SlideShare una empresa de Scribd logo
INFERENCIA ESTADÍSTICA:
                 13                  ESTIMACIÓN
                                     DE UNA PROPORCIÓN

Página 299

REFLEXIONA Y RESUELVE

¿Cuántas caras cabe esperar?

■   Repite el razonamiento anterior para averiguar cuántas caras cabe esperar
    si lanzamos 100 monedas y consideramos “casos raros” al 5% de los casos
    extremos.

    El intervalo característico correspondiente a una probabilidad del 95% (consideramos
    “casas raros” al 5% de los casos extremos) es:
                50 ± 1,96 · 5 = (40,2; 59,8)
    Esto significa que en el 95% de los casos en que tiremos 100 monedas, el número de
    caras que obtendremos será mayor que 40 y menor que 60. Cualquier otro resultado
    será un “caso raro”.


Un saco de alubias

Tenemos un saco con 10 000 alubias. De ellas, 9 500 son blancas y 500 son negras.
Están bien mezcladas.
Extraemos 600 judías.
¿Cuántas judías negras cabe esperar que haya entre ellas?

■   Resuelve el problema anterior considerando como “casos raros” solo al 1% de
    los casos extremos. Para ello:
    a) Averigua la proporción, p, de judías negras en el saco.
    b) Considera la distribución B (600, p) y calcula su media μ = 600p y su
      desviación típica q = √600 · p (1 – p) .
    c) Considera la distribución N (μ, q) y halla su intervalo característico corres-
       pondiente a una probabilidad del 99%.
    d) Decide, como consecuencia del resultado anterior, entre qué valores se en-
       cuentra el número de alubias que cabe esperar.
              500
    a) p =         = 0,05
             10000



Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                           1
b) μ = 600 · 0,05 = 30;   q = √600 · 0,05 · 0,95 = √28,5 › 5,34
        c) El intervalo característico correspondiente a una probabilidad del 99% es:

                                    30 ± 2,575 · 5,34 = (16,25; 43,75)
        d) En el 99% de los casos en que saquemos 600 judías de ese saco, el número de ju-
           días negras será mayor que 16 y menor que 44. Cualquier otro resultado será un
           “caso raro” (llamando “casos raros” a ese 1% de casos extremos).


    Peces en un pantano

    Se desea estimar el número total de peces que hay en cierto pantano. Para ello,
    se procede del siguiente modo:
    • Se pescan una cierta cantidad de ellos, por ejemplo, 349, se marcan y se
      devuelven al pantano. (Para marcarlos, existen unas tintas indelebles que son
      resistentes al agua).
    • Al cabo de varios días, se vuelve a pescar otro montón y se averigua qué pro-
      porción de ellos están marcados.
        Supongamos que en esta segunda pesca se han obtenido 514 peces, de los
        cuales hay 37 marcados.

    ■   Con los datos anteriores, averigua cuántos peces hay, aproximadamente, en el
        pantano.

        La muestra tiene 514 peces, de los cuales hay 37 marcados. La proporción de peces mar-
                                      37
        cados en la muestra es: pr =       = 0,072. El valor de la proporción de peces marcados
                                     514
                               349
        en el pantano es pr =      , donde N es el número total de peces.
                                N
        Aunque este problema se resolverá de forma completa (mediante un intervalo de con-
        fianza) al terminar la unidad, podemos suponer que la proporción de peces marcados
        en la muestra y en el pantano será “aproximadamente” la misma; es decir:
                    37   349
                       ›     8 N › 4 848,27 8 N › 4848 peces
                   514    N
        (Al considerar una probabilidad determinada, daremos un intervalo de confianza,
        obteniendo un resultado más preciso que este).



    Página 301
    1. La variable x es binomial, con n = 1 200 y p = 0,008.
         a) Calcula la probabilidad de que x sea mayor que 10.
         b) Halla el intervalo característico para una probabilidad del 95%.


                                            Unidad 13. Inferencia estadística: estimación de una proporción
2
UNIDAD 13


    Como np = 9,6 > 5 y nq > 5, podemos aproximar mediante una normal de media
    μ = np = 9,6 y desviación típica q = √npq = √1 200 · 0,008 · 0,992 = 3,09.
    Es decir:
                x es B (1 200; 0,008) 8 x ' es N (9,6; 3,09) 8 z es N (0, 1)

    a) P [x > 10] = P [x ' Ó 10,5] = P z Ó[     10,5 – 9,6
                                                   3,09     ]
                                                           = P [z Ó 0,29] =

                   = 1 – P [z < 0,29] = 1 – 0,6141 = 0,3859

    b) Para una probabilidad del 95%, za/2 = 1,96.
       El intervalo característico será:

                (9,6 – 1,96 · 3,09; 9,6 + 1,96 · 3,09); es decir, (3,54; 15,66)

2. Si tenemos un dado correcto y lo lanzamos 50 veces:
    a) ¿Cuál es la probabilidad de que “el 1” salga más de 10 veces?
    b) ¿Cuál es la probabilidad de que salga “múltiplo de 3” al menos 20 veces?

    a) Llamamos x = “n.° de veces que sale el 1”; así, x es B 50;                 ( )  1
                                                                                       6
                                                                                         .

       Como np > 5 y            nq > 5, podemos aproximar mediante una normal de media
                  1                                                      1 5
       μ = 50 ·
                  6
                    = 8,33 y desviación típica q =
                                                                √   50 · — · — = 2,64; es decir:
                                                                         6 6

                x es B 50;( )   1
                                6
                                     8 x ' es N (8,33; 2,64) 8 z es N (0, 1)


       P [x > 10] = P [x ' Ó 10,5] = P z Ó[     10,5 – 8,33
                                                   2,64         ]
                                                            = P [z Ó 0,82] =

                   = 1 – P [z < 0,82] = 1 – 0,7939 = 0,2061

    b) Llamamos x = “n.° de veces que sale múltiplo de 3”. La probabilidad de obtener
                                            2 1
       un múltiplo de 3 en una tirada es p = = . Así, x es B 50; .
                                            6 3
                                                                    1
                                                                    3                ( )
       Como np > 5 y            nq > 5, podemos aproximar mediante una normal de media
                  1                                                          1 2
       μ = 50 ·
                  3
                    = 16,67 y desviación típica q =
                                                                √       50 · — · — = 3,33; es decir:
                                                                             3 3

                x es B 50;( )   1
                                3
                                     8 x ' es N (16,67; 3,33) 8 z es N (0, 1)


       P [x Ó 20] = P [x ' Ó 19,5] = P z Ó[     19,5 – 16,67
                                                    3,33            ]
                                                             = P [z Ó 0,85] =

                   = 1 – P [z < 0,85] = 1 – 0,8023 = 0,1977


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                                   3
Página 303
    1. Como sabemos, en un dado correcto la proporción de veces que sale el 5 es
                 )
       1/6 = 0,1 6. Halla cada uno de los intervalos característicos correspondientes
       al 90%, 95% y 99% para la “proporción de cincos”, en tandas de 100 lanza-
       mientos de un dado correcto.

      Las proporciones de cincos en tandas de 100 lanzamientos siguen una distribución
                             1                                           pq           (1/6) · (5/6)
      normal de media p =
                             6
                                = 0,17 y desviación típica

       es decir, pr es N (0,17; 0,037).
                                                                     √   n
                                                                            =
                                                                                  √       100
                                                                                                    = 0,037;


      Hallamos los intervalos característicos:
      • Para el 90%: (0,17 ± 1,645 · 0,037) = (0,109; 0,231)
      • Para el 95%: (0,17 ± 1,96 · 0,037) = (0,097; 0,243)
      • Para el 99%: (0,17 ± 2,575 · 0,037) = (0,075; 0,265)



    Página 305
    1. Se ha lanzado un dado 400 veces y se ha obtenido 72 veces el valor 4.
       Estima el valor de la probabilidad P [4] con un nivel de confianza del 90%.

      Para un nivel de confianza del 90%, tenemos que za/2 = 1,645. La proporción de
      cuatros obtenidas en la muestra es:
                      72
                pr =     = 0,18
                     400
      El intervalo de confianza para estimar P [4] será:

      (   0,18 – 1,645 ·
                           √
                               0,18 · 0,82
                                  400
                                           ; 0,18 + 1,645 ·
                                                              √
                                                                  0,18 · 0,82
                                                                     400      )
                                                                              ; es decir, (0,148; 0,212)

      Es decir, con un nivel de confianza del 90%, la probabilidad de obtener 4 está entre
      0,148 y 0,212.

