SlideShare una empresa de Scribd logo
Microsoft Build 2017
Community Edition
MVP NICOLÁS NAKASONE
¿Qué es CosmosDB?
¿Qué es CosmosDB?
¿Qué es CosmosDB?
¿Qué es CosmosDB?
¿Qué es CosmosDB?
¿Qué es CosmosDB?
¿Qué es CosmosDB?
Quienes lo usan…
Casos de Exito
Demo
CON LECHE DE VACA
CON PURA VIDA
Cosmos DB
Cosmos DB
Demo:
1.- Cuenta de Azure
2.- Crear CosmosDB usando API GraphDB
3.- Instalar Greemlin
Mas Recursos…!!!
http://bit.ly/a4r-mlbook
cosmosdb.com
portal.azure.com
aka.ms/cosmosdb
aka.ms/cosmosdb-tables
aka.ms/cosmosdb-Graph
aka.ms/cosmosdb-Mongodb
aka.ms/cosmosdb-documentdb
cosmos.com/capacityplanner
aka.ms/cosmosdb-emulator
Channel9
Microsoft Virtual Academy
Portal.
Muchas Gracias
@nicolasnakasone
nicolas.nakasone@outlook.com
http://www.linkedin/in/nicolas-nakasone
https://www.meetup.com/es/BI-Expert/
https://www.facebook.com/groups/biexpert/

Más contenido relacionado

PDF
FULLSTACK JS DEV in 2017
PPTX
Geeks Papervision3 D
PPTX
Code camp 2011 - Creando aplicaciones a la velocidad de la luz
PPTX
Proyecto 360: Combinar lo mejor de Azure y Office 365
PDF
Azure Storage y Xamarin - Tec Tianguistenco
PPTX
Crea una aplicación web con azure maps
PDF
NSCoder - Metal
PDF
SPS Madrid 2019 - Eleva tu aplicaciones de PowerApps a otro nivel
FULLSTACK JS DEV in 2017
Geeks Papervision3 D
Code camp 2011 - Creando aplicaciones a la velocidad de la luz
Proyecto 360: Combinar lo mejor de Azure y Office 365
Azure Storage y Xamarin - Tec Tianguistenco
Crea una aplicación web con azure maps
NSCoder - Metal
SPS Madrid 2019 - Eleva tu aplicaciones de PowerApps a otro nivel

Similar a Cosmos DB (20)

PDF
Propuesta software
PDF
Backend i os
PPTX
Codemotion cosmosdb
PPTX
Html5 vs Flash
PDF
Sincronización de BD SQLite con MySQL en Android
PPTX
El futuro de office 365 en 2019 y 2020: la innovación (SharePoint & Office 36...
PPTX
Introduction to xamarin
PPT
Comparativa SGBDR
PPTX
Entity Framework Core Con MongoDB
PPTX
Visual basic
PDF
Ficha tecnica mariana
PPTX
Microsoft Developer Day UNED-CR
PPTX
Microsoft Teams: Bots, Messaging Extensions, and Cards.
PPTX
Summit 2013: Optimizando SharePoint2013 para grandes volumenes de informacion
PPTX
Arquitectura Serverless con AWS Lambda y MongoDB Atlas
PPTX
Cosmos DB + Azure Functions- Cloud Lunch and Learn Marathon .pptx
PDF
Frameworks iOS
PPTX
BancaCivica.es: Un caso de éxito Drupal en el sector bancario
Propuesta software
Backend i os
Codemotion cosmosdb
Html5 vs Flash
Sincronización de BD SQLite con MySQL en Android
El futuro de office 365 en 2019 y 2020: la innovación (SharePoint & Office 36...
Introduction to xamarin
Comparativa SGBDR
Entity Framework Core Con MongoDB
Visual basic
Ficha tecnica mariana
Microsoft Developer Day UNED-CR
Microsoft Teams: Bots, Messaging Extensions, and Cards.
Summit 2013: Optimizando SharePoint2013 para grandes volumenes de informacion
Arquitectura Serverless con AWS Lambda y MongoDB Atlas
Cosmos DB + Azure Functions- Cloud Lunch and Learn Marathon .pptx
Frameworks iOS
BancaCivica.es: Un caso de éxito Drupal en el sector bancario
Publicidad

Más de nnakasone (20)

PPTX
Azure Data Mesh
PPTX
Big Data en el mundo del Machine Learning
PPTX
Como empezar tu Carrera como Azure Data Engineer
PPTX
Aprende a diseñar tableros de control (dashboard) de Alto impacto
PPTX
Azure Synapse LInk
PPTX
Ingeniería de datos para el mejoramiento continuo de los negocios
PDF
Como Empezar en el mundo de la Inteligencia Artificial
PPTX
Introducing to sql server 2022
PPTX
Synthetic data
PPTX
PowerBI Admin
PDF
Analitica Aplicada a la Salud
PDF
GAI_Microsoft_Speech_NN.pdf
PDF
Implementando redes educativas empresariales
PDF
Construyendo soluciones ONNX con Microsoft AI Platform
PDF
Detectando Mentiras con AI
PDF
Azure Hd insigth news
PDF
Genomic sql pass
PDF
Azure Quantum Computing
PPTX
Inteligencia Artificial Success Case
PPTX
Vision Artificial Casos de Exito
Azure Data Mesh
Big Data en el mundo del Machine Learning
Como empezar tu Carrera como Azure Data Engineer
Aprende a diseñar tableros de control (dashboard) de Alto impacto
Azure Synapse LInk
Ingeniería de datos para el mejoramiento continuo de los negocios
Como Empezar en el mundo de la Inteligencia Artificial
Introducing to sql server 2022
Synthetic data
PowerBI Admin
Analitica Aplicada a la Salud
GAI_Microsoft_Speech_NN.pdf
Implementando redes educativas empresariales
Construyendo soluciones ONNX con Microsoft AI Platform
Detectando Mentiras con AI
Azure Hd insigth news
Genomic sql pass
Azure Quantum Computing
Inteligencia Artificial Success Case
Vision Artificial Casos de Exito
Publicidad

