
máquina de Carnot que operase entre las temperaturas máximas y
mínimas de dicho ciclo politérmico.
c) El cambio de entropía del gas durante la expansión isobárica.
d) Si el mismo gas se expande reversible e isotérmicamente desde
el punto A hasta triplicar su volumen, y luego se lo comprime en forma adiabáticamente
irreversible hasta el punto D; explicar por qué el cambio de entropía debe coincidir con el
calculado en c).
5- (Sólo para FII B)
a) Escribir las ecuaciones de Maxwell en su forma diferencial.
b) Obtener la ecuación de las ondas electromagnéticas en el vacío.
FÍSICA II - COLOQUIO – 27/12/2006.- TEMA: 2
Apellido y Nombre: ………....………………………… Padrón N°: ………........Física II A/ B
Cuatrimestre y año: ………….... Jefe TP: ……….……....……Profesor:….....………………..
______________________________________________________________________________
1- La figura muestra una configuración electrostática de cargas, que
puede aproximarse a una carga puntual - |Q| y a un disco de radio d/2,
con densidad de carga Φ (+) uniforme. Suponiendo que la carga puntual
se encuentra a una distancia d del centro del disco y ubicada sobre la
normal al mismo que pasa por su centro; se pide:
a) Calcular el potencial electrostático (V4 = 0) en el punto N, ubicado
sobre la recta que pasa por la carga puntual y por el centro del disco
(equidistante a dichos puntos) , y la fuerza (módulo, dirección y
sentido) que la carga ejerce sobre el disco.
b) Calcular el flujo del campo electrostático sobre una superficie cúbica, con centro en la carga
puntual y lado 2.d.
c) Si ahora se coloca un cubo dieléctrico descargado de lado d/4, con centro en el punto N
indicar cuanto vale el flujo sobre la superficie cúbica indicado en el punto b).
d) Suponiendo que el cubo dieléctrico tiene polarización homogénea isotrópica y lineal, calcular
la divergencia del vector desplazamiento eléctrico dentro de dicho cubo, la densidad volumétrica
de carga de polarización y el valor total de la densidad superficial de carga de polarización sobre
el mismo.
2- El circuito magnético de la figura (toroide circular de sección cuadrada), está constituido por
un material ferromagnético inicialmente desmagnetizado (llave abierta).
Sobre el mismo se colocan dos bobinados ideales como se indican en la
figura. Suponiendo conocidos los radios R1 y R2, el número de espiras
N1 y N2 y los valores de la resistencia R y la fem de la pila ideal E, se
pide:
a) Para la hipótesis de permeabilidad magnética relativa constante y de
valor :r >> 1, calcular los valores de las autoinductancias L1 y L2, el
valor absoluto del coeficiente M de inducción mutua y la reluctancia R asociada a los bobinados.
b) Con las mismas hipótesis del punto a), si en el instante t = 0, se cierra la llave calcular la
corriente I(t) y la diferencia de voltaje (vA - vB)(t).
c) Suponiendo ahora conocida la curva B - H de primera imanación del material (no lineal),
explicar como se obtendría el coeficiente de autoinducción incremental L1inc en función de la
corriente L1inc(I)
d) A partir de la obtención de L1inc(I) explicar como obtendría ahora la corriente I(t) que se
indicara en el punto b).
3- El circuito mostrado en la figura, es excitado por un generador de corriente alterna cuyo valor
pico es Vp = 14,14 V, y su frecuencia igual al doble de la frecuencia a la que resuena la rama
serie A-B formada por el inductor L2 = 40 mH y el capacitor C2 = 1 :F. El voltímetro ideal (Zv =
4) de valor, eficaz conectado entre los bornes del capacitor de valor C3 = 10 :F, indica VC = 10 V.
Sabiendo que R = 10 Σ, y que la potencia reactiva entregada por el generador es Q = 10 VAR
(inductiva), se pide, considerando ideales todos los inductores ( r = 0 Σ):
a) Calcular la frecuencia del generador y la corriente eficaz sobre el capacitor C3.
b) Obtener el factor de potencia del circuito, la corriente
eficaz sobre el generador y la impedancia del circuito
c) Obtener los valores instantáneos de voltaje y corriente
del generador.
d) Dibujar un posible diagrama fasorial.
