SlideShare una empresa de Scribd logo
2010
 DISTRIBUCIÓN DE PROBABILIDAD
NORMAL ESQUEMA DE APLICACIONES




                      Ivan Fernando Suárez Lozano
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Objeto:


El siguiente documento muestra la forma de desarrollar los distintos tipos de ejercicios tipo de una distribución de
probabilidad normal


                                                                      CONTENIDO.


Generalidades ............................................................................................................................................. 3

Probabilidad entre la media y un valor X ...................................................................................................... 4

Probabilidad entre un valor X1<µ y X2>µ ..................................................................................................... 5

Probabilidad entre un valor µ<X1<X2 ........................................................................................................... 6

Probabilidad para un valor superior a X1 ..................................................................................................... 7

Probabilidad para <X1 y X2> ........................................................................................................................ 8

Hallar un valor X para una probabilidad determinada. ............................................................................... 10

Hallar valores de X para una probabilidad determinada. ............................................................................ 11

TABLA DE VALORES DE Z ............................................................................................................................ 13
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Generalidades


   Para la explicación de estos esquemas de probabilidad, basados en la distribución de probabilidad normal, el
    estudiante debe conocer y comprender las propiedades expuestas sobre distribución de probabilidad normal.
   Para todos los ejercicios vamos a suponer una media igual a 15 y una desviación estándar igual a 5.69
Gráficamente:




              -2 -1   0   1   2   3   4   5   6   7   8   9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Probabilidad entre la media y un valor X


¿Cuál es la probabilidad de encontrar un dato entre la media y 24?
Es decir, como se observa en la grafica.




Calculamos Z para X=24
        −  24 − 15
 =          =        ≅ 1.58
              5.69
Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.58, es decir P(Z1.58)
       0,00        0,01        0,02        0,03        0,04        0,05        0,06        0,07        0,08        0,09
1,4    0,4192433   0,4207302   0,4221962   0,4236415   0,4250663   0,4264707   0,4278550   0,4292191   0,4305634   0,4318879
1,5    0,4331928   0,4344783   0,4357445   0,4369916   0,4382198   0,4394292   0,4406201   0,4417924   0,4429466   0,4440826
1,6    0,4452007   0,4463011   0,4473839   0,4484493   0,4494974   0,4505285   0,4515428   0,4525403   0,4535213   0,4544860



Por tanto la probabilidad de encontrar un dato entre la media y 24 es igual a 0,4429466.


Recuerde que si en vez de 24 el dato fuera 6, el valor Z resultante seria aproximadamente -1.58, y el valor de la
probabilidad seria el mismo, por las propiedades de la distribución normal ya expuestas anteriormente
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Probabilidad entre un valor X1<µ y X2>µ


¿Cuál es la probabilidad de encontrar un dato entre 11 y 19?


Es decir, como se observa en la grafica:


                                                                                           Debemos hallar la probabilidad
                                                                                           para X1=11 y X2=19.


                                                                                           Para X1=11


                                                                                                   −  11 − 15
                                                                                            =          =        ≅ 0.7
                                                                                                         5.69


                                                                                           Y para X2=19


                                                                                                   −  19 − 15
                                                                                            =          =        ≅ 0.7
                                                                                                         5.69
En este caso los valores nos dan iguales por tanto debemos buscar en la tabla de probabilidades, el valor
correspondiente a Z=0.7


    0,00        0,01         0,02          0,03        0,04        0,05        0,06         0,07          0,08        0,09
0,6 0,2257469   0,2290691    0,2323711     0,2356527   0,2389137   0,2421539   0,2453731    0,2485711     0,2517478   0,2549029
0,7 0,2580363   0,2611479    0,2642375     0,2673049   0,2703500   0,2733726   0,2763727    0,2793501     0,2823046   0,2852361
0,8 0,2881446   0,2910299    0,2938919     0,2967306   0,2995458   0,3023375   0,3051055    0,3078498     0,3105703   0,3132671



Por tanto la probabilidad seria igual a:
P(X1<µ<X2)=P(ZX1)+P(ZX2)
P(11<µ<19)=P(Z0.7)+P(Z0.7)
P(11<µ<19)=0.25803+0.25803
P(11<µ<19)=0.51606
Por tanto, la probabilidad de encontrar un numero entre 11 y 19, para una media igual a 15, con desviación estándar
igual a 5.69 es de 51.606%
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Probabilidad entre un valor µ<X1<X2


¿Cuál es la probabilidad de encontrar un dato entre 17 y 22?
Es decir, como se observa en la grafica:


                                                                            Debemos hallar la probabilidad para X1=17 y
                                                                            X2=22.


                                                                            Para X1=17


                                                                                     −  17 − 15
                                                                             =           =        ≅ 0.35
                                                                                           5.69


                                                                            Y para X2=22


                                                                                                −  22 − 15
                                                                                         =          =        ≅ 1.23
                                                                                                      5.69
Debemos buscar en la tabla los valores correspondientes a Z=0.35 y Z=1.23
Para P(ZX1)=P(Z0.35)= 0.1368307
               0,00        0,01       0,02        0,03        0,04        0,05          0,06        0,07        0,08        0,09
   0,2      0,0792597   0,0831662   0,0870644   0,0909541   0,0948349   0,0987063    0,1025681    0,1064199   0,1102612   0,1140919
   0,3      0,1179114   0,1217195   0,1255158   0,1293000   0,1330717   0,1368307    0,1405764    0,1443088   0,1480273   0,1517317
   0,4      0,1554217   0,1590970   0,1627573   0,1664022   0,1700314   0,1736448    0,1772419    0,1808225   0,1843863   0,1879331
Para P(ZX2)=P(Z1.23)= 0.3906514
               0,00        0,01       0,02        0,03        0,04        0,05          0,06        0,07        0,08        0,09
   1,1      0,3643339   0,3665005   0,3686431   0,3707619   0,3728568   0,3749281    0,3769756    0,3789995   0,3809999   0,3829768
   1,2      0,3849303   0,3868606   0,3887676   0,3906514   0,3925123   0,3943502    0,3961653    0,3979577   0,3997274   0,4014747
   1,3      0,4031995   0,4049021   0,4065825   0,4082409   0,4098773   0,4114920    0,4130850    0,4146565   0,4162067   0,4177356
Por tanto la probabilidad será igual a:
  < 1 < 2 =  2 − (1)
  < 1 < 2 =  1.23 − (0.35 )
  < 1 < 2 = 0.3906514 − 0.1368307 ≅ 0.2538
R//La probabilidad de encontrar un dato entre 22 y 17, para una media de 15 y una D.E. de 5.69 es igual a 25.38%
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Probabilidad para un valor superior a X1


¿Cuál es la probabilidad de encontrar un dato por encima de 24?
Es decir, como se observa en la grafica.