    2. ¿Cuántas veces hemos de lanzar un dado, que suponemos levemente incorrec-
       to, para estimar la probabilidad de “6” con un error menor que 0,002 y un ni-
       vel de confianza del 95%?

      Para un nivel de confianza del 95%, tenemos que za/2 = 1,96. Como desconocemos
                                      1
      el valor de pr, tomaremos pr = ≈ 0,17 (suponemos el dado levemente incorrecto).
                                      6
      El error máximo admisible es:
                                 pr (1 – pr )                          0,17 · 0,83
                E = za/2 ·
                             √        n
                                              8 0,002 = 1,96 ·
                                                                   √       n
                                                                                   8 n = 135 512,44

      Deberemos lanzarlo, al menos, 135 513 veces.


                                                Unidad 13. Inferencia estadística: estimación de una proporción
4
UNIDAD 13


Página 308

EJERCICIOS Y PROBLEMAS PROPUESTOS

        PARA PRACTICAR

        Distribución de proporciones muestrales
   1 Averigua cómo se distribuyen las proporciones muestrales, p r, para las
     poblaciones y las muestras que se describen a continuación:

                                                   a)    b)       c)    d)   e)   f)
                               PROPORCIÓN, p,
                                                  0,5    0,6      0,8   0,1 0,05 0,15
                               EN LA POBLACIÓN

                               TAMAÑO, n,
                                                  10     20       30    50   100 100
                               DE LA MUESTRA


        Recordemos que, si np Ó 5 y nq Ó 5, entonces, las proporciones muestrales

        siguen una distribución N p,       (√ )  pq
                                                 n
                                                    .

        Aplicamos este resultado a cada uno de los casos propuestos. Comprobamos que
        en todos ellos se tiene que np Ó 5 y nq Ó 5.


              (
        a) N 0,5;
                    √
                        0,5 · 0,5
                           10      )
                                  ; es decir, N (0,5; 0,158)


              (
        b) N 0,6;
                    √
                        0,6 · 0,4
                           20      )
                                  ; es decir, N (0,6; 0,110)


              (
        c) N 0,8;
                    √
                        0,8 · 0,2
                           30      )
                                  ; es decir, N (0,8; 0,073)


              (
        d) N 0,1;
                    √
                        0,1 · 0,9
                           50      )
                                  ; es decir, N (0,1; 0,042)


              (
        e) N 0,05;
                    √
                         0,05 · 0,95
                            100        )
                                     ; es decir, N (0,05; 0,0218)


              (
        f) N 0,15;
                    √
                         0,15 · 0,85
                            100        )
                                     ; es decir, N (0,15; 0,036)


   2 Halla los intervalos característicos para las proporciones muestrales del
     ejercicio anterior, correspondientes a las probabilidades que, en cada caso,
     se indican:
        a) 90%           b) 95%            c) 99%             d) 95%          e) 99%    f) 80%

        a) za/2 = 1,645
           Intervalo (0,5 – 1,645 · 0,158; 0,5 + 1,645 · 0,158); es decir, (0,24; 0,76)


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                             5
b) za/2 = 1,96

          Intervalo (0,6 – 1,96 · 0,110; 0,6 + 1,96 · 0,110); es decir, (0,38; 0,82)

       c) za/2 = 2,575

          Intervalo (0,8 – 2,575 · 0,073; 0,8 + 2,575 · 0,073); es decir, (0,61; 0,99)

       d) za/2 = 1,96

          Intervalo (0,1 – 1,96 · 0,042; 0,1 + 1,96 · 0,042); es decir, (0,018; 0,182)

       e) za/2 = 2,575

          Intervalo (0,05 – 2,575 · 0,0218; 0,05 + 2,575 · 0,0218); es decir, (–0,006; 0,106)

       f) za/2 = 1,28

          Intervalo (0,15 – 1,28 · 0,036; 0,15 + 1,28 · 0,036); es decir, (0,104; 0,196)

    s3 Cuatro de cada diez habitantes de una determinada población lee habitual-
       mente el periódico Z.
       Halla el intervalo característico (para el 95%) de la proporción que leen el
       periódico Z, en muestras de tamaño 49.
                                                        4
       p = proporción de lectores del periódico Z =       = 0,4.
                                                       10
       El intervalo característico para la proporción de lectores, pr, en muestras de ta-
       maño n es de la forma:


              (   p – za/2 ·   √
                                   pq
                                    n , p + za/2 ·   √
                                                         pq
                                                          n   )
       Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96

       el intervalo será:


              (   0,4 – 1,96 ·
                                 √
                                     0,4 · 0,6
                                        49
                                               ; 0,4 + 1,96 ·
                                                                  √
                                                                      0,4 · 0,6
                                                                         49    ); es decir, (0,26; 0,54)



    4 En un saco mezclamos judías blancas y judías pintas en la relación de 14 blan-
      cas por cada pinta. Extraemos un puñado de 100 judías.
       a) ¿Cuál es la probabilidad de que la proporción de judías pintas esté entre
          0,05 y 0,1?
       b) Halla un intervalo para el 99% de las proporciones de las muestras de ta-
          maño 100.
                                                 1
       a) La proporción de judías pintas es p =    . Si extraemos un puñado de 100 judías,
                                                15

          tenemos una binomial B 100;      (       1
                                                  15 )
                                                     .



                                               Unidad 13. Inferencia estadística: estimación de una proporción
6
UNIDAD 13


           Una proporción entre 0,05 y 0,1 significa que haya entre 100 · 0,05 = 5 y
           100 · 0,1 = 10 judías pintas.

           Por tanto, si x es B 100;      (          1
                                                    15), tenemos que calcular P [5 < x < 10].

                              1             14
           Como 100 ·           > 5 y 100 ·    > 5, podemos aproximar la binomial mediante
                             15             15
                                                           1
           una normal de media μ = 100 ·                     = 6,67 y desviación típica:
                                                          15

                                 1 14
                q=
                       √  100 · — · — = 2,49
                                15 15

           Así, si x es B 100;    (        1
                                          15   )   8 x ' es N (6,67; 2,49) 8 z es N (0, 1).

           Calculamos:

           P [5 < x < 10] = P [5,5 Ì x ' Ì 9,5] = P          [   5,5 – 6,67
                                                                    2,49
                                                                            ÌzÌ
                                                                                9,5 – 6,67
                                                                                   2,49    ]
                                                                                           =

                                 = P [–0,47 Ì z Ì 1,14] = P [z Ì 11,4] – P [z Ì –0,47] =

                                 = P [z Ì 1,14] – P [z Ó 0,47] = P [z Ì 1,14] – (1 – P [z Ì 0,47]) =

                                 = 0,8729 – (1 – 0,6808) = 0,5537

        b) Si consideramos muestras de tamaño 100, el intervalo característico para la pro-
           porción muestral es de la forma:


                (   p – za/2 ·   √
                                      pq
                                      100 , p + za/2 ·     √
                                                                 pq
                                                                 100   )
           Para el 99% 8 1 – a = 0,99 8 za/2 = 2,575

           Así, el intervalo será:


                (    1
                    15
                       – 2,575 ·
                                      √
                                          (1/15) · (14/15) 1
                                                100
                                                          ;
                                                            15
                                                               + 2,575 ·
                                                                            √
                                                                                (1/15) · (14/15)
                                                                                      100          )
           es decir: (0,0024; 0,1309)


   5 El 42% de los habitantes de un municipio es contrario a la gestión del alcal-
     de y el resto son partidarios de este. Si se toma una muestra de 64 indivi-
     duos, ¿cuál es la probabilidad de que ganen los que se oponen al alcalde?
        En muestras de 64, el número de personas que se oponen al alcalde, x, sigue
        una distribución binomial B (64; 0,42).
        Para ello, hemos de suponer que el municipio es suficientemente grande como
        para que, al ir tomando individuos para la muestra, la proporción no varíe sensi-
        blemente. Es decir, cada individuo que extraigamos modifica la proporción. Pero
        si el número total es grande, esa variación es irrelevante.


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                                   7
Tenemos que calcular P [x > 32]:
       Como np > 5 y nq > 5, podemos aproximar mediante una normal de media
       μ = n · p = 64 · 0,42 = 26,88 y desviación típica √npq = √64 · 0,42 · 0,58 = 3,95.