4- Explicar sintéticamente las mediciones efectuadas y las ecuaciones utilizadas en la práctica de
corriente alterna.
5- (Sólo para FII A) Un mol de gas ideal poliatómico, evoluciona a través del ciclo reversible
representado en la figura. En el punto A se conocen la presión PA = Pi, y el volumen VA = Vi. En
el punto B se conocen VB = Vi y PB = 3.Pi. En el punto C, VC = 3.Vi y PC = 3.Pi. Para el punto D,
las coordenadas son VD = 3.Vi y PD = Pi. Suponiendo conocida la constante universal de los
gases R, se pide:
a) El calor y el trabajo en cada evolución, indicando si es
recibido o cedido por el gas.
b) El rendimiento motor (o eficiencia motora) del ciclo y el de
una máquina de Carnot que operase entre las temperaturas
máximas y mínimas de dicho ciclo politérmico.
c) El cambio de entropía del gas durante la expansión
isobárica.
d) Si el mismo gas se comprime en forma reversible y
adiabática desde A hasta la mitad de volumen, y luego se lo
expande irreversiblemente hasta el punto D; explicar por qué el cambio de entropía debe
coincidir con el calculado en c).
5- (Sólo para FII B)
a) Escriba las ecuaciones de Maxwell en su forma integral.
b) Obtener la ecuación de continuidad de la carga eléctrica.

Más contenido relacionado

PDF
Fii integradora
PPT
Campos Electromagneticos - Tema 4
PDF
Energia potencial electrica problemas resueltos-gonzalo revelo pabon
DOCX
Ejercicios de fisica 3
DOCX
Potencial electrico y capacitores
DOC
2 s312 pvcf 75-80
DOCX
Potencial electrico
Fii integradora
Campos Electromagneticos - Tema 4
Energia potencial electrica problemas resueltos-gonzalo revelo pabon
Ejercicios de fisica 3
Potencial electrico y capacitores
2 s312 pvcf 75-80
Potencial electrico

La actualidad más candente (18)

PDF
Propu electrostatica
PDF
PDF
CAMPO ELECTRICO
DOC
Seminario de la semana 3: Ley de Gauss
PPTX
Trabajo yañez xd
PPTX
Ley de gauss clase 5
PPT
Campos Electromagneticos - Tema 2
PDF
Campo electrico y ley de gauss deberes
PPT
Campos Electromagneticos - Tema 5
PPT
Lecture 02 campos electricos
PPT
Campos Electromagneticos - Tema 11
PPT
Campos Electromagneticos - Tema 9
PDF
3+ +problemas+resueltos+de+metodos+generales(1)
PDF
Fisica - Potencial Electrico
PPT
Tippens fisica 7e_diapositivas_26a
PPT
Capítulo II de Física II - Campo Eléctrico - Definitivo
PDF
Fisica c 2do parcial conceptos
Propu electrostatica
CAMPO ELECTRICO
Seminario de la semana 3: Ley de Gauss
Trabajo yañez xd
Ley de gauss clase 5
Campos Electromagneticos - Tema 2
Campo electrico y ley de gauss deberes
Campos Electromagneticos - Tema 5
Lecture 02 campos electricos
Campos Electromagneticos - Tema 11
Campos Electromagneticos - Tema 9
3+ +problemas+resueltos+de+metodos+generales(1)
Fisica - Potencial Electrico
Tippens fisica 7e_diapositivas_26a
Capítulo II de Física II - Campo Eléctrico - Definitivo
Fisica c 2do parcial conceptos
Publicidad

Similar a Coloquios 2 2006 (20)

DOC
5 s312 pvcf 172-178
DOC
6 s312 pvcf 199-204
DOCX
Examen Física C -ESPOL- 1 er termino 2do parcial
PDF
Coloquio 31 de julio 2008
PDF
Coloquio 1 7 2011 tema 1
DOC
Cap 10 osc em 187-198
PDF
Examen Física C - ESPOL- 1er termino mejoramiento
PDF
Cuestiones_y__problemas_sobre_electromagnetismo.pdf
PDF
Fiem 2012 2
DOCX
Examen fisica 2 erick gil
PPTX
Maquinas electricas
PDF
Problemas cap 2 maquinas electricas unfv
DOC
4 s312 pvcf
DOC
Magnetismo
PDF
B3 magn2 resueltos
DOCX
2doparcial física 2 2014
DOC
5 s312 pvcf 172-178
DOCX
Trabajo Grupal Unidad N° 4
DOCX
Trabajo n° 4
5 s312 pvcf 172-178
6 s312 pvcf 199-204
Examen Física C -ESPOL- 1 er termino 2do parcial
Coloquio 31 de julio 2008
Coloquio 1 7 2011 tema 1
Cap 10 osc em 187-198
Examen Física C - ESPOL- 1er termino mejoramiento
Cuestiones_y__problemas_sobre_electromagnetismo.pdf
Fiem 2012 2
Examen fisica 2 erick gil
Maquinas electricas
Problemas cap 2 maquinas electricas unfv
4 s312 pvcf
Magnetismo
B3 magn2 resueltos
2doparcial física 2 2014
5 s312 pvcf 172-178
Trabajo Grupal Unidad N° 4