Calculamos Z para X=24
        −  24 − 15
 =          =        ≅ 1.58
              5.69
Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.58, es decir P(Z1.58)
       0,00        0,01         0,02        0,03        0,04        0,05        0,06        0,07        0,08        0,09
1,4    0,4192433   0,4207302    0,4221962   0,4236415   0,4250663   0,4264707   0,4278550   0,4292191   0,4305634   0,4318879
1,5    0,4331928   0,4344783    0,4357445   0,4369916   0,4382198   0,4394292   0,4406201   0,4417924   0,4429466   0,4440826
1,6    0,4452007   0,4463011    0,4473839   0,4484493   0,4494974   0,4505285   0,4515428   0,4525403   0,4535213   0,4544860



Por las propiedades de la distribución normal expuestas anteriormente, tenemos que la probabilidad será Igual a:


 > 1 = 0.5 − (1)
 > 1 = 0.5 − (11.58 )
 > 1 = 0.5 − 0.4429466
 > 1 = 0,0570534

La probabilidad de encontrar un número superior a 24 es igual a 5.71%
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Probabilidad para <X1 y X2>


Lo que deseamos en este caso es encontrar la probabilidad de encontrar un dato por fuera de dos números; X1, en este
caso lo tomaremos como 7.5, y X2 que será 22.5, como se observa en la grafica.




Debemos, como hemos hecho en casos anteriores, calcular las probabilidades para X1 y X2
        −  22.5 − 15
 =          =          ≅ 1.32
               5.69
Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.32, es decir P(Z1.32)
               0,00        0,01        0,02        0,03         0,04        0,05            0,06          0,07         0,08        0,09
1,2         0,3849303   0,3868606   0,3887676   0,3906514    0,3925123   0,3943502       0,3961653     0,3979577    0,3997274   0,4014747
1,3         0,4031995   0,4049021   0,4065825   0,4082409    0,4098773   0,4114920       0,4130850     0,4146565    0,4162067   0,4177356
1,4         0,4192433   0,4207302   0,4221962   0,4236415    0,4250663   0,4264707       0,4278550     0,4292191    0,4305634   0,4318879


        −  5.5 − 15
 =          =         ≅ −1.67
               5.69
Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.67, es decir P(Z1.67)
                    0,00        0,01        0,02        0,03        0,04        0,05          0,06         0,07        0,08        0,09
      1,5        0,4331928   0,4344783   0,4357445   0,4369916   0,4382198   0,4394292     0,4406201    0,4417924   0,4429466   0,4440826
      1,6        0,4452007   0,4463011   0,4473839   0,4484493   0,4494974   0,4505285     0,4515428    0,4525403   0,4535213   0,4544860
      1,7        0,4554345   0,4563671   0,4572838   0,4581849   0,4590705   0,4599408     0,4607961    0,4616364   0,4624620   0,4632730

Por propiedades de la distribución normal vistas anteriormente.

 < 1  2 > = 1 −  1 + (2 )
 < 1  2 > = 1 −  1.32 + (1.67)
 < 1  2 > = 1 − 0,4065825 + 0,4525403
 < 1  2 > = 1 − 0,85183653
 < 1  2 > =0,14816347
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Por tanto, la probabilidad de encontrar un numero por fuera de 5.5 y 22.5, para una media igual a 15 y una desviación
igual a 5.69 es de 14.82%
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Hallar un valor X para una probabilidad determinada.


Para este tipo de ejercicios, lo que se desea es saber entre que valor de la media y un valor desconocido X, se encuentra
una probabilidad dada.
¿Cuál es el valor de X, donde se encuentra el 35% de probabilidad?
Gráficamente:
                                                                               Para este caso, tenemos los siguientes datos:
                                                                               Media=15, d.e.=5.69 y P(ZX?)=0.35
                                                                               Por lo tanto debemos hallar un valor X, que
                                                                               satisfaga la condición de que la probabilidad sea
                                                                               igual a 35%
                                                                               Por formula sabemos que:
                                                                                      −
                                                                                =     
                                                                                              despejando Z

                                                                                =  + 
                                                                               Sin embargo nos falta el valor de Z, el cual
                                                                               podemos hallar en la tabla de valores de Z
                                                                               buscando la probabilidad asociada1; para nuestro
                                                                               caso 35%
                0,00         0,01         0,02        0,03         0,04         0,05             0,06        0,07        0,08        0,09
    0,0      0,0000000    0,0039894    0,0079783   0,0119665    0,0159534    0,0199388        0,0239222   0,0279032   0,0318814   0,0358564
    0,1      0,0398278    0,0437953    0,0477584   0,0517168    0,0556700    0,0596177        0,0635595   0,0674949   0,0714237   0,0753454
    0,2      0,0792597    0,0831662    0,0870644   0,0909541    0,0948349    0,0987063        0,1025681   0,1064199   0,1102612   0,1140919
    0,3      0,1179114    0,1217195    0,1255158   0,1293000    0,1330717    0,1368307        0,1405764   0,1443088   0,1480273   0,1517317
    0,4      0,1554217    0,1590970    0,1627573   0,1664022    0,1700314    0,1736448        0,1772419   0,1808225   0,1843863   0,1879331
    0,5      0,1914625    0,1949743    0,1984682   0,2019440    0,2054015    0,2088403        0,2122603   0,2156612   0,2190427   0,2224047
    0,6      0,2257469    0,2290691    0,2323711   0,2356527    0,2389137    0,2421539        0,2453731   0,2485711   0,2517478   0,2549029
    0,7      0,2580363    0,2611479    0,2642375   0,2673049    0,2703500    0,2733726        0,2763727   0,2793501   0,2823046   0,2852361
    0,8      0,2881446    0,2910299    0,2938919   0,2967306    0,2995458    0,3023375        0,3051055   0,3078498   0,3105703   0,3132671
    0,9      0,3159399    0,3185887    0,3212136   0,3238145    0,3263912    0,3289439        0,3314724   0,3339768   0,3364569   0,3389129
    1,0      0,3413447    0,3437524    0,3461358   0,3484950    0,3508300    0,3531409        0,3554277   0,3576903   0,3599289   0,3621434
    1,1      0,3643339    0,3665005    0,3686431   0,3707619    0,3728568    0,3749281        0,3769756   0,3789995   0,3809999   0,3829768
    1,2      0,3849303    0,3868606    0,3887676   0,3906514    0,3925123    0,3943502        0,3961653   0,3979577   0,3997274   0,4014747
    1,3      0,4031995    0,4049021    0,4065825   0,4082409    0,4098773    0,4114920        0,4130850   0,4146565   0,4162067   0,4177356



El valor de Z seria por tanto 0.03, que corresponde a una probabilidad de 0.3484950≅0.35.
Reemplazando en la formula:  =  +  = 15 + 5.69 × 1.03 = 20.8607
Por tanto el valor X aproximado, donde se encuentra el 35% de los datos es igual a 20.86




1
 Para la búsqueda del dato, siempre debemos aproximarlos a los valores inferiores al valor buscado, decir aproximarnos por debajo y no por
encima.
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

Hallar valores de X para una probabilidad determinada.