       Así, si x es B (64; 0,42) 8 x' es N (26,88; 3,95) 8 z es N (0, 1), entonces:

             P [x > 32] = P [x' Ó 32,5] = P z Ó [       32,5 – 26,88
                                                            3,95     ]
                                                                     = P [z Ó 1,42] =

                          = 1 – P [z < 1,42] = 1 – 0,9222 = 0,0778

    6 La probabilidad de que un bebé sea varón es 0,515. Si han nacido 184 bebés,
      ¿cuál es la probabilidad de que haya 100 varones o más?
       Halla el intervalo característico correspondiente al 95% para la proporción
       de varones en muestras de 184 bebés.

       • El número de varones entre 184 bebés, x, sigue una distribución binomial
         B (184; 0,515). Tenemos que calcular P [x Ó 100]. Como np > 5 y nq > 5, po-
         demos aproximar mediante una normal de media μ = np = 184 · 0,515 = 94,76
         y desviación típica √npq = √184 · 0,515 · 0,485 = 6,78. Así, si:
         x es B (184; 0,515) 8 x ' es N (94,76; 6,78) 8 z es N (0, 1), entonces:

             P [x Ó 100] = P [x ' Ó 99,5] = P z Ó   [    99,5 – 94,76
                                                             6,78        ]
                                                                      = P [z Ó 0,70] =

                              = 1 – P [z < 0,70] = 1 – 0,7580 = 0,2420

       • El intervalo característico para la proporción muestral es de la forma:


             (   p – za/2 ·   √
                                  pq
                                   n , p + za/2 ·   √
                                                        pq
                                                         n   )
         Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96

         Así, el intervalo será:


             (   0,515 – 1,96 ·
                                  √
                                      0,515 · 0,485
                                          184
                                                    ; 0,515 + 1,96 ·
                                                                             √
                                                                                 0,515 · 0,485
                                                                                     184      );

         es decir: (0,4428; 0,5872)



       Intervalos de confianza
    7 Se realizó una encuesta a 350 familias preguntando si poseían ordenador en
      casa, encontrándose que 75 de ellas lo poseían. Estima la proporción real de
      las familias que disponen de ordenador con un nivel de confianza del 95%.
                                                                     75   3
      La proporción de familias con ordenador en la muestra es pr =     =   .
                                                                    350 14
       Para el 95% de confianza, 1 – a = 0,95 8 za/2 = 1,96


                                             Unidad 13. Inferencia estadística: estimación de una proporción
8
UNIDAD 13


        El intervalo de confianza para p es:


                (    3
                    14
                       – 1,96 ·
                                  √
                                        (3/14)(1 – 3/14) 3
                                              350
                                                        ;
                                                          14
                                                             + 1,96 ·
                                                                              √
                                                                                  (3/14)(1 – 3/14)
                                                                                        350          )
        es decir, (0,17; 0,26).

  s8 Se selecciona aleatoriamente una muestra de 600 personas en una ciudad y
     se les pregunta si consideran que el tráfico en la misma es aceptablemente
     fluido. Responden afirmativamente 250 personas. ¿Cuál es el intervalo de
     confianza de la proporción de ciudadanos de esa ciudad que consideran
     aceptable la fluidez del tráfico, con un nivel de confianza del 90%?
                                                  250   5             7
        La proporción muestral es pr =                =   8 1 – pr =
                                                  600 12             12

        Para un nivel de confianza del 90%, sabemos que za/2 = 1,645.
        El intervalo de confianza para la proporción de ciudadanos que consideran acep-
        table la fluidez del tráfico es:


                (   pr – za/2 ·   √
                                      pr (1 – pr)
                                           n      , pr + za/2 ·      √
                                                                         pr (1 – pr)
                                                                              n        )
        En este caso queda:

                (    5
                    12
                       – 1,645 ·
                                      √
                                          (5/12)(7/12) 3
                                              600
                                                      ;
                                                        14
                                                           + 1,96 ·
                                                                          √
                                                                              (5/12)(7/12)
                                                                                  600        )
        es decir: (0,3836; 0,4498).



        PARA RESOLVER

   9 Sabemos que al lanzar al suelo 100 chinchetas, en el 95% de los casos, la
     proporción de ellas que quedan con la punta hacia arriba está en el inter-
     valo (0,1216; 0,2784). Calcula la probabilidad p de que una de esas chin-
     chetas caiga con la punta hacia arriba y comprueba que la amplitud del in-
     tervalo dado es correcta.

        • p es el centro del intervalo, es decir:
                       0,2784 + 0,1216
                p=                     = 0,2
                              2
        • Veamos que la amplitud del intervalo dado es correcta:
           Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96
           El intervalo característico es:


                (   p – za/2 ·
                                  √
                                      pq
                                       n
                                         , p + za/2 ·
                                                        √
                                                            pq
                                                             n   )
Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                                     9
En este caso (p = 0,2; q = 0,8; n = 100; za/2 = 1,96), queda:


                (   0,2 – 1,96 ·
                                   √
                                       0,2 · 0,8
                                         100
                                                 , 0,2 + 1,96 ·
                                                                  √
                                                                      0,2 · 0,8
                                                                        100    ); es decir:

            (0,1216; 0,2784), como queríamos probar.

     s10 Se desea estimar la proporción, p, de individuos daltónicos de una pobla-
         ción a través del porcentaje observado en una muestra aleatoria de indivi-
         duos, de tamaño n.
          a) Si el porcentaje de individuos daltónicos en la muestra es igual al 30%,
             calcula el valor de n para que, con un nivel de confianza de 0,95, el
             error cometido en la estimación sea inferior al 3,1%.
          b) Si el tamaño de la muestra es de 64 individuos, y el porcentaje de indivi-
             duos daltónicos en la muestra es del 35%, determina, usando un nivel de
             significación del 1%, el correspondiente intervalo de confianza para la
             proporción de daltónicos de la población.

          a) Para un nivel de confianza del 95%, 1 – a = 0,95 8 za/2 = 1,96

            El error máximo admisible es:

                                   pr (1 – pr )
                E = za/2 ·
                             √          n
                                                . Buscamos n para que E = 0,031.


                             0,3 · 0,7
                1,96 ·
                         √      n
                                       = 0,031 8 n = 839,48

            La muestra ha de ser de 840 individuos.

          b) Para un nivel de significación del 1%, tenemos que:

                a = 0,01 8 1 – a = 0,99 8 za/2 = 2,575

            El intervalo de confianza para p será:


                (   0,35 – 2,575 ·
                                     √
                                         0,35 · 0,65
                                             64
                                                     ; 0,35 + 2,575 ·
                                                                         √
                                                                             0,35 · 0,65
                                                                                 64        )
            es decir, (0,196; 0,504).

     11 En una muestra de 100 rótulos publicitarios, se observa que aparecen 6 de-
        fectuosos.
          a) Estima la proporción real de rótulos defectuosos, con un nivel de con-
             fianza del 99%.
          b) ¿Cuál es el error máximo cometido al hacer la estimación anterior?
          c) ¿De qué tamaño tendríamos que coger la muestra, con un nivel de con-
             fianza del 99%, para obtener un error inferior a 0,05?


                                                 Unidad 13. Inferencia estadística: estimación de una proporción
10
UNIDAD 13


                                                      6
        a) La proporción muestral es pr =                = 0,06 8 1 – pr = 0,94
                                                     100
           Para un nivel de confianza del 99%, sabemos que za/2 = 2,575.
           El intervalo de confianza para estimar la proporción real de rótulos defectuosos es:


                (   pr – za/2 ·   √
                                      pr (1 – pr)
                                           n      , pr + za/2 ·     √
                                                                        pr (1 – pr)
                                                                             n        )
           En este caso queda:

                (   0,06 – 2,575 ·
                                      √
                                          0,06 · 0,94
                                             100
                                                      ; 0,06 + 2,575 ·
                                                                            √
                                                                                0,06 · 0,94
                                                                                   100        )
           es decir: (0; 0,12).
                             pr (1 – pr )                  0,06 · 0,94
        b) E = za/2 ·
                         √        n
                                          = 2,575 ·
                                                       √      100
                                                                       ≈ 0,06

        c) En la expresión del error, sabemos que:
           E = 0,05
           za/2 = 2,575 (para un nivel de confianza del 99%)
           pr = 0,06; 1 – pr = 0,94
           Por tanto:
                                  pr (1 – pr )                              0,06 · 0,94
                E = za/2 ·
                              √        n
                                               8 0,5 = 2,575 ·
                                                                        √      100
                                                                                        8 n ≈ 149,58

           Habrá que tomar una muestra de, al menos, 150 rótulos.