Trabajo n° 4
Publicidad

Más de Leandro __ (20)

PDF
Capitulo03
PDF
Bases ejemplos201
PDF
Termodinamica
PDF
Relativ
PDF
Oscilos
PDF
Materiales magneticos
PDF
Magnetos
PDF
Las ecuaciones de maxwell
PDF
Final fisica
PDF
Final 28 07-2011 t2
PDF
Fii parciales
PDF
Energ sistemacargas
PDF
Encendiendo y apagando_circuitos
PDF
Electrostatica
PDF
Electrostatica en el vacio
PDF
Ec maxwell ii 14 10_2006
PDF
Ec maxwell i 14 10_2006
PDF
Corr cont
PDF
Coloquio fisica ii 16 12-2011
PDF
Coloquio fisica 16 02-20120001
Capitulo03
Bases ejemplos201
Termodinamica
Relativ
Oscilos
Materiales magneticos
Magnetos
Las ecuaciones de maxwell
Final fisica
Final 28 07-2011 t2
Fii parciales
Energ sistemacargas
Encendiendo y apagando_circuitos
Electrostatica
Electrostatica en el vacio
Ec maxwell ii 14 10_2006
Ec maxwell i 14 10_2006
Corr cont
Coloquio fisica ii 16 12-2011
Coloquio fisica 16 02-20120001

Último (20)

DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PDF
IPERC...................................
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PDF
EL aprendizaje adaptativo bajo STEM+H.pdf
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
TOMO II - LITERATURA.pd plusenmas ultras
PDF
2.0 Introduccion a processing, y como obtenerlo
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
PDF
informe tipos de Informatica perfiles profesionales _pdf
PPTX
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx
PDF
Escuelas Desarmando una mirada subjetiva a la educación
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PLAN DE CASTELLANO 2021 actualizado a la normativa
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
IPERC...................................
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
EL aprendizaje adaptativo bajo STEM+H.pdf
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
TOMO II - LITERATURA.pd plusenmas ultras
2.0 Introduccion a processing, y como obtenerlo
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
informe tipos de Informatica perfiles profesionales _pdf
T2 Desarrollo del SNC, envejecimiento y anatomia.pptx
Escuelas Desarmando una mirada subjetiva a la educación
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf

Coloquios 2 2006

  • 1. FÍSICA II - COLOQUIO – 27/12/2006.- TEMA: 1 Apellido y Nombre: ………....………………………… Padrón N°: ………........Física II A/ B Cuatrimestre y año: ………….... Jefe TP: ……….……....……Profesor:….....……………….. ______________________________________________________________________________ 1- La figura muestra una configuración electrostática de cargas, que puede aproximarse a una carga puntual Q (+) y a un disco de radio d/2, con densidad de carga Φ (+) uniforme. Suponiendo que la carga puntual se encuentra a una distancia d del centro del disco y ubicada sobre la normal al mismo que pasa por su centro; se pide: a) Calcular el potencial electrostático (V4 = 0) en el punto S, ubicado sobre la recta que pasa por la carga puntual y por el centro del disco (equidistante a dichos puntos) , y la fuerza (módulo, dirección y sentido) que la carga ejerce sobre el disco. b) Calcular el flujo del campo electrostático sobre una superficie esférica, con centro en la carga puntual y radio 2.d. c) Si ahora se coloca una esfera dieléctrica descargada de radio d/4, con centro en el punto S indicar cuanto vale el flujo sobre la superficie esférica indicado en el punto b). d) Suponiendo que la esfera dieléctrica tiene polarización homogénea isotrópica y lineal, calcular la divergencia del vector desplazamiento eléctrico dentro de dicha esfera, la densidad volumétrica de carga de polarización y el valor total de la densidad superficial de carga de polarización sobre la misma. 