En este caso lo que deseamos hallar es los valores de X, entre los cuales se encuentra una probabilidad determinada,
supongamos que deseamos saber entre que valores de X se encuentra el 80% de los datos.
Utilizando las propiedades de la distribución normal, tendremos:
                                                                              Para este caso debemos calcular dos
                                                                              valores, y dado que nos proporcionan
                                                                              un valor superior al 50%, sin mayor
                                                                              información, debemos asumir que del
                                                                              80%, 40% están por debajo de la media
                                                                              y 40% por encima de la media.
                                                                              También debemos recordar que por
                                                                              debajo de la media los valores de Z,
                                                                              son negativos, indicando solamente su
                                                                              dirección.


                                                                              Como siempre tendremos la formula:
       −
 =           y sustituyendo tendremos;  =  + , gráficamente.
         



                                                                                   Recordemos que el valor del signo
                                                                                   (-) nos indica la dirección en la
                                                                                   cual se ubica el valor de X.
                                                                                   Bien, ahora debemos hallar el
                                                                                   valor de Z, el cual ubicamos el la
                                                                                   tabla,   como    se    hizo    en   el
                                                                                   ejercicios anterior.
DISTRIBUCIÓN DE PROBABILIDAD NORMAL



              0          0,01        0,02      0,03        0,04        0,05       0,06          0,07         0,08       0,09
   0      0,000000    0,00398936 0,00797831 0,01196647 0,01595344 0,01993881 0,02392218 0,02790317 0,03188137 0,03585639
  0,8     0,2881446   0,29102991 0,29389195 0,29673061 0,29954581 0,30233746 0,30510548       0,3078498   0,31057035 0,31326706
  0,9    0,31593987 0,31858875 0,32121362 0,32381446 0,32639122 0,32894387 0,33147239 0,33397675 0,33645694 0,33891294
  1,0    0,34134475 0,34375235 0,34613577    0,348495   0,35083005 0,35314094   0,3554277    0,35769035 0,35992891 0,36214343
  1,1    0,36433394 0,36650049 0,36864312 0,37076189 0,37285685 0,37492806      0,3769756    0,37899952 0,38099989   0,3829768
  1,2    0,38493033 0,38686055 0,38876756 0,39065145    0,3925123   0,39435023 0,39616532 0,39795768 0,39972743 0,40147467
  1,3    0,40319952 0,40490208 0,40658249 0,40824086 0,40987733 0,41149201 0,41308504 0,41465655 0,41620668 0,41773556


Por lo tanto el valor de Z es 1,28, reemplazando en la formula tenemos:
                          Para X1                                                           Para X2
                       1 =  −                                                 1 =  + 
                  1 = 15 − 1.28 × 5.69                                        1 = 15 + 1.28 × 5.69
                       1 = 7,7296                                                  1 = 22,2704


GRÁFICAMENTE:
DISTRIBUCIÓN DE PROBABILIDAD NORMAL

TABLA DE VALORES DE Z
                             Valores para una distribución de probabilidad normal estándar con media igual cero y
                             desviación igual a 1.