Página 309
s12 En una encuesta realizada a 800 personas elegidas al azar del censo electo-
    ral, 240 declaran su intención de votar al partido A.
        a) Estima, con un nivel de confianza del 95,45%, entre qué valores se en-
           cuentra la intención de voto al susodicho partido en todo el censo.
        b) Discute, razonadamente, el efecto que tendría sobre el intervalo de con-
           fianza el aumento, o la disminución, del nivel de confianza.
                                                  240
        La proporción muestral es pr =                = 0,3 8 1 – pr = 0,7
                                                  800
        a) Para un nivel de confianza del 95,45%, hallamos za/2:



                        0,9545                             0,9772


                                                                        2


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                              11
0,0455
                   1 – 0,9545 = 0,0455;                   = 0,0227
                                                      2
                   0,0227 + 0,9545 = 0,9772
                   P [z Ì za/2] = 0,9772 8 za/2 = 2
            El intervalo de confianza para estimar la proporción en la población es:


                   (   pr – za/2 ·
                                     √
                                         pr (1 – pr)
                                              n
                                                     , pr + za/2 ·
                                                                          √
                                                                              pr (1 – pr)
                                                                                   n        )
            En este caso queda:


                   (   0,3 – 2 ·
                                   √
                                       0,3 · 0,7
                                         800
                                                 ; 0,3 + 2 ·
                                                                  √
                                                                      0,3 · 0,7
                                                                        800       )
            es decir, (0,2676; 0,3324)
            La proporción de votantes del partido A en la población se encuentra, con un
            nivel de confianza del 95,45%, entre el 26,76% y el 33,24%.
          b) Si aumenta el nivel de confianza, mayor es la amplitud del intervalo; es decir,
             cuanto más seguros queramos estar de nuestra estimación, mayor será el error
             máximo admisible.
            Si disminuye el nivel de confianza, también lo hará la amplitud del intervalo.

     s13 Un estudio realizado por una compañía de seguros de automóviles estable-
         ce que una de cada cinco personas accidentadas es mujer. Si se contabilizan,
         por término medio, 169 accidentes cada fin de semana:
          a) ¿Cuál es la probabilidad de que, en un fin de semana, la proporción de
             mujeres accidentadas supere el 24%?
          b) ¿Cuál es la probabilidad de que, en un fin de semana, la proporción de
             hombres accidentados supere el 85%?
          c) ¿Cuál es, por término medio, el número esperado de hombres accidenta-
             dos cada fin de semana?

          a) x : “número de mujeres accidentadas cada fin de semana”
            x ≈ B (169, 02)
            La proporción de mujeres accidentadas cada fin de semana sigue una distribu-
            ción:

                   x ' ≈ N p,(√ ) ( √  pq
                                       n
                                                = N 0,2;
                                                             0,2 · 0,8
                                                               169       )
                                                                       = N (0,2; 0,03)

            Así:

                   P [x ' > 0,24] = P z >   [      0,24 – 0,2
                                                      0,03    ]
                                                              = P [z > 1,33] = 1 – F(1,33) =

                                       = 1 – 0,9082 = 0,0918


                                                       Unidad 13. Inferencia estadística: estimación de una proporción
12
UNIDAD 13


        b) La proporción de hombres accidentados cada fin de semana sigue una distribu-
           ción:


                          ( √
                  y ' ≈ N 0,8;
                                    0,8 · 0,2
                                      169     )
                                              = N (0,8; 0,03)

           Así:


                                      [
                  P [y ' > 0,85] = P z >
                                           0,85 – 0,8
                                              0,03    ]
                                                      = P [z > 1,67] = 1 – F(1,67) =

                                 = 1 – 0,9525 = 0,0475

        c) El número de hombres accidentados cada fin de semana sigue una distribución
           y ≈ B (169; 0,8). Así, μ = n · p = 169 · 0,8 = 135,2 es el “número esperado” de
           hombres accidentados cada fin de semana.




        CUESTIONES TEÓRICAS

  14 A partir de una muestra de tamaño 400, se estima la proporción de individuos
     que leen el periódico en una gran ciudad. Se obtiene una cota de error de
     0,0392 con un nivel de confianza del 95%.
        a) ¿Podríamos, con la misma muestra, mejorar el nivel de confianza en la es-
           timación? ¿Qué le ocurriría a la cota de error?
        b) ¿Sabrías calcular la proporción, pr, obtenida en la muestra?

        a) Aumentando la cota de error mejoraría el nivel de confianza.

        b) La cota de error es:
                                   pr (1 – pr )
                  E = za/2 ·
                               √        n

           Como E = 0,0392; n = 400 y 1 – a = 0,95 8 za/2 = 1,96, tenemos que:
                                          pr (1 – pr )   0,0392         pr (1 – pr )
                  0,0392 = 1,96 ·
                                     √        400
                                                       8
                                                          1,96
                                                                =
                                                                    √       400
                                                                                     8


                                   pr (1 – pr )            pr (1 – pr)
                  8 0,02 =
                               √       400
                                                8 0,0004 =
                                                               400
                                                                       8 0,16 = pr (1 – pr)

                  0,16 = pr – pr 2 8 pr 2 – pr + 0,16 = 0

                         1 ± √1 – 0,64   1 ± √0,36   1 ± 0,6            pr = 0,8
                  pr =                 =           =
                               2             2          2               pr = 0,2

           Podría ser pr = 0,8 o bien pr = 0,2. Con los datos que tenemos, no podemos
           decidir cuál de estos dos resultados es el válido.


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                     13
PARA PROFUNDIZAR

      15 a) Un fabricante de medicamentos afirma que cierta medicina cura una en-
            fermedad de la sangre en el 80% de los casos. Los inspectores de sanidad
            utilizan el medicamento en una muestra de 100 pacientes y deciden acep-
            tar dicha afirmación si se curan 75 o más. Si lo que afirma el fabricante es
            realmente cierto, ¿cuál es la probabilidad de que los inspectores rechacen
            dicha afirmación?
          b) Supongamos que en la muestra se curan 60 individuos. Di, con una con-
             fianza del 95%, cuál es el error máximo cometido al estimar que el por-
             centaje de efectividad del medicamento es del 60%.
          a) Si lo que dice el fabricante es cierto, tenemos que p = 0,8 8 1 – p = 0,2
             Considerando una muestra de tamaño n = 100, las proporciones muestrales,
             pr, siguen una distribución normal de media p = 0,8 y de desviación típica
                     pq           0,8 · 0,2
                 √   n
                        =
                              √     100
                                            = 0,04; es decir, pr es N (0,8; 0,04).


             La probabilidad de que los inspectores rechacen la afirmación es P pr <            [       75
                                                                                                       100
                                                                                                           .]
             Calculamos esta probabilidad:

                                                          [
                                                         P pr <
                                                                   75
                                                                  100 ]
                                                                      = P [ pr < 0,75] =



                         –1,25
                                                         =P z<[    0,75 – 0,8
                                                                      0,04      ]
                                                                              = P [ z < –1,25] =

             = P [z > 1,25] = 1 – P [z Ì 1,25] = 1 – 0,8944 = 0,1056 es la probabilidad de que
             se rechace la afirmación.
                                                      60
          b) Si la proporción muestral es pr =           = 0,6 8 1 – pr = 0,4
                                                     100
             Para za /2 = 1,96 (nivel de confianza del 95%), el error máximo será:
                                   pr (1 – pr ) 1,96 ·        0,6 · 0,4 0,096
                 E = za/2 ·
                              √         n
                                               =
                                                         √      100
                                                                       ≈

             El error máximo cometido es de un 9,6%, es decir, de 10 personas.



     Página 309

     AUTOEVALUACIÓN
     1. En una población, la proporción de individuos que tienen una cierta caracte-
        rística C es 0,32.
       a) ¿Cómo se distribuyen las posibles proporciones pr de individuos que tie-
          nen la característica C en muestras de 200 individuos?


                                               Unidad 13. Inferencia estadística: estimación de una proporción
14
UNIDAD 13


    b) Halla el intervalo característico de pr correspondiente al 95%.
    c) Calcula la probabilidad de que en una muestra la proporción sea menor
       que 0,3.
    a) En la población, p = 0,32.