2- El circuito magnético de la figura (toroide circular de sección cuadrada), está constituido por un material ferromagnético inicialmente desmagnetizado (llave abierta). Sobre el mismo se colocan dos bobinados ideales como se indican en la figura. Suponiendo conocidos los radios R1 y R2, el número de espiras N1 y N2 y los valores de la resistencia R y la fem de la pila ideal E, se pide: a) Para la hipótesis de permeabilidad magnética relativa constante y de valor :r >> 1, calcular los valores de las autoinductancias L1 y L2, el valor absoluto del coeficiente M de inducción mutua y la reluctancia R asociada a los bobinados. b) Con las mismas hipótesis del punto a), si en el instante t = 0, se cierra la llave calcular la corriente I(t) y la diferencia de voltaje (vA - vB)(t). c) Suponiendo ahora conocida la curva B - H de primera imanación del material (no lineal), explicar como se obtendría el coeficiente de autoinducción incremental L1inc en función de la corriente L1inc(I) d) A partir de la obtención de L1inc(I) explicar como se obtendría ahora la corriente I(t) que se indicara en b). 3- El circuito mostrado en la figura, es excitado por un generador de corriente alterna cuyo valor pico es Vp = 14,14 V, y su frecuencia igual al doble de la frecuencia a la que resuena la rama serie A-B formada por el inductor L2 = 40 mH y el capacitor C2 = 1 :F. El voltímetro ideal (Zv = 4) de valor eficaz conectado entre los bornes del inductor de valor L3 = 1 mH indica VL = 10 V. Sabiendo que R = 10 Σ, y que la potencia reactiva entregada por el generador es Q = 10 VAR (inductiva), se pide, considerando ideales todos los inductores ( r = 0 Σ):
  • 2. COLOQUIO FISICA II 23/02/07 TEMA I Nombre y apellido: Padrón: Física II A/B Cuatrimestre y año: JTP: Profesor: 1) Dos imanes largos e idénticos son puestos bajo una hoja de papel como muestra la figura. La hoja de papel es espolvoreada con limaduras de hierro que se acomodan siguiendo aproximadamente las líneas de campo. Elegir, justificando, cuál de las figuras A, B, C o D es la que mejor describe la situación. Ayuda: piense cómo sería la proyección de las líneas de campo de los imanes en conjunto sobre el plano del papel. 2) Una lámina infinita con densidad de carga superficial σ es cortada por una superficie gaussiana esférica de radio R a una distancia x del centro de la esfera. El flujo del campo eléctrico a través de la esfera es: (Justifique) a) 0 2 ε σπR b) 0 2 R2 ε σπ c) 0 2 ) σ( ε xR −π d) 0 22 )( ε σxR −π e) 0 22 )(2 ε σπ xR − f) Imposible de calcular por la falta de simetría 3) (Sólo F II A) Un gas ideal se expande en forma cuasi estática y adiabática entre un estado inicial i y uno final f. Señalar verdadero o falso y justificar: a) No hay cambio en la energía interna del gas. b) La entropía del estado i es igual a la del f. c) El trabajo realizado por el gas es negativo d) La temperatura permanece constante Un gas ideal, en contacto con una fuente térmica, se expande libremente contra vacío entre un estado inicial i y uno final f. Señalar verdadero o falso y justificar: a) La energía interna del gas aumenta. b) La entropía del estado i es mayor que la del f. c) El trabajo realizado por el gas es positivo. d) La cantidad de calor intercambiada es nula. (Sólo F II B) Un capacitor C = 100 μF se encuentra cargado con 200 μC, en t = 0 se conecta a una resistencia R = 100 kΩ. Halle y grafique la dependencia temporal de la energía del capacitor y la disipada en la resistencia. 4) Un circuito RLC serie con C = 10 μF está alimentado por un generador de 220 V, 50 Hz. En este circuito se mide una potencia activa P = 76 W, una reactiva Q = 76 VA de carácter inductivo. Determinar: R y L. La inductancia es construida con un material magnético de μr = 100. Dar dimensiones y número de vueltas que satisfagan el valor de L. 5) Describa detalladamente los objetivos, elementos y metodología correspondientes al trabajo práctico de medida de fuerzas magnéticas. Haga un bosquejo del arreglo experimental al describir los procedimientos así como un bosquejo de los resultados obtenidos. Estime una cota de error de la medida en base a las características del instrumental utilizado.