            0,00        0,01        0,02        0,03        0,04        0,05        0,06        0,07        0,08        0,09
  0,0    0,0000000   0,0039894   0,0079783   0,0119665   0,0159534   0,0199388   0,0239222   0,0279032   0,0318814   0,0358564
  0,1    0,0398278   0,0437953   0,0477584   0,0517168   0,0556700   0,0596177   0,0635595   0,0674949   0,0714237   0,0753454
  0,2    0,0792597   0,0831662   0,0870644   0,0909541   0,0948349   0,0987063   0,1025681   0,1064199   0,1102612   0,1140919
  0,3    0,1179114   0,1217195   0,1255158   0,1293000   0,1330717   0,1368307   0,1405764   0,1443088   0,1480273   0,1517317
  0,4    0,1554217   0,1590970   0,1627573   0,1664022   0,1700314   0,1736448   0,1772419   0,1808225   0,1843863   0,1879331
  0,5    0,1914625   0,1949743   0,1984682   0,2019440   0,2054015   0,2088403   0,2122603   0,2156612   0,2190427   0,2224047
  0,6    0,2257469   0,2290691   0,2323711   0,2356527   0,2389137   0,2421539   0,2453731   0,2485711   0,2517478   0,2549029
  0,7    0,2580363   0,2611479   0,2642375   0,2673049   0,2703500   0,2733726   0,2763727   0,2793501   0,2823046   0,2852361
  0,8    0,2881446   0,2910299   0,2938919   0,2967306   0,2995458   0,3023375   0,3051055   0,3078498   0,3105703   0,3132671
  0,9    0,3159399   0,3185887   0,3212136   0,3238145   0,3263912   0,3289439   0,3314724   0,3339768   0,3364569   0,3389129
  1,0    0,3413447   0,3437524   0,3461358   0,3484950   0,3508300   0,3531409   0,3554277   0,3576903   0,3599289   0,3621434
  1,1    0,3643339   0,3665005   0,3686431   0,3707619   0,3728568   0,3749281   0,3769756   0,3789995   0,3809999   0,3829768
  1,2    0,3849303   0,3868606   0,3887676   0,3906514   0,3925123   0,3943502   0,3961653   0,3979577   0,3997274   0,4014747
  1,3    0,4031995   0,4049021   0,4065825   0,4082409   0,4098773   0,4114920   0,4130850   0,4146565   0,4162067   0,4177356
  1,4    0,4192433   0,4207302   0,4221962   0,4236415   0,4250663   0,4264707   0,4278550   0,4292191   0,4305634   0,4318879
  1,5    0,4331928   0,4344783   0,4357445   0,4369916   0,4382198   0,4394292   0,4406201   0,4417924   0,4429466   0,4440826
  1,6    0,4452007   0,4463011   0,4473839   0,4484493   0,4494974   0,4505285   0,4515428   0,4525403   0,4535213   0,4544860
  1,7    0,4554345   0,4563671   0,4572838   0,4581849   0,4590705   0,4599408   0,4607961   0,4616364   0,4624620   0,4632730
  1,8    0,4640697   0,4648521   0,4656205   0,4663750   0,4671159   0,4678432   0,4685572   0,4692581   0,4699460   0,4706210
  1,9    0,4712834   0,4719334   0,4725711   0,4731966   0,4738102   0,4744119   0,4750021   0,4755808   0,4761482   0,4767045
  2,0    0,4772499   0,4777844   0,4783083   0,4788217   0,4793248   0,4798178   0,4803007   0,4807738   0,4812372   0,4816911
  2,1    0,4821356   0,4825708   0,4829970   0,4834142   0,4838226   0,4842224   0,4846137   0,4849966   0,4853713   0,4857379
  2,2    0,4860966   0,4864474   0,4867906   0,4871263   0,4874545   0,4877755   0,4880894   0,4883962   0,4886962   0,4889893
  2,3    0,4892759   0,4895559   0,4898296   0,4900969   0,4903581   0,4906133   0,4908625   0,4911060   0,4913437   0,4915758
  2,4    0,4918025   0,4920237   0,4922397   0,4924506   0,4926564   0,4928572   0,4930531   0,4932443   0,4934309   0,4936128
  2,5    0,4937903   0,4939634   0,4941323   0,4942969   0,4944574   0,4946139   0,4947664   0,4949151   0,4950600   0,4952012
  2,6    0,4953388   0,4954729   0,4956035   0,4957308   0,4958547   0,4959754   0,4960930   0,4962074   0,4963189   0,4964274
  2,7    0,4965330   0,4966358   0,4967359   0,4968333   0,4969280   0,4970202   0,4971099   0,4971972   0,4972821   0,4973646
  2,8    0,4974449   0,4975229   0,4975988   0,4976726   0,4977443   0,4978140   0,4978818   0,4979476   0,4980116   0,4980738
  2,9    0,4981342   0,4981929   0,4982498   0,4983052   0,4983589   0,4984111   0,4984618   0,4985110   0,4985588   0,4986051
  3,0    0,4986501   0,4986938   0,4987361   0,4987772   0,4988171   0,4988558   0,4988933   0,4989297   0,4989650   0,4989992
  3,1    0,4990324   0,4990646   0,4990957   0,4991260   0,4991553   0,4991836   0,4992112   0,4992378   0,4992636   0,4992886
  3,2    0,4993129   0,4993363   0,4993590   0,4993810   0,4994024   0,4994230   0,4994429   0,4994623   0,4994810   0,4994991
  3,3    0,4995166   0,4995335   0,4995499   0,4995658   0,4995811   0,4995959   0,4996103   0,4996242   0,4996376   0,4996505
  3,4    0,4996631   0,4996752   0,4996869   0,4996982   0,4997091   0,4997197   0,4997299   0,4997398   0,4997493   0,4997585
  3,5    0,4997674   0,4997759   0,4997842   0,4997922   0,4997999   0,4998074   0,4998146   0,4998215   0,4998282   0,4998347
  3,6    0,4998409   0,4998469   0,4998527   0,4998583   0,4998637   0,4998689   0,4998739   0,4998787   0,4998834   0,4998879
  3,7    0,4998922   0,4998964   0,4999004   0,4999043   0,4999080   0,4999116   0,4999150   0,4999184   0,4999216   0,4999247
  3,8    0,4999277   0,4999305   0,4999333   0,4999359   0,4999385   0,4999409   0,4999433   0,4999456   0,4999478   0,4999499
  3,9    0,4999519   0,4999539   0,4999557   0,4999575   0,4999593   0,4999609   0,4999625   0,4999641   0,4999655   0,4999670

Más contenido relacionado

PPT
Distribucion de poisson
PDF
Distribucion normal
PPTX
Distribuciones discretas estadis ii
DOC
Distribuciones de probabilidad con ejemplos
DOCX
Distribución de bernoulli ejercicios
PDF
Prueba de hipotesis para dos muestra
PDF
Problemas resueltos de Inecuaciones Lineales ccesa007
PDF
Análisis de correlación y regresión lineal simple
Distribucion de poisson
Distribucion normal
Distribuciones discretas estadis ii
Distribuciones de probabilidad con ejemplos
Distribución de bernoulli ejercicios
Prueba de hipotesis para dos muestra
Problemas resueltos de Inecuaciones Lineales ccesa007
Análisis de correlación y regresión lineal simple

La actualidad más candente (20)

PPTX
Presentación Distribución de Probabilidad
PPT
Distribucion Binomial
PPTX
Correlación y Regresión lineal simple
PPTX
Prueba de hipotesis sobre la media con varianza desconocida
PPTX
Teorema del limite central
PPTX
Distribucion binomial
PPTX
Ejercicios de correlación lineal de Pearson con “IBM SPSS Statistics 20”
PPT
Intervalos de confianza 2
PDF
Cálculo Integral para Empresariales
PPTX
3.3 Variables Aleatorias Continuas
PDF
Estimacion. limites o intervalos de confianza para la media y para las propor...
PPTX
proposiciones lógicas -matematica basica
PDF
Problemas resuelto-de-probabilidad
PPTX
Inecuaciones y sistemas
PPTX
Estimación por Intervalos
PDF
T de student
PPTX
Gabriela Machado 25.852.386 PROBABILIDAD Y TEOREMA DE BAYES
PPTX
Inferencia estadistica
PPT
Distribucion normal completo
Presentación Distribución de Probabilidad
Distribucion Binomial
Correlación y Regresión lineal simple
Prueba de hipotesis sobre la media con varianza desconocida
Teorema del limite central
Distribucion binomial
Ejercicios de correlación lineal de Pearson con “IBM SPSS Statistics 20”
Intervalos de confianza 2
Cálculo Integral para Empresariales
3.3 Variables Aleatorias Continuas
Estimacion. limites o intervalos de confianza para la media y para las propor...
proposiciones lógicas -matematica basica
Problemas resuelto-de-probabilidad
Inecuaciones y sistemas
Estimación por Intervalos
T de student
Gabriela Machado 25.852.386 PROBABILIDAD Y TEOREMA DE BAYES
Inferencia estadistica
Distribucion normal completo
Publicidad