       Las proporciones muestrales, pr, se distribuyen N p,            (   √
                                                                               pq
                                                                                n).

                        pq            0,32 · 0,68
                    √    n
                           =
                                  √      200
                                                  = 0,033

       Es decir, pr se distribuye N (0,32; 0,033).

    b) En una normal            N (0, 1),      el intervalo característico correspondiente al 95% es
       (–1,96; 1,96).
                    0,32 – 1,96 · 0,033 = 0,255
                    0,32 + 1,96 · 0,033 = 0,647
       El intervalo característico para pr (al 95%) es (0,255; 0,647).

                          [
    c) P [pr < 0,3] = P z <
                                  0,3 – 0,32
                                    0,033       ]
                                             = P [z < –0,61] = 1 – F (0,61) = 1 – 0,7291 = 0,2709



2. Se sabe que el 10% de los habitantes de una determinada ciudad va regular-
   mente al teatro. Se toma una muestra al azar de 100 habitantes de esta ciudad.
   ¿Cuál es la probabilidad de que, al menos, un 13% de ellos vaya regularmente
   al teatro?
    La distribución x = “número de personas que van regularmente al teatro” es una
    B (100; 0,1), donde p = 0,1 y q = 1 – p = 0,9.
    Como 100 · 0,1 > 5 y 100 · 0,9 > 5, aproximamos con una distribución:
    x' › N (np, √npq          ) = N (10, 3),    a la que aplicamos la corrección por continuidad:

                P [x Ó 13] = P [x' Ó 12,5] = P z Ó   [   12,5 – 10
                                                             3     ]
                                                                   = P [z Ó 0,83] =

                               = 1 – F (0,83) = 1 – 0,7967 = 0,2033

3. En una muestra de 60 estudiantes de una universidad, un tercio habla inglés.
    a) Halla, con un nivel de confianza del 90%, un intervalo para estimar la pro-
       porción de estudiantes que hablan inglés.
    b) A la vista del resultado anterior, se va a repetir la experiencia para conse-
       guir una cota de error de 0,01 con el mismo nivel de confianza. ¿Cuántos
       individuos tendrá la muestra?
                                                1            2
    La proporción muestral es pr =                8 1 – pr =
                                                3            3
    Para un nivel de confianza del 90%, sabemos que za/2 = 1,645.


Unidad 13. Inferencia estadística: estimación de una proporción
                                                                                                           15
a) El intervalo de confianza para estimar la proporción en la población es:


                 (   pr – za/2 ·
                                   √
                                       pr (1 – pr)
                                            n
                                                   , pr + za/2 ·
                                                                   √
                                                                        pr (1 – pr)
                                                                             n        )
         En este caso queda:

                 (   1
                     3
                       – 1,645 ·
                                   √
                                        (1/3) · (1/2) 1
                                             60
                                                     , + 1,645 ·
                                                      3                √
                                                                           (1/3) · (1/2)
                                                                                60         )
         es decir: (0,2332; 0,4334)

                                                           pr (1 – pr)
       b) En la expresión del error, E = za/2 ·
                                                       √        n
                                                                       , sabemos que:

                 E = 0,01
                 za/2 = 1,645 (para un nivel de confianza del 90%)
                         1            2
                 pr =      ; 1 – pr =
                         3            3

         Por tanto:

                                           (1/3) · (1/2)
                 0,01 = 1,645 ·
                                       √        60
                                                         ò n › 6 013,4

         Habrá que tomar una muestra de, al menos, 6 014 individuos.

     4. Una encuesta realizada en cierto país sobre una muestra de 800 personas
        arroja el dato de que 300 son analfabetas.
       Para estimar la proporción de analfabetos del país, hemos obtenido el inter-
       valo de confianza (0,3414; 0,4086).
       ¿Con qué nivel de confianza se ha hecho la estimación?
                                                 300   3            5
       La proporción muestral es pr =                =   8 1 – pr =
                                                 800   8            8

       El error máximo admisible es la semiamplitud del intervalo de confianza; es decir:
                         0,4086 – 0,3414
                 E=                      = 0,0336
                                2

                                       pr (1 – pr)                             (3/8) · (5/8)
       Por tanto: E = za/2 ·
                                   √        n
                                                   8 0,0336 = za/2 ·
                                                                           √       800
                                                                                             8 za/2 = 1,96


                                                      P [z Ì 1,96] = 0,9750
                                                       a
                        1–a                              = P [z > 1,96] = 1 – 0,9750 = 0,025
         a/2                               a/2         2
                                                      a = 0,025 · 2 = 0,05 8 1 – a = 0,95
                                   1,96
                                                      El nivel de confianza es del 95%.


                                                  Unidad 13. Inferencia estadística: estimación de una proporción
16

Más contenido relacionado

PDF
INFERENCIA ESTADISTICA
DOC
Ejemplos de distribuciones de probabilidad
PDF
Distribución normal
DOCX
Ejemplos lm
DOCX
Ejemplos de distribucion de probabilidad
PPT
Division sint
PDF
Propiedades de los límites
PPTX
Ejemplos explicados
INFERENCIA ESTADISTICA
Ejemplos de distribuciones de probabilidad
Distribución normal
Ejemplos lm
Ejemplos de distribucion de probabilidad
Division sint
Propiedades de los límites
Ejemplos explicados

La actualidad más candente (20)

DOC
Ejemplos de distribuciones de probabilidad
DOCX
Distribución de probabilidad.ejemplos
DOCX
Dist normal ejercicios nuevos
DOCX
Distribucion de poisson ejercicios
PPTX
Eventos aleatorios, espacio muestral y técnicas de conteo
PPTX
Distribuciones de probabilidad en minitab
DOCX
Distribucion bernoulli
PPTX
Distribución de probabilidad Poisson
PDF
Ejercicios Distribución Poisson
PPTX
La distribución de poisson
DOCX
Distribución de probabilidad. eliza
DOC
Cuadernillo Matemática 3º
DOCX
5 ejemplos de las distribuciones
DOCX
Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...
DOC
Bernoulli ejemplos
DOC
variables aleatorias (1)
DOCX
Estadistica
PDF
Estadistica soluciones
DOCX
Distribución de poisso ejercicios
PDF
Raices de ecuaciones
Ejemplos de distribuciones de probabilidad
Distribución de probabilidad.ejemplos
Dist normal ejercicios nuevos
Distribucion de poisson ejercicios
Eventos aleatorios, espacio muestral y técnicas de conteo
Distribuciones de probabilidad en minitab
Distribucion bernoulli
Distribución de probabilidad Poisson
Ejercicios Distribución Poisson
La distribución de poisson
Distribución de probabilidad. eliza
Cuadernillo Matemática 3º
5 ejemplos de las distribuciones
Ejercicios de distribución binomial, hipergeométrica y de poisson pablo peraz...
Bernoulli ejemplos
variables aleatorias (1)
Estadistica
Estadistica soluciones
Distribución de poisso ejercicios
Raices de ecuaciones
Publicidad

Similar a Sol13 (20)

DOC
Ejemplos de distribuciones de probabilidad
DOCX
Distrubución binomial
PPTX
Tipos de Ditribuciones
PPTX
Ejemplos explicados
PDF
15.distribucion probabilidad
DOC
Tema 9 variables aleatorias
PPTX
Trabajo blog
DOC
Distribuciones de probabilidad con ejemplos
PDF
Ejercicios resueltos
PPTX
Distribuciones comúnmente usadas
DOCX
Distribución de probabilidad.ejemplos
PPTX
Estadistica
PPTX
Distribuciones discretas/ ESTADISTICA GENERAL
PPTX
Ejemplos tipos de probabilidad
PPTX
Normal
PPT
distribuciones-discretas- choluteca honduras
PPT
distribuciones de probabilidad los numeros enteros
PPT
distribuciones-discretas-2017.ppt
PPTX
Segunda present.
PPTX
Distribuciónes
Ejemplos de distribuciones de probabilidad
Distrubución binomial
Tipos de Ditribuciones
Ejemplos explicados
15.distribucion probabilidad
Tema 9 variables aleatorias
Trabajo blog
Distribuciones de probabilidad con ejemplos
Ejercicios resueltos
Distribuciones comúnmente usadas
Distribución de probabilidad.ejemplos
Estadistica
Distribuciones discretas/ ESTADISTICA GENERAL
Ejemplos tipos de probabilidad
Normal
distribuciones-discretas- choluteca honduras
distribuciones de probabilidad los numeros enteros
distribuciones-discretas-2017.ppt
Segunda present.
Distribuciónes
Publicidad