  • 3. COLOQUIO FISICA II 23/02/07 TEMA II Nombre y apellido: Padrón: Física II A/B Cuatrimestre y año: JTP: Profesor: 1) Dos imanes largos e idénticos son puestos bajo una hoja de papel como muestra la figura. La hoja de papel es espolvoreada con limaduras de hierro que se acomodan siguiendo aproximadamente las líneas de campo. Elegir, justificando, cuál de las figuras A, B, C o D es la que mejor describe la situación. Ayuda: piense cómo sería la proyección de las líneas de campo de los imanes en conjunto sobre el plano del papel. 2) Una lámina infinita con densidad de carga superficial σ es cortada por una superficie gaussiana cónica de altura H y diámetro D a una distancia x del vértice del cono. El flujo del campo eléctrico a través del cono es: (Justifique) a) 0 2 )2/( ε σπ D b) ( ) 0 222 22 2 ε π ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + + DDDH c) ( ) 0 22 2 2 ε σπ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ + DDH d) ( ) 0 2 2 ε σ ⎥ ⎥ ⎦ ⎤ ⎢⎣ ⎡ − DDH 2 2 π ⎢ e) 2 0 2 ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ H Dx ε σπ f) Imposible de calcular por la falta de simetría 3) (Sólo F II A) Un gas ideal se expande en forma cuasi estática e isotérmica entre un estado inicial i y uno final f. Señalar verdadero o falso y justificar: a) No hay cambio en la energía interna del gas. b) La entropía del estado i es menor que la del f. c) El trabajo realizado por el gas es negativo d) La cantidad de calor intercambiada es negativa. Un gas ideal, aislado térmicamente, se expande libremente contra vacío, entre un estado inicial i y uno final f. Señalar verdadero o falso y justificar: a) La energía interna del gas disminuye. b) La entropía del estado i es igual a la del f. c) El trabajo realizado por el gas es nulo. d) La temperatura permanece constante. (Sólo F II B) Un capacitor C = 100 μF se encuentra cargado con 200 μC, en t = 0 se conecta a una resistencia R = 100 kΩ. Halle y grafique la dependencia temporal de la energía del capacitor y la disipada en la resistencia. 4) Un circuito RLC serie con C = 2.5 μF está alimentado por un generador de 220 V, 50 Hz. En este circuito se mide una potencia activa P = 76 W, una reactiva Q = 76 VA de carácter capacitivo. Determinar: R y L. La inductancia es construida con un material magnético de μr = 50. Dar dimensiones y número de vueltas que satisfagan el valor de L. 5) Describa detalladamente los objetivos, elementos y metodología correspondientes al trabajo práctico de medida de fuerzas magnéticas. Haga un bosquejo del arreglo experimental al describir los procedimientos así como un bosquejo de los resultados obtenidos. Estime una cota de error de la medida en base a las características del instrumental utilizado.