Similar a Explicacion Ejercicios Distribucion Normal (20)

PDF
INFERENCIA ESTADISTICA
PPT
Binomialandnormal
PDF
Distribucion muestral de proporciones
DOC
Cinco ejemplos de aplicación de las distribuciones de probabilidad.
DOCX
Ejemplificacion de 5 ejemplos de cada una de las distracciones.
PDF
Cc trabajo tema 5
PDF
La distribución normal
DOCX
Segundodocu
PDF
Sol13
DOCX
Distribución de probabilidad.ejemplos
DOCX
Estadistica
DOCX
Distribución de probabilidad. 1
PPTX
Normal
DOCX
Distrubución binomial
PPTX
Explicación de problemas
PPTX
Explicación de problemas
DOCX
Trabajo Final 3
DOC
Ejemplos de distribuciones
INFERENCIA ESTADISTICA
Binomialandnormal
Distribucion muestral de proporciones
Cinco ejemplos de aplicación de las distribuciones de probabilidad.
Ejemplificacion de 5 ejemplos de cada una de las distracciones.
Cc trabajo tema 5
La distribución normal
Segundodocu
Sol13
Distribución de probabilidad.ejemplos
Estadistica
Distribución de probabilidad. 1
Normal
Distrubución binomial
Explicación de problemas
Explicación de problemas
Trabajo Final 3
Ejemplos de distribuciones
Publicidad

Más de Ivan Fernando Suarez Lozano (10)

PDF
ESTADISTICA I 03 APLICACIONES DE LA ESTADISTICA
PDF
INSTRUCTIVO DE ESTADISTICA TEMA II
PDF
INSTRUCTIVO DE ESTADISTICA TEMA I
PDF
ESTADISTICA DESCRIPTIVA TEMA 07 ESTADIGRAFOS DE DISPERSIÓN
PDF
ESTADISTICA DESCRIPTIVA TEMA 05 TABLAS Y DATOS AGRUPADOS
PDF
ESTADISTICA DESCRIPTIVA TEMA 04 LA INVESTIGACION ESTADISTICA
PDF
ESTADISTICA DESCRIPTIVA TEMA 03 APLICACIONES DE LA ESTADISTICA
PDF
ESTADISTICA DESCRIPTIVA TEMA 02 HISTORIA DE LA ESTADISTICA
PPSX
INDICADORES DE GESTIÓN
PPS
CURSO DE AUDITORIA RESUMEN
ESTADISTICA I 03 APLICACIONES DE LA ESTADISTICA
INSTRUCTIVO DE ESTADISTICA TEMA II
INSTRUCTIVO DE ESTADISTICA TEMA I
ESTADISTICA DESCRIPTIVA TEMA 07 ESTADIGRAFOS DE DISPERSIÓN
ESTADISTICA DESCRIPTIVA TEMA 05 TABLAS Y DATOS AGRUPADOS
ESTADISTICA DESCRIPTIVA TEMA 04 LA INVESTIGACION ESTADISTICA
ESTADISTICA DESCRIPTIVA TEMA 03 APLICACIONES DE LA ESTADISTICA
ESTADISTICA DESCRIPTIVA TEMA 02 HISTORIA DE LA ESTADISTICA
INDICADORES DE GESTIÓN
CURSO DE AUDITORIA RESUMEN

Último (20)

PDF
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
PDF
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
PPTX
caso clínico iam clinica y semiología l3.pptx
PDF
biología es un libro sobre casi todo el tema de biología
DOCX
Informe_practica pre Final.docxddadssasdddddddddddddddddddddddddddddddddddddddd
PDF
ciencias-1.pdf libro cuarto basico niños
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
Metodologías Activas con herramientas IAG
PDF
DI, TEA, TDAH.pdf guía se secuencias didacticas
PDF
Escuelas Desarmando una mirada subjetiva a la educación
PPTX
Doctrina 1 Soteriologuia y sus diferente
PDF
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
PPTX
Welcome to the 8th Physical Science Class 2025-2026
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
caso clínico iam clinica y semiología l3.pptx
biología es un libro sobre casi todo el tema de biología
Informe_practica pre Final.docxddadssasdddddddddddddddddddddddddddddddddddddddd
ciencias-1.pdf libro cuarto basico niños
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
Híper Mega Repaso Histológico Bloque 3.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
Metodologías Activas con herramientas IAG
DI, TEA, TDAH.pdf guía se secuencias didacticas
Escuelas Desarmando una mirada subjetiva a la educación
Doctrina 1 Soteriologuia y sus diferente
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
Welcome to the 8th Physical Science Class 2025-2026
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
1. Intrdoduccion y criterios de seleccion de Farm 2024.pdf
Fundamentos_Educacion_a_Distancia_ABC.pdf