Más de hobboken (11)

PDF
Sol14
PDF
Sol12
PDF
Sol10
PDF
Sol08
PDF
Sol06
PDF
Sol05
PDF
Sol04
PDF
Sol03
PDF
Sol02
PDF
Sol01
PDF
Sol09
Sol14
Sol12
Sol10
Sol08
Sol06
Sol05
Sol04
Sol03
Sol02
Sol01
Sol09

Sol13

  • 1. INFERENCIA ESTADÍSTICA: 13 ESTIMACIÓN DE UNA PROPORCIÓN Página 299 REFLEXIONA Y RESUELVE ¿Cuántas caras cabe esperar? ■ Repite el razonamiento anterior para averiguar cuántas caras cabe esperar si lanzamos 100 monedas y consideramos “casos raros” al 5% de los casos extremos. El intervalo característico correspondiente a una probabilidad del 95% (consideramos “casas raros” al 5% de los casos extremos) es: 50 ± 1,96 · 5 = (40,2; 59,8) Esto significa que en el 95% de los casos en que tiremos 100 monedas, el número de caras que obtendremos será mayor que 40 y menor que 60. Cualquier otro resultado será un “caso raro”. Un saco de alubias Tenemos un saco con 10 000 alubias. De ellas, 9 500 son blancas y 500 son negras. Están bien mezcladas. Extraemos 600 judías. ¿Cuántas judías negras cabe esperar que haya entre ellas? ■ Resuelve el problema anterior considerando como “casos raros” solo al 1% de los casos extremos. Para ello: a) Averigua la proporción, p, de judías negras en el saco. b) Considera la distribución B (600, p) y calcula su media μ = 600p y su desviación típica q = √600 · p (1 – p) . c) Considera la distribución N (μ, q) y halla su intervalo característico corres- pondiente a una probabilidad del 99%. d) Decide, como consecuencia del resultado anterior, entre qué valores se en- cuentra el número de alubias que cabe esperar. 500 a) p = = 0,05 10000 Unidad 13. Inferencia estadística: estimación de una proporción 1
  • 2. b) μ = 600 · 0,05 = 30; q = √600 · 0,05 · 0,95 = √28,5 › 5,34 c) El intervalo característico correspondiente a una probabilidad del 99% es: 30 ± 2,575 · 5,34 = (16,25; 43,75) d) En el 99% de los casos en que saquemos 600 judías de ese saco, el número de ju- días negras será mayor que 16 y menor que 44. Cualquier otro resultado será un “caso raro” (llamando “casos raros” a ese 1% de casos extremos). Peces en un pantano Se desea estimar el número total de peces que hay en cierto pantano. Para ello, se procede del siguiente modo: • Se pescan una cierta cantidad de ellos, por ejemplo, 349, se marcan y se devuelven al pantano. (Para marcarlos, existen unas tintas indelebles que son resistentes al agua). • Al cabo de varios días, se vuelve a pescar otro montón y se averigua qué pro- porción de ellos están marcados. Supongamos que en esta segunda pesca se han obtenido 514 peces, de los cuales hay 37 marcados. ■ Con los datos anteriores, averigua cuántos peces hay, aproximadamente, en el pantano. La muestra tiene 514 peces, de los cuales hay 37 marcados. La proporción de peces mar- 37 cados en la muestra es: pr = = 0,072. El valor de la proporción de peces marcados 514 349 en el pantano es pr = , donde N es el número total de peces. N Aunque este problema se resolverá de forma completa (mediante un intervalo de con- fianza) al terminar la unidad, podemos suponer que la proporción de peces marcados en la muestra y en el pantano será “aproximadamente” la misma; es decir: 37 349 › 8 N › 4 848,27 8 N › 4848 peces 514 N (Al considerar una probabilidad determinada, daremos un intervalo de confianza, obteniendo un resultado más preciso que este). Página 301 1. La variable x es binomial, con n = 1 200 y p = 0,008. a) Calcula la probabilidad de que x sea mayor que 10. b) Halla el intervalo característico para una probabilidad del 95%. Unidad 13. Inferencia estadística: estimación de una proporción 2
  • 3. UNIDAD 13 Como np = 9,6 > 5 y nq > 5, podemos aproximar mediante una normal de media μ = np = 9,6 y desviación típica q = √npq = √1 200 · 0,008 · 0,992 = 3,09. Es decir: x es B (1 200; 0,008) 8 x ' es N (9,6; 3,09) 8 z es N (0, 1) a) P [x > 10] = P [x ' Ó 10,5] = P z Ó[ 10,5 – 9,6 3,09 ] = P [z Ó 0,29] = = 1 – P [z < 0,29] = 1 – 0,6141 = 0,3859 b) Para una probabilidad del 95%, za/2 = 1,96. El intervalo característico será: (9,6 – 1,96 · 3,09; 9,6 + 1,96 · 3,09); es decir, (3,54; 15,66) 2. Si tenemos un dado correcto y lo lanzamos 50 veces: a) ¿Cuál es la probabilidad de que “el 1” salga más de 10 veces? b) ¿Cuál es la probabilidad de que salga “múltiplo de 3” al menos 20 veces? a) Llamamos x = “n.° de veces que sale el 1”; así, x es B 50; ( ) 1 6 . Como np > 5 y nq > 5, podemos aproximar mediante una normal de media 1 1 5 μ = 50 · 6 = 8,33 y desviación típica q = √ 50 · — · — = 2,64; es decir: 6 6 x es B 50;( ) 1 6 8 x ' es N (8,33; 2,64) 8 z es N (0, 1) P [x > 10] = P [x ' Ó 10,5] = P z Ó[ 10,5 – 8,33 2,64 ] = P [z Ó 0,82] = = 1 – P [z < 0,82] = 1 – 0,7939 = 0,2061 b) Llamamos x = “n.° de veces que sale múltiplo de 3”. La probabilidad de obtener 2 1 un múltiplo de 3 en una tirada es p = = . Así, x es B 50; . 6 3 1 3 ( ) Como np > 5 y nq > 5, podemos aproximar mediante una normal de media 1 1 2 μ = 50 · 3 = 16,67 y desviación típica q = √ 50 · — · — = 3,33; es decir: 3 3 x es B 50;( ) 1 3 8 x ' es N (16,67; 3,33) 8 z es N (0, 1) P [x Ó 20] = P [x ' Ó 19,5] = P z Ó[ 19,5 – 16,67 3,33 ] = P [z Ó 0,85] = = 1 – P [z < 0,85] = 1 – 0,8023 = 0,1977 Unidad 13. Inferencia estadística: estimación de una proporción 3
  • 4. Página 303 1. Como sabemos, en un dado correcto la proporción de veces que sale el 5 es ) 1/6 = 0,1 6. Halla cada uno de los intervalos característicos correspondientes al 90%, 95% y 99% para la “proporción de cincos”, en tandas de 100 lanza- mientos de un dado correcto. Las proporciones de cincos en tandas de 100 lanzamientos siguen una distribución 1 pq (1/6) · (5/6) normal de media p = 6 = 0,17 y desviación típica es decir, pr es N (0,17; 0,037). √ n = √ 100 = 0,037; Hallamos los intervalos característicos: • Para el 90%: (0,17 ± 1,645 · 0,037) = (0,109; 0,231) • Para el 95%: (0,17 ± 1,96 · 0,037) = (0,097; 0,243) • Para el 99%: (0,17 ± 2,575 · 0,037) = (0,075; 0,265) Página 305 1. Se ha lanzado un dado 400 veces y se ha obtenido 72 veces el valor 4. Estima el valor de la probabilidad P [4] con un nivel de confianza del 90%. Para un nivel de confianza del 90%, tenemos que za/2 = 1,645. La proporción de cuatros obtenidas en la muestra es: 72 pr = = 0,18 400 El intervalo de confianza para estimar P [4] será: ( 0,18 – 1,645 · √ 0,18 · 0,82 400 ; 0,18 + 1,645 · √ 0,18 · 0,82 400 ) ; es decir, (0,148; 0,212) Es decir, con un nivel de confianza del 90%, la probabilidad de obtener 4 está entre 0,148 y 0,212. 2. ¿Cuántas veces hemos de lanzar un dado, que suponemos levemente incorrec- to, para estimar la probabilidad de “6” con un error menor que 0,002 y un ni- vel de confianza del 95%? Para un nivel de confianza del 95%, tenemos que za/2 = 1,96. Como desconocemos 1 el valor de pr, tomaremos pr = ≈ 0,17 (suponemos el dado levemente incorrecto). 6 El error máximo admisible es: pr (1 – pr ) 0,17 · 0,83 E = za/2 · √ n 8 0,002 = 1,96 · √ n 8 n = 135 512,44 Deberemos lanzarlo, al menos, 135 513 veces. Unidad 13. Inferencia estadística: estimación de una proporción 4