  • 4. FÍSICA II - COLOQUIO – 16 de febrero de 2007- TEMA 1 Apellido y Nombre: ……………………………. Padrón N°: ………………. Física II A/ B Cuatrimestre y año: ………….. Jefe TP: ......…………… Profesor: ……………………….. Ejercicio 1: Sea un capacitor cilíndrico de radio interior 1 cm y exterior 1,5 cm y una longitud de 50 cm (suponer radio<<longitud). El mismo tiene como dieléctrico el vacío y se encuentra conectado a una fuente de 50 V; se pide calcular: a) su capacidad, la carga de sus placas, el valor de E, D y P para un radio de 1,25 cm y la energía almacenada en el capacitor; b) luego se desconecta la fuente y, sin descargarlo, se llena el espacio entre las placas con un dieléctrico líquido de εr = 2,5; calcular los mismos valores del punto “a”; justifique lo que sucede con la energía. Justificar consideraciones y/o aproximaciones realizadas. Ejercicio 2: a) ¿Cómo hizo para determinar experimentalmente el valor de la frecuencia de resonancia en la práctica de alterna? Describa el procedimiento, el instrumental y la expresión usada para determinarla. b) ¿Cómo hizo en la práctica de alterna para determinar el coeficiente de inducción mutua M en el transformador? Describa el procedimiento, el instrumental y la expresión usada para determinarlo. c) Explique el dispositivo experimental denominado freno magnético. ¿Cómo funciona? ¿En qué ley se basa? ¿Qué tipo de transformación de la energía ocurre? Ejercicio 3: Describa el funcionamiento del motor de corriente continua. a) Calcule la cupla máxima sobre el rotor, si éste está formado por una sola bobina compacta de área A con N vueltas de alambre por las que circula una corriente I y está inmersa entre los polos de un imán que generan un campo magnético B. b) Determine la dependencia de la energía asociada a la rotación en función del ángulo que forman el campo B y la normal a la superficie del rotor. Ejercicio 4: Al conjunto de una resistencia de 100 Ω en paralelo con un capacitor C=50 μF se le conecta en serie un inductor L=150 mHy. Este circuito es alimentado con una fuente de tensión alterna senoidal, de valor eficaz Vef = 220V y una frecuencia de 50 Hz. a) Determinar en cada elemento del circuito: i) tensiones y corrientes, ii) potencia activa, reactiva y aparente. b) Reiterar el análisis del punto a) para el caso en que se modifique la frecuencia de la fuente, hasta lograr la condición de resonancia. Calcular dicha frecuencia y los nuevos valores correspondientes para i y ii. (FISICA 2 A) Ejercicio 5: a) Demuestre la equivalencia entre los enunciados de Kelvin-Plank y de Claussius del segundo pricipio de la termodinámica. b) Calcule para cada una de las evoluciones indicadas más abajo, la variación de entropía de un gas ideal monoatómico. Indique en cada caso que información adicional necesita para realizar el calculo. i) expansión adiabática reversible ii) expansión isotérmica reversible iii) expansión adiabática irreversible. (FISICA 2 B) Ejercicio 6: Un capacitor C cargado con una carga q es conectado a tiempo t=0 a una resistencia R. a) Determine la dependencia temporal de la energía del capacitor b) Calcule la energía total disipada en la resistencia. Que conclusión obtiene?
  • 5. FÍSICA II - COLOQUIO – 16 de febrero de 2007- TEMA 2 Apellido y Nombre: ……………………………. Padrón N°: ………………. Física II A/ B Cuatrimestre y año: ………….. Jefe TP: ......…………… Profesor: ……………………….. Ejercicio 1: Sea un capacitor esférico de radio interior 1,5 cm y exterior 4,5 cm. El mismo tiene como dieléctrico el vacío y se encuentra conectado a una fuente de 100 V; se pide calcular: a) su capacidad, la carga de sus placas, el valor de E, D y P para un radio de 3 cm y la energía almacenada en el capacitor; b) luego se desconecta la fuente y, sin descargarlo, se llena el espacio entre las placas con un dieléctrico líquido de εr = 3; calcular los mismos valores del punto “a”; justifique lo que sucede con la energía. Justificar consideraciones y/o aproximaciones realizadas