Explicacion Ejercicios Distribucion Normal

  • 1. 2010 DISTRIBUCIÓN DE PROBABILIDAD NORMAL ESQUEMA DE APLICACIONES Ivan Fernando Suárez Lozano
  • 2. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Objeto: El siguiente documento muestra la forma de desarrollar los distintos tipos de ejercicios tipo de una distribución de probabilidad normal CONTENIDO. Generalidades ............................................................................................................................................. 3 Probabilidad entre la media y un valor X ...................................................................................................... 4 Probabilidad entre un valor X1<µ y X2>µ ..................................................................................................... 5 Probabilidad entre un valor µ<X1<X2 ........................................................................................................... 6 Probabilidad para un valor superior a X1 ..................................................................................................... 7 Probabilidad para <X1 y X2> ........................................................................................................................ 8 Hallar un valor X para una probabilidad determinada. ............................................................................... 10 Hallar valores de X para una probabilidad determinada. ............................................................................ 11 TABLA DE VALORES DE Z ............................................................................................................................ 13
  • 3. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Generalidades  Para la explicación de estos esquemas de probabilidad, basados en la distribución de probabilidad normal, el estudiante debe conocer y comprender las propiedades expuestas sobre distribución de probabilidad normal.  Para todos los ejercicios vamos a suponer una media igual a 15 y una desviación estándar igual a 5.69 Gráficamente: -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
  • 4. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Probabilidad entre la media y un valor X ¿Cuál es la probabilidad de encontrar un dato entre la media y 24? Es decir, como se observa en la grafica. Calculamos Z para X=24 − 24 − 15 = = ≅ 1.58 5.69 Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.58, es decir P(Z1.58) 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,4 0,4192433 0,4207302 0,4221962 0,4236415 0,4250663 0,4264707 0,4278550 0,4292191 0,4305634 0,4318879 1,5 0,4331928 0,4344783 0,4357445 0,4369916 0,4382198 0,4394292 0,4406201 0,4417924 0,4429466 0,4440826 1,6 0,4452007 0,4463011 0,4473839 0,4484493 0,4494974 0,4505285 0,4515428 0,4525403 0,4535213 0,4544860 Por tanto la probabilidad de encontrar un dato entre la media y 24 es igual a 0,4429466. Recuerde que si en vez de 24 el dato fuera 6, el valor Z resultante seria aproximadamente -1.58, y el valor de la probabilidad seria el mismo, por las propiedades de la distribución normal ya expuestas anteriormente
  • 5. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Probabilidad entre un valor X1<µ y X2>µ ¿Cuál es la probabilidad de encontrar un dato entre 11 y 19? Es decir, como se observa en la grafica: Debemos hallar la probabilidad para X1=11 y X2=19. Para X1=11 − 11 − 15 = = ≅ 0.7 5.69 Y para X2=19 − 19 − 15 = = ≅ 0.7 5.69 En este caso los valores nos dan iguales por tanto debemos buscar en la tabla de probabilidades, el valor correspondiente a Z=0.7 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,6 0,2257469 0,2290691 0,2323711 0,2356527 0,2389137 0,2421539 0,2453731 0,2485711 0,2517478 0,2549029 0,7 0,2580363 0,2611479 0,2642375 0,2673049 0,2703500 0,2733726 0,2763727 0,2793501 0,2823046 0,2852361 0,8 0,2881446 0,2910299 0,2938919 0,2967306 0,2995458 0,3023375 0,3051055 0,3078498 0,3105703 0,3132671 Por tanto la probabilidad seria igual a: P(X1<µ<X2)=P(ZX1)+P(ZX2) P(11<µ<19)=P(Z0.7)+P(Z0.7) P(11<µ<19)=0.25803+0.25803 P(11<µ<19)=0.51606 Por tanto, la probabilidad de encontrar un numero entre 11 y 19, para una media igual a 15, con desviación estándar igual a 5.69 es de 51.606%
  • 6. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Probabilidad entre un valor µ<X1<X2 ¿Cuál es la probabilidad de encontrar un dato entre 17 y 22? Es decir, como se observa en la grafica: Debemos hallar la probabilidad para X1=17 y X2=22. Para X1=17 − 17 − 15 = = ≅ 0.35 5.69 Y para X2=22 − 22 − 15 = = ≅ 1.23 5.69 Debemos buscar en la tabla los valores correspondientes a Z=0.35 y Z=1.23 Para P(ZX1)=P(Z0.35)= 0.1368307 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,2 0,0792597 0,0831662 0,0870644 0,0909541 0,0948349 0,0987063 0,1025681 0,1064199 0,1102612 0,1140919 0,3 0,1179114 0,1217195 0,1255158 0,1293000 0,1330717 0,1368307 0,1405764 0,1443088 0,1480273 0,1517317 0,4 0,1554217 0,1590970 0,1627573 0,1664022 0,1700314 0,1736448 0,1772419 0,1808225 0,1843863 0,1879331 Para P(ZX2)=P(Z1.23)= 0.3906514 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,1 0,3643339 0,3665005 0,3686431 0,3707619 0,3728568 0,3749281 0,3769756 0,3789995 0,3809999 0,3829768 1,2 0,3849303 0,3868606 0,3887676 0,3906514 0,3925123 0,3943502 0,3961653 0,3979577 0,3997274 0,4014747 1,3 0,4031995 0,4049021 0,4065825 0,4082409 0,4098773 0,4114920 0,4130850 0,4146565 0,4162067 0,4177356 Por tanto la probabilidad será igual a: < 1 < 2 = 2 − (1) < 1 < 2 = 1.23 − (0.35 ) < 1 < 2 = 0.3906514 − 0.1368307 ≅ 0.2538 R//La probabilidad de encontrar un dato entre 22 y 17, para una media de 15 y una D.E. de 5.69 es igual a 25.38%