Último (20)

PPTX
Presentación PASANTIAS AuditorioOO..pptx
PDF
Liceo departamental MICRO BIT (1) 2.pdfbbbnn
PDF
5.1 Pinch y Bijker en libro Actos, actores y artefactos de Bunch Thomas (coor...
PPTX
sa-cs-82-powerpoint-hardware-y-software_ver_4.pptx
PPTX
Power Point Nicolás Carrasco (disertación Roblox).pptx
PPTX
RAP02 - TECNICO SISTEMAS TELEINFORMATICOS.pptx
PDF
programa-de-estudios-2011-guc3ada-para-el-maestro-secundarias-tecnicas-tecnol...
DOCX
Zarate Quispe Alex aldayir aplicaciones de internet .docx
PPTX
Acronis Cyber Protect Cloud para Ciber Proteccion y Ciber Seguridad LATAM - A...
PPT
El-Gobierno-Electrónico-En-El-Estado-Bolivia
PPTX
ANCASH-CRITERIOS DE EVALUACIÓN-FORMA-10-10 (2).pptx
PDF
Calidad desde el Docente y la mejora continua .pdf
PDF
taller de informática - LEY DE OHM
PPTX
Sesion 1 de microsoft power point - Clase 1
PPTX
Propuesta BKP servidores con Acronis1.pptx
PDF
CyberOps Associate - Cisco Networking Academy
PPTX
REDES INFORMATICAS REDES INFORMATICAS.pptx
PPT
Que son las redes de computadores y sus partes
PDF
Estrategia de apoyo tecnología grado 9-3
PDF
Plantilla para Diseño de Narrativas Transmedia.pdf
Presentación PASANTIAS AuditorioOO..pptx
Liceo departamental MICRO BIT (1) 2.pdfbbbnn
5.1 Pinch y Bijker en libro Actos, actores y artefactos de Bunch Thomas (coor...
sa-cs-82-powerpoint-hardware-y-software_ver_4.pptx
Power Point Nicolás Carrasco (disertación Roblox).pptx
RAP02 - TECNICO SISTEMAS TELEINFORMATICOS.pptx
programa-de-estudios-2011-guc3ada-para-el-maestro-secundarias-tecnicas-tecnol...
Zarate Quispe Alex aldayir aplicaciones de internet .docx
Acronis Cyber Protect Cloud para Ciber Proteccion y Ciber Seguridad LATAM - A...
El-Gobierno-Electrónico-En-El-Estado-Bolivia
ANCASH-CRITERIOS DE EVALUACIÓN-FORMA-10-10 (2).pptx
Calidad desde el Docente y la mejora continua .pdf
taller de informática - LEY DE OHM
Sesion 1 de microsoft power point - Clase 1
Propuesta BKP servidores con Acronis1.pptx
CyberOps Associate - Cisco Networking Academy
REDES INFORMATICAS REDES INFORMATICAS.pptx
Que son las redes de computadores y sus partes
Estrategia de apoyo tecnología grado 9-3
Plantilla para Diseño de Narrativas Transmedia.pdf

Notas del editor

  • #3: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #4: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #5: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #6: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #7: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #8: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #9: Machine Learning finds patterns in large volumes of data and uses those patterns to perform predictive analysis. Microsoft offers Azure Machine Learning, while Amazon offers Amazon Machine Learning and Google offers the Google Prediction API. Software products such as MATLAB support traditional, non-cloud-based ML modeling. Machine learning models fall into two broad categories: supervised and unsupervised. In supervised learning, the model is "trained" with a large volume of data and algorithms are then used to predict an outcome from future inputs. Most supervised learning models use regression algorithms to compute an outcome from a continuous set of possible outcomes (for example, your score on a test), or classification algorithms to compute the probability of an outcome from a finite set of possible outcomes (for example, the probability that an e-mail is spam or a credit-card transaction is fraudulent). In unsupervised learning, the computer isn't trained, but is presented with a set of data and challenged to find relationships in it. K-Means Clustering is a common unsupervised learning algorithm. For a great explanation of how it works, see https://blog.intercom.io/machine-learning-way-easier-than-it-looks/.
  • #16: Good book -- and free! Another recommended book on Azure Machine is Learning is "Predictive Analytics with Microsoft Azure Machine Learning " (https://www.amazon.com/Predictive-Analytics-Microsoft-Machine-Learning/dp/1484212010).