Ejercicio 2: Describa el funcionamiento del motor de corriente continua. a) Calcule la cupla máxima sobre el rotor, si éste está formado por una sola bobina compacta de área A con N vueltas de alambre por las que circula una corriente I y está inmersa entre los polos de un imán que generan un campo magnético B. b) Determine la dependencia de la energía asociada a la rotación en función del ángulo que forman el campo B y la normal a la superficie del rotor. Ejercicio 3: a) ¿Cómo hizo en la práctica de alterna para determinar el coeficiente de inducción mutua M en el transformador? Describa el procedimiento, el instrumental y la expresión usada para determinarlo. b) Explique el dispositivo experimental denominado freno magnético. ¿Cómo funciona? ¿En qué ley se basa? ¿Qué tipo de transformación de la energía ocurre? c) ¿Cómo hizo para determinar experimentalmente el valor de la frecuencia de resonancia en la práctica de alterna? Describa el procedimiento, el instrumental y la expresión usada para determinarla. Ejercicio 4: Al conjunto de una resistencia de 300 Ω en paralelo con un capacitor C=150 μF se le conecta en serie un inductor L=100 mHy. Este circuito es alimentado con una fuente de tensión alterna senoidal, de valor eficaz Vef = 110 V y una frecuencia de 60 Hz. a) Determinar en cada elemento del circuito: i) tensión y corriente, ii) potencia activa, reactiva y aparente. b) Reiterar el análisis del punto a) para el caso en que se modifique la frecuencia de la fuente, hasta lograr la condición de resonancia. Calcular dicha frecuencia y los nuevos valores correspondientes para i y ii. (FISICA 2 A) Ejercicio 5: a) Demuestre la equivalencia entre los enunciados de Kelvin-Plank y de Claussius del segundo pricipio de la termodinámica. b) Calcule para cada una de las evoluciones indicadas más abajo, la variación de entropía de un gas ideal monoatómico. Indique en cada caso que información adicional necesita para realizar el calculo. i) expansión adiabática irreversible ii) expansión adiabática reversible iii) expansión isobárica reversible. (FISICA 2 B) Ejercicio 6: Un capacitor C cargado con una carga q es conectado a tiempo t=0 a una resistencia R. a)Determine la dependencia temporal de la energía del capacitor b)Calcule la energía total disipada en la resistencia. Que conclusión obtiene?
  • 6. a) Calcular la frecuencia del generador y la corriente eficaz sobre el inductor L3. b) Obtener el factor de potencia del circuito, la corriente eficaz sobre el generador y la impedancia del circuito. c) Obtener los valores instantáneos de voltaje y corriente del generador. d) Dibujar un posible diagrama fasorial. 4- Explicar sintéticamente las mediciones efectuadas y las ecuaciones utilizadas para determinar el campo eléctrico en la práctica sobre líneas de campo. 5- (Sólo para FII A) Un mol de gas ideal monoatómico, evoluciona a través del ciclo reversible representado en la figura. En el punto A se conocen la presión PA = Pi, y el volumen VA = Vi. En el punto B se conocen VB = Vi y PB = 2.Pi. En el punto C, VC = 2.Vi y PC = 2.Pi. Para el punto D, las coordenadas son VD = 2.Vi y PD = Pi. Suponiendo conocida la constante universal de los gases R, se pide: a) El calor y el trabajo en cada evolución, indicando si es recibido o cedido por el gas. b) El rendimiento motor (o eficiencia motora) del ciclo y el de una máquina de Carnot que operase entre las temperaturas máximas y mínimas de dicho ciclo politérmico. c) El cambio de entropía del gas durante la expansión isobárica. d) Si el mismo gas se expande reversible e isotérmicamente desde el punto A hasta triplicar su volumen, y luego se lo comprime en forma adiabáticamente irreversible hasta el punto D; explicar por qué el cambio de entropía debe coincidir con el calculado en c). 5- (Sólo para FII B) a) Escribir las ecuaciones de Maxwell en su forma diferencial. b) Obtener la ecuación de las ondas electromagnéticas en el vacío.
  • 7. FÍSICA II - COLOQUIO – 27/12/2006.- TEMA: 2 Apellido y Nombre: ………....………………………… Padrón N°: ………........Física II A/ B Cuatrimestre y año: ………….... Jefe TP: ……….……....……Profesor:….....……………….. ______________________________________________________________________________ 1- La figura muestra una configuración electrostática de cargas, que puede aproximarse a una carga puntual - |Q| y a un disco de radio d/2, con densidad de carga Φ (+) uniforme. Suponiendo que la carga puntual se encuentra a una distancia d del centro del disco y ubicada sobre la normal al mismo que pasa por su centro; se pide: a) Calcular el potencial electrostático (V4 = 0) en el punto N, ubicado sobre la recta que pasa por la carga puntual y por el centro del disco (equidistante a dichos puntos) , y la fuerza (módulo, dirección y sentido) que la carga ejerce sobre el disco. b) Calcular el flujo del campo electrostático sobre una superficie cúbica, con centro en la carga puntual y lado 2.d. c) Si ahora se coloca un cubo dieléctrico descargado de lado d/4, con centro en el punto N indicar cuanto vale el flujo sobre la superficie cúbica indicado en el punto b). d) Suponiendo que el cubo dieléctrico tiene polarización homogénea isotrópica y lineal, calcular la divergencia del vector desplazamiento eléctrico dentro de dicho cubo, la densidad volumétrica de carga de polarización y el valor total de la densidad superficial de carga de polarización sobre el mismo. 2- El circuito magnético de la figura (toroide circular de sección cuadrada), está constituido por un material ferromagnético inicialmente desmagnetizado (llave abierta). Sobre el mismo se colocan dos bobinados ideales como se indican en la figura. Suponiendo conocidos los radios R1 y R2, el número de espiras N1 y N2 y los valores de la resistencia R y la fem de la pila ideal E, se pide: a) Para la hipótesis de permeabilidad magnética relativa constante y de valor :r >> 1, calcular los valores de las autoinductancias L1 y L2, el valor absoluto del coeficiente M de inducción mutua y la reluctancia R asociada a los bobinados. b) Con las mismas hipótesis del punto a), si en el instante t = 0, se cierra la llave calcular la corriente I(t) y la diferencia de voltaje (vA - vB)(t). c) Suponiendo ahora conocida la curva B - H de primera imanación del material (no lineal), explicar como se obtendría el coeficiente de autoinducción incremental L1inc en función de la corriente L1inc(I) d) A partir de la obtención de L1inc(I) explicar como obtendría ahora la corriente I(t) que se indicara en el punto b). 3- El circuito mostrado en la figura, es excitado por un generador de corriente alterna cuyo valor pico es Vp = 14,14 V, y su frecuencia igual al doble de la frecuencia a la que resuena la rama serie A-B formada por el inductor L2 = 40 mH y el capacitor C2 = 1 :F. El voltímetro ideal (Zv = 4) de valor, eficaz conectado entre los bornes del capacitor de valor C3 = 10 :F, indica VC = 10 V. Sabiendo que R = 10 Σ, y que la potencia reactiva entregada por el generador es Q = 10 VAR (inductiva), se pide, considerando ideales todos los inductores ( r = 0 Σ): a) Calcular la frecuencia del generador y la corriente eficaz sobre el capacitor C3.
  • 8. b) Obtener el factor de potencia del circuito, la corriente eficaz sobre el generador y la impedancia del circuito c) Obtener los valores instantáneos de voltaje y corriente del generador. d) Dibujar un posible diagrama fasorial. 4- Explicar sintéticamente las mediciones efectuadas y las ecuaciones utilizadas en la práctica de corriente alterna. 5- (Sólo para FII A) Un mol de gas ideal poliatómico, evoluciona a través del ciclo reversible representado en la figura. En el punto A se conocen la presión PA = Pi, y el volumen VA = Vi. En el punto B se conocen VB = Vi y PB = 3.Pi. En el punto C, VC = 3.Vi y PC = 3.Pi. Para el punto D, las coordenadas son VD = 3.Vi y PD = Pi. Suponiendo conocida la constante universal de los gases R, se pide: a) El calor y el trabajo en cada evolución, indicando si es recibido o cedido por el gas. b) El rendimiento motor (o eficiencia motora) del ciclo y el de una máquina de Carnot que operase entre las temperaturas máximas y mínimas de dicho ciclo politérmico. c) El cambio de entropía del gas durante la expansión isobárica. d) Si el mismo gas se comprime en forma reversible y adiabática desde A hasta la mitad de volumen, y luego se lo expande irreversiblemente hasta el punto D; explicar por qué el cambio de entropía debe coincidir con el calculado en c). 5- (Sólo para FII B) a) Escriba las ecuaciones de Maxwell en su forma integral. b) Obtener la ecuación de continuidad de la carga eléctrica.