  • 7. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Probabilidad para un valor superior a X1 ¿Cuál es la probabilidad de encontrar un dato por encima de 24? Es decir, como se observa en la grafica. Calculamos Z para X=24 − 24 − 15 = = ≅ 1.58 5.69 Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.58, es decir P(Z1.58) 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,4 0,4192433 0,4207302 0,4221962 0,4236415 0,4250663 0,4264707 0,4278550 0,4292191 0,4305634 0,4318879 1,5 0,4331928 0,4344783 0,4357445 0,4369916 0,4382198 0,4394292 0,4406201 0,4417924 0,4429466 0,4440826 1,6 0,4452007 0,4463011 0,4473839 0,4484493 0,4494974 0,4505285 0,4515428 0,4525403 0,4535213 0,4544860 Por las propiedades de la distribución normal expuestas anteriormente, tenemos que la probabilidad será Igual a: > 1 = 0.5 − (1) > 1 = 0.5 − (11.58 ) > 1 = 0.5 − 0.4429466 > 1 = 0,0570534 La probabilidad de encontrar un número superior a 24 es igual a 5.71%
  • 8. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Probabilidad para <X1 y X2> Lo que deseamos en este caso es encontrar la probabilidad de encontrar un dato por fuera de dos números; X1, en este caso lo tomaremos como 7.5, y X2 que será 22.5, como se observa en la grafica. Debemos, como hemos hecho en casos anteriores, calcular las probabilidades para X1 y X2 − 22.5 − 15 = = ≅ 1.32 5.69 Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.32, es decir P(Z1.32) 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,2 0,3849303 0,3868606 0,3887676 0,3906514 0,3925123 0,3943502 0,3961653 0,3979577 0,3997274 0,4014747 1,3 0,4031995 0,4049021 0,4065825 0,4082409 0,4098773 0,4114920 0,4130850 0,4146565 0,4162067 0,4177356 1,4 0,4192433 0,4207302 0,4221962 0,4236415 0,4250663 0,4264707 0,4278550 0,4292191 0,4305634 0,4318879 − 5.5 − 15 = = ≅ −1.67 5.69 Buscamos este valor en la tabla, la probabilidad asociada a un valor Z=1.67, es decir P(Z1.67) 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 1,5 0,4331928 0,4344783 0,4357445 0,4369916 0,4382198 0,4394292 0,4406201 0,4417924 0,4429466 0,4440826 1,6 0,4452007 0,4463011 0,4473839 0,4484493 0,4494974 0,4505285 0,4515428 0,4525403 0,4535213 0,4544860 1,7 0,4554345 0,4563671 0,4572838 0,4581849 0,4590705 0,4599408 0,4607961 0,4616364 0,4624620 0,4632730 Por propiedades de la distribución normal vistas anteriormente. < 1 2 > = 1 − 1 + (2 ) < 1 2 > = 1 − 1.32 + (1.67) < 1 2 > = 1 − 0,4065825 + 0,4525403 < 1 2 > = 1 − 0,85183653 < 1 2 > =0,14816347
  • 9. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Por tanto, la probabilidad de encontrar un numero por fuera de 5.5 y 22.5, para una media igual a 15 y una desviación igual a 5.69 es de 14.82%
  • 10. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Hallar un valor X para una probabilidad determinada. Para este tipo de ejercicios, lo que se desea es saber entre que valor de la media y un valor desconocido X, se encuentra una probabilidad dada. ¿Cuál es el valor de X, donde se encuentra el 35% de probabilidad? Gráficamente: Para este caso, tenemos los siguientes datos: Media=15, d.e.=5.69 y P(ZX?)=0.35 Por lo tanto debemos hallar un valor X, que satisfaga la condición de que la probabilidad sea igual a 35% Por formula sabemos que: − = despejando Z = + Sin embargo nos falta el valor de Z, el cual podemos hallar en la tabla de valores de Z buscando la probabilidad asociada1; para nuestro caso 35% 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,0000000 0,0039894 0,0079783 0,0119665 0,0159534 0,0199388 0,0239222 0,0279032 0,0318814 0,0358564 0,1 0,0398278 0,0437953 0,0477584 0,0517168 0,0556700 0,0596177 0,0635595 0,0674949 0,0714237 0,0753454 0,2 0,0792597 0,0831662 0,0870644 0,0909541 0,0948349 0,0987063 0,1025681 0,1064199 0,1102612 0,1140919 0,3 0,1179114 0,1217195 0,1255158 0,1293000 0,1330717 0,1368307 0,1405764 0,1443088 0,1480273 0,1517317 0,4 0,1554217 0,1590970 0,1627573 0,1664022 0,1700314 0,1736448 0,1772419 0,1808225 0,1843863 0,1879331 0,5 0,1914625 0,1949743 0,1984682 0,2019440 0,2054015 0,2088403 0,2122603 0,2156612 0,2190427 0,2224047 0,6 0,2257469 0,2290691 0,2323711 0,2356527 0,2389137 0,2421539 0,2453731 0,2485711 0,2517478 0,2549029 0,7 0,2580363 0,2611479 0,2642375 0,2673049 0,2703500 0,2733726 0,2763727 0,2793501 0,2823046 0,2852361 0,8 0,2881446 0,2910299 0,2938919 0,2967306 0,2995458 0,3023375 0,3051055 0,3078498 0,3105703 0,3132671 0,9 0,3159399 0,3185887 0,3212136 0,3238145 0,3263912 0,3289439 0,3314724 0,3339768 0,3364569 0,3389129 1,0 0,3413447 0,3437524 0,3461358 0,3484950 0,3508300 0,3531409 0,3554277 0,3576903 0,3599289 0,3621434 1,1 0,3643339 0,3665005 0,3686431 0,3707619 0,3728568 0,3749281 0,3769756 0,3789995 0,3809999 0,3829768 1,2 0,3849303 0,3868606 0,3887676 0,3906514 0,3925123 0,3943502 0,3961653 0,3979577 0,3997274 0,4014747 1,3 0,4031995 0,4049021 0,4065825 0,4082409 0,4098773 0,4114920 0,4130850 0,4146565 0,4162067 0,4177356 El valor de Z seria por tanto 0.03, que corresponde a una probabilidad de 0.3484950≅0.35. Reemplazando en la formula: = + = 15 + 5.69 × 1.03 = 20.8607 Por tanto el valor X aproximado, donde se encuentra el 35% de los datos es igual a 20.86 1 Para la búsqueda del dato, siempre debemos aproximarlos a los valores inferiores al valor buscado, decir aproximarnos por debajo y no por encima.
  • 11. DISTRIBUCIÓN DE PROBABILIDAD NORMAL Hallar valores de X para una probabilidad determinada. En este caso lo que deseamos hallar es los valores de X, entre los cuales se encuentra una probabilidad determinada, supongamos que deseamos saber entre que valores de X se encuentra el 80% de los datos. Utilizando las propiedades de la distribución normal, tendremos: Para este caso debemos calcular dos valores, y dado que nos proporcionan un valor superior al 50%, sin mayor información, debemos asumir que del 80%, 40% están por debajo de la media y 40% por encima de la media. También debemos recordar que por debajo de la media los valores de Z, son negativos, indicando solamente su dirección. Como siempre tendremos la formula: − = y sustituyendo tendremos; = + , gráficamente. Recordemos que el valor del signo (-) nos indica la dirección en la cual se ubica el valor de X. Bien, ahora debemos hallar el valor de Z, el cual ubicamos el la tabla, como se hizo en el ejercicios anterior.