  • 5. UNIDAD 13 Página 308 EJERCICIOS Y PROBLEMAS PROPUESTOS PARA PRACTICAR Distribución de proporciones muestrales 1 Averigua cómo se distribuyen las proporciones muestrales, p r, para las poblaciones y las muestras que se describen a continuación: a) b) c) d) e) f) PROPORCIÓN, p, 0,5 0,6 0,8 0,1 0,05 0,15 EN LA POBLACIÓN TAMAÑO, n, 10 20 30 50 100 100 DE LA MUESTRA Recordemos que, si np Ó 5 y nq Ó 5, entonces, las proporciones muestrales siguen una distribución N p, (√ ) pq n . Aplicamos este resultado a cada uno de los casos propuestos. Comprobamos que en todos ellos se tiene que np Ó 5 y nq Ó 5. ( a) N 0,5; √ 0,5 · 0,5 10 ) ; es decir, N (0,5; 0,158) ( b) N 0,6; √ 0,6 · 0,4 20 ) ; es decir, N (0,6; 0,110) ( c) N 0,8; √ 0,8 · 0,2 30 ) ; es decir, N (0,8; 0,073) ( d) N 0,1; √ 0,1 · 0,9 50 ) ; es decir, N (0,1; 0,042) ( e) N 0,05; √ 0,05 · 0,95 100 ) ; es decir, N (0,05; 0,0218) ( f) N 0,15; √ 0,15 · 0,85 100 ) ; es decir, N (0,15; 0,036) 2 Halla los intervalos característicos para las proporciones muestrales del ejercicio anterior, correspondientes a las probabilidades que, en cada caso, se indican: a) 90% b) 95% c) 99% d) 95% e) 99% f) 80% a) za/2 = 1,645 Intervalo (0,5 – 1,645 · 0,158; 0,5 + 1,645 · 0,158); es decir, (0,24; 0,76) Unidad 13. Inferencia estadística: estimación de una proporción 5
  • 6. b) za/2 = 1,96 Intervalo (0,6 – 1,96 · 0,110; 0,6 + 1,96 · 0,110); es decir, (0,38; 0,82) c) za/2 = 2,575 Intervalo (0,8 – 2,575 · 0,073; 0,8 + 2,575 · 0,073); es decir, (0,61; 0,99) d) za/2 = 1,96 Intervalo (0,1 – 1,96 · 0,042; 0,1 + 1,96 · 0,042); es decir, (0,018; 0,182) e) za/2 = 2,575 Intervalo (0,05 – 2,575 · 0,0218; 0,05 + 2,575 · 0,0218); es decir, (–0,006; 0,106) f) za/2 = 1,28 Intervalo (0,15 – 1,28 · 0,036; 0,15 + 1,28 · 0,036); es decir, (0,104; 0,196) s3 Cuatro de cada diez habitantes de una determinada población lee habitual- mente el periódico Z. Halla el intervalo característico (para el 95%) de la proporción que leen el periódico Z, en muestras de tamaño 49. 4 p = proporción de lectores del periódico Z = = 0,4. 10 El intervalo característico para la proporción de lectores, pr, en muestras de ta- maño n es de la forma: ( p – za/2 · √ pq n , p + za/2 · √ pq n ) Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96 el intervalo será: ( 0,4 – 1,96 · √ 0,4 · 0,6 49 ; 0,4 + 1,96 · √ 0,4 · 0,6 49 ); es decir, (0,26; 0,54) 4 En un saco mezclamos judías blancas y judías pintas en la relación de 14 blan- cas por cada pinta. Extraemos un puñado de 100 judías. a) ¿Cuál es la probabilidad de que la proporción de judías pintas esté entre 0,05 y 0,1? b) Halla un intervalo para el 99% de las proporciones de las muestras de ta- maño 100. 1 a) La proporción de judías pintas es p = . Si extraemos un puñado de 100 judías, 15 tenemos una binomial B 100; ( 1 15 ) . Unidad 13. Inferencia estadística: estimación de una proporción 6
  • 7. UNIDAD 13 Una proporción entre 0,05 y 0,1 significa que haya entre 100 · 0,05 = 5 y 100 · 0,1 = 10 judías pintas. Por tanto, si x es B 100; ( 1 15), tenemos que calcular P [5 < x < 10]. 1 14 Como 100 · > 5 y 100 · > 5, podemos aproximar la binomial mediante 15 15 1 una normal de media μ = 100 · = 6,67 y desviación típica: 15 1 14 q= √ 100 · — · — = 2,49 15 15 Así, si x es B 100; ( 1 15 ) 8 x ' es N (6,67; 2,49) 8 z es N (0, 1). Calculamos: P [5 < x < 10] = P [5,5 Ì x ' Ì 9,5] = P [ 5,5 – 6,67 2,49 ÌzÌ 9,5 – 6,67 2,49 ] = = P [–0,47 Ì z Ì 1,14] = P [z Ì 11,4] – P [z Ì –0,47] = = P [z Ì 1,14] – P [z Ó 0,47] = P [z Ì 1,14] – (1 – P [z Ì 0,47]) = = 0,8729 – (1 – 0,6808) = 0,5537 b) Si consideramos muestras de tamaño 100, el intervalo característico para la pro- porción muestral es de la forma: ( p – za/2 · √ pq 100 , p + za/2 · √ pq 100 ) Para el 99% 8 1 – a = 0,99 8 za/2 = 2,575 Así, el intervalo será: ( 1 15 – 2,575 · √ (1/15) · (14/15) 1 100 ; 15 + 2,575 · √ (1/15) · (14/15) 100 ) es decir: (0,0024; 0,1309) 5 El 42% de los habitantes de un municipio es contrario a la gestión del alcal- de y el resto son partidarios de este. Si se toma una muestra de 64 indivi- duos, ¿cuál es la probabilidad de que ganen los que se oponen al alcalde? En muestras de 64, el número de personas que se oponen al alcalde, x, sigue una distribución binomial B (64; 0,42). Para ello, hemos de suponer que el municipio es suficientemente grande como para que, al ir tomando individuos para la muestra, la proporción no varíe sensi- blemente. Es decir, cada individuo que extraigamos modifica la proporción. Pero si el número total es grande, esa variación es irrelevante. Unidad 13. Inferencia estadística: estimación de una proporción 7
  • 8. Tenemos que calcular P [x > 32]: Como np > 5 y nq > 5, podemos aproximar mediante una normal de media μ = n · p = 64 · 0,42 = 26,88 y desviación típica √npq = √64 · 0,42 · 0,58 = 3,95. Así, si x es B (64; 0,42) 8 x' es N (26,88; 3,95) 8 z es N (0, 1), entonces: P [x > 32] = P [x' Ó 32,5] = P z Ó [ 32,5 – 26,88 3,95 ] = P [z Ó 1,42] = = 1 – P [z < 1,42] = 1 – 0,9222 = 0,0778 6 La probabilidad de que un bebé sea varón es 0,515. Si han nacido 184 bebés, ¿cuál es la probabilidad de que haya 100 varones o más? Halla el intervalo característico correspondiente al 95% para la proporción de varones en muestras de 184 bebés. • El número de varones entre 184 bebés, x, sigue una distribución binomial B (184; 0,515). Tenemos que calcular P [x Ó 100]. Como np > 5 y nq > 5, po- demos aproximar mediante una normal de media μ = np = 184 · 0,515 = 94,76 y desviación típica √npq = √184 · 0,515 · 0,485 = 6,78. Así, si: x es B (184; 0,515) 8 x ' es N (94,76; 6,78) 8 z es N (0, 1), entonces: P [x Ó 100] = P [x ' Ó 99,5] = P z Ó [ 99,5 – 94,76 6,78 ] = P [z Ó 0,70] = = 1 – P [z < 0,70] = 1 – 0,7580 = 0,2420 • El intervalo característico para la proporción muestral es de la forma: ( p – za/2 · √ pq n , p + za/2 · √ pq n ) Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96 Así, el intervalo será: ( 0,515 – 1,96 · √ 0,515 · 0,485 184 ; 0,515 + 1,96 · √ 0,515 · 0,485 184 ); es decir: (0,4428; 0,5872) Intervalos de confianza 7 Se realizó una encuesta a 350 familias preguntando si poseían ordenador en casa, encontrándose que 75 de ellas lo poseían. Estima la proporción real de las familias que disponen de ordenador con un nivel de confianza del 95%. 75 3 La proporción de familias con ordenador en la muestra es pr = = . 350 14 Para el 95% de confianza, 1 – a = 0,95 8 za/2 = 1,96 Unidad 13. Inferencia estadística: estimación de una proporción 8
  • 9. UNIDAD 13 El intervalo de confianza para p es: ( 3 14 – 1,96 · √ (3/14)(1 – 3/14) 3 350 ; 14 + 1,96 · √ (3/14)(1 – 3/14) 350 ) es decir, (0,17; 0,26). s8 Se selecciona aleatoriamente una muestra de 600 personas en una ciudad y se les pregunta si consideran que el tráfico en la misma es aceptablemente fluido. Responden afirmativamente 250 personas. ¿Cuál es el intervalo de confianza de la proporción de ciudadanos de esa ciudad que consideran aceptable la fluidez del tráfico, con un nivel de confianza del 90%? 250 5 7 La proporción muestral es pr = = 8 1 – pr = 600 12 12 Para un nivel de confianza del 90%, sabemos que za/2 = 1,645. El intervalo de confianza para la proporción de ciudadanos que consideran acep- table la fluidez del tráfico es: ( pr – za/2 · √ pr (1 – pr) n , pr + za/2 · √ pr (1 – pr) n ) En este caso queda: ( 5 12 – 1,645 · √ (5/12)(7/12) 3 600 ; 14 + 1,96 · √ (5/12)(7/12) 600 ) es decir: (0,3836; 0,4498). PARA RESOLVER 9 Sabemos que al lanzar al suelo 100 chinchetas, en el 95% de los casos, la proporción de ellas que quedan con la punta hacia arriba está en el inter- valo (0,1216; 0,2784). Calcula la probabilidad p de que una de esas chin- chetas caiga con la punta hacia arriba y comprueba que la amplitud del in- tervalo dado es correcta. • p es el centro del intervalo, es decir: 0,2784 + 0,1216 p= = 0,2 2 • Veamos que la amplitud del intervalo dado es correcta: Para el 95% 8 1 – a = 0,95 8 za/2 = 1,96 El intervalo característico es: ( p – za/2 · √ pq n , p + za/2 · √ pq n ) Unidad 13. Inferencia estadística: estimación de una proporción 9
  • 10. En este caso (p = 0,2; q = 0,8; n = 100; za/2 = 1,96), queda: ( 0,2 – 1,96 · √ 0,2 · 0,8 100 , 0,2 + 1,96 · √ 0,2 · 0,8 100 ); es decir: (0,1216; 0,2784), como queríamos probar. s10 Se desea estimar la proporción, p, de individuos daltónicos de una pobla- ción a través del porcentaje observado en una muestra aleatoria de indivi- duos, de tamaño n. a) Si el porcentaje de individuos daltónicos en la muestra es igual al 30%, calcula el valor de n para que, con un nivel de confianza de 0,95, el error cometido en la estimación sea inferior al 3,1%. b) Si el tamaño de la muestra es de 64 individuos, y el porcentaje de indivi- duos daltónicos en la muestra es del 35%, determina, usando un nivel de significación del 1%, el correspondiente intervalo de confianza para la proporción de daltónicos de la población. a) Para un nivel de confianza del 95%, 1 – a = 0,95 8 za/2 = 1,96 El error máximo admisible es: pr (1 – pr ) E = za/2 · √ n . Buscamos n para que E = 0,031. 0,3 · 0,7 1,96 · √ n = 0,031 8 n = 839,48 La muestra ha de ser de 840 individuos. b) Para un nivel de significación del 1%, tenemos que: a = 0,01 8 1 – a = 0,99 8 za/2 = 2,575 El intervalo de confianza para p será: ( 0,35 – 2,575 · √ 0,35 · 0,65 64 ; 0,35 + 2,575 · √ 0,35 · 0,65 64 ) es decir, (0,196; 0,504). 11 En una muestra de 100 rótulos publicitarios, se observa que aparecen 6 de- fectuosos. a) Estima la proporción real de rótulos defectuosos, con un nivel de con- fianza del 99%. b) ¿Cuál es el error máximo cometido al hacer la estimación anterior? c) ¿De qué tamaño tendríamos que coger la muestra, con un nivel de con- fianza del 99%, para obtener un error inferior a 0,05? Unidad 13. Inferencia estadística: estimación de una proporción 10
  • 11. UNIDAD 13 6 a) La proporción muestral es pr = = 0,06 8 1 – pr = 0,94 100 Para un nivel de confianza del 99%, sabemos que za/2 = 2,575. El intervalo de confianza para estimar la proporción real de rótulos defectuosos es: ( pr – za/2 · √ pr (1 – pr) n , pr + za/2 · √ pr (1 – pr) n ) En este caso queda: ( 0,06 – 2,575 · √ 0,06 · 0,94 100 ; 0,06 + 2,575 · √ 0,06 · 0,94 100 ) es decir: (0; 0,12). pr (1 – pr ) 0,06 · 0,94 b) E = za/2 · √ n = 2,575 · √ 100 ≈ 0,06 c) En la expresión del error, sabemos que: E = 0,05 za/2 = 2,575 (para un nivel de confianza del 99%) pr = 0,06; 1 – pr = 0,94 Por tanto: pr (1 – pr ) 0,06 · 0,94 E = za/2 · √ n 8 0,5 = 2,575 · √ 100 8 n ≈ 149,58 Habrá que tomar una muestra de, al menos, 150 rótulos. Página 309 s12 En una encuesta realizada a 800 personas elegidas al azar del censo electo- ral, 240 declaran su intención de votar al partido A. a) Estima, con un nivel de confianza del 95,45%, entre qué valores se en- cuentra la intención de voto al susodicho partido en todo el censo. b) Discute, razonadamente, el efecto que tendría sobre el intervalo de con- fianza el aumento, o la disminución, del nivel de confianza. 240 La proporción muestral es pr = = 0,3 8 1 – pr = 0,7 800 a) Para un nivel de confianza del 95,45%, hallamos za/2: 0,9545 0,9772 2 Unidad 13. Inferencia estadística: estimación de una proporción 11
  • 12. 0,0455 1 – 0,9545 = 0,0455; = 0,0227 2 0,0227 + 0,9545 = 0,9772 P [z Ì za/2] = 0,9772 8 za/2 = 2 El intervalo de confianza para estimar la proporción en la población es: ( pr – za/2 · √ pr (1 – pr) n , pr + za/2 · √ pr (1 – pr) n ) En este caso queda: ( 0,3 – 2 · √ 0,3 · 0,7 800 ; 0,3 + 2 · √ 0,3 · 0,7 800 ) es decir, (0,2676; 0,3324) La proporción de votantes del partido A en la población se encuentra, con un nivel de confianza del 95,45%, entre el 26,76% y el 33,24%. b) Si aumenta el nivel de confianza, mayor es la amplitud del intervalo; es decir, cuanto más seguros queramos estar de nuestra estimación, mayor será el error máximo admisible. Si disminuye el nivel de confianza, también lo hará la amplitud del intervalo. s13 Un estudio realizado por una compañía de seguros de automóviles estable- ce que una de cada cinco personas accidentadas es mujer. Si se contabilizan, por término medio, 169 accidentes cada fin de semana: a) ¿Cuál es la probabilidad de que, en un fin de semana, la proporción de mujeres accidentadas supere el 24%? b) ¿Cuál es la probabilidad de que, en un fin de semana, la proporción de hombres accidentados supere el 85%? c) ¿Cuál es, por término medio, el número esperado de hombres accidenta- dos cada fin de semana? a) x : “número de mujeres accidentadas cada fin de semana” x ≈ B (169, 02) La proporción de mujeres accidentadas cada fin de semana sigue una distribu- ción: x ' ≈ N p,(√ ) ( √