  • 12. DISTRIBUCIÓN DE PROBABILIDAD NORMAL 0 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0 0,000000 0,00398936 0,00797831 0,01196647 0,01595344 0,01993881 0,02392218 0,02790317 0,03188137 0,03585639 0,8 0,2881446 0,29102991 0,29389195 0,29673061 0,29954581 0,30233746 0,30510548 0,3078498 0,31057035 0,31326706 0,9 0,31593987 0,31858875 0,32121362 0,32381446 0,32639122 0,32894387 0,33147239 0,33397675 0,33645694 0,33891294 1,0 0,34134475 0,34375235 0,34613577 0,348495 0,35083005 0,35314094 0,3554277 0,35769035 0,35992891 0,36214343 1,1 0,36433394 0,36650049 0,36864312 0,37076189 0,37285685 0,37492806 0,3769756 0,37899952 0,38099989 0,3829768 1,2 0,38493033 0,38686055 0,38876756 0,39065145 0,3925123 0,39435023 0,39616532 0,39795768 0,39972743 0,40147467 1,3 0,40319952 0,40490208 0,40658249 0,40824086 0,40987733 0,41149201 0,41308504 0,41465655 0,41620668 0,41773556 Por lo tanto el valor de Z es 1,28, reemplazando en la formula tenemos: Para X1 Para X2 1 = − 1 = + 1 = 15 − 1.28 × 5.69 1 = 15 + 1.28 × 5.69 1 = 7,7296 1 = 22,2704 GRÁFICAMENTE:
  • 13. DISTRIBUCIÓN DE PROBABILIDAD NORMAL TABLA DE VALORES DE Z Valores para una distribución de probabilidad normal estándar con media igual cero y desviación igual a 1. 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,0 0,0000000 0,0039894 0,0079783 0,0119665 0,0159534 0,0199388 0,0239222 0,0279032 0,0318814 0,0358564 0,1 0,0398278 0,0437953 0,0477584 0,0517168 0,0556700 0,0596177 0,0635595 0,0674949 0,0714237 0,0753454 0,2 0,0792597 0,0831662 0,0870644 0,0909541 0,0948349 0,0987063 0,1025681 0,1064199 0,1102612 0,1140919 0,3 0,1179114 0,1217195 0,1255158 0,1293000 0,1330717 0,1368307 0,1405764 0,1443088 0,1480273 0,1517317 0,4 0,1554217 0,1590970 0,1627573 0,1664022 0,1700314 0,1736448 0,1772419 0,1808225 0,1843863 0,1879331 0,5 0,1914625 0,1949743 0,1984682 0,2019440 0,2054015 0,2088403 0,2122603 0,2156612 0,2190427 0,2224047 0,6 0,2257469 0,2290691 0,2323711 0,2356527 0,2389137 0,2421539 0,2453731 0,2485711 0,2517478 0,2549029 0,7 0,2580363 0,2611479 0,2642375 0,2673049 0,2703500 0,2733726 0,2763727 0,2793501 0,2823046 0,2852361 0,8 0,2881446 0,2910299 0,2938919 0,2967306 0,2995458 0,3023375 0,3051055 0,3078498 0,3105703 0,3132671 0,9 0,3159399 0,3185887 0,3212136 0,3238145 0,3263912 0,3289439 0,3314724 0,3339768 0,3364569 0,3389129 1,0 0,3413447 0,3437524 0,3461358 0,3484950 0,3508300 0,3531409 0,3554277 0,3576903 0,3599289 0,3621434 1,1 0,3643339 0,3665005 0,3686431 0,3707619 0,3728568 0,3749281 0,3769756 0,3789995 0,3809999 0,3829768 1,2 0,3849303 0,3868606 0,3887676 0,3906514 0,3925123 0,3943502 0,3961653 0,3979577 0,3997274 0,4014747 1,3 0,4031995 0,4049021 0,4065825 0,4082409 0,4098773 0,4114920 0,4130850 0,4146565 0,4162067 0,4177356 1,4 0,4192433 0,4207302 0,4221962 0,4236415 0,4250663 0,4264707 0,4278550 0,4292191 0,4305634 0,4318879 1,5 0,4331928 0,4344783 0,4357445 0,4369916 0,4382198 0,4394292 0,4406201 0,4417924 0,4429466 0,4440826 1,6 0,4452007 0,4463011 0,4473839 0,4484493 0,4494974 0,4505285 0,4515428 0,4525403 0,4535213 0,4544860 1,7 0,4554345 0,4563671 0,4572838 0,4581849 0,4590705 0,4599408 0,4607961 0,4616364 0,4624620 0,4632730 1,8 0,4640697 0,4648521 0,4656205 0,4663750 0,4671159 0,4678432 0,4685572 0,4692581 0,4699460 0,4706210 1,9 0,4712834 0,4719334 0,4725711 0,4731966 0,4738102 0,4744119 0,4750021 0,4755808 0,4761482 0,4767045 2,0 0,4772499 0,4777844 0,4783083 0,4788217 0,4793248 0,4798178 0,4803007 0,4807738 0,4812372 0,4816911 2,1 0,4821356 0,4825708 0,4829970 0,4834142 0,4838226 0,4842224 0,4846137 0,4849966 0,4853713 0,4857379 2,2 0,4860966 0,4864474 0,4867906 0,4871263 0,4874545 0,4877755 0,4880894 0,4883962 0,4886962 0,4889893 2,3 0,4892759 0,4895559 0,4898296 0,4900969 0,4903581 0,4906133 0,4908625 0,4911060 0,4913437 0,4915758 2,4 0,4918025 0,4920237 0,4922397 0,4924506 0,4926564 0,4928572 0,4930531 0,4932443 0,4934309 0,4936128 2,5 0,4937903 0,4939634 0,4941323 0,4942969 0,4944574 0,4946139 0,4947664 0,4949151 0,4950600 0,4952012 2,6 0,4953388 0,4954729 0,4956035 0,4957308 0,4958547 0,4959754 0,4960930 0,4962074 0,4963189 0,4964274 2,7 0,4965330 0,4966358 0,4967359 0,4968333 0,4969280 0,4970202 0,4971099 0,4971972 0,4972821 0,4973646 2,8 0,4974449 0,4975229 0,4975988 0,4976726 0,4977443 0,4978140 0,4978818 0,4979476 0,4980116 0,4980738 2,9 0,4981342 0,4981929 0,4982498 0,4983052 0,4983589 0,4984111 0,4984618 0,4985110 0,4985588 0,4986051 3,0 0,4986501 0,4986938 0,4987361 0,4987772 0,4988171 0,4988558 0,4988933 0,4989297 0,4989650 0,4989992 3,1 0,4990324 0,4990646 0,4990957 0,4991260 0,4991553 0,4991836 0,4992112 0,4992378 0,4992636 0,4992886 3,2 0,4993129 0,4993363 0,4993590 0,4993810 0,4994024 0,4994230 0,4994429 0,4994623 0,4994810 0,4994991 3,3 0,4995166 0,4995335 0,4995499 0,4995658 0,4995811 0,4995959 0,4996103 0,4996242 0,4996376 0,4996505 3,4 0,4996631 0,4996752 0,4996869 0,4996982 0,4997091 0,4997197 0,4997299 0,4997398 0,4997493 0,4997585 3,5 0,4997674 0,4997759 0,4997842 0,4997922 0,4997999 0,4998074 0,4998146 0,4998215 0,4998282 0,4998347 3,6 0,4998409 0,4998469 0,4998527 0,4998583 0,4998637 0,4998689 0,4998739 0,4998787 0,4998834 0,4998879 3,7 0,4998922 0,4998964 0,4999004 0,4999043 0,4999080 0,4999116 0,4999150 0,4999184 0,4999216 0,4999247 3,8 0,4999277 0,4999305 0,4999333 0,4999359 0,4999385 0,4999409 0,4999433 0,4999456 0,4999478 0,4999499 3,9 0,4999519 0,4999539 0,4999557 0,4999575 0,4999593 0,4999609 0,4999625 0,4999641 0,4999655 0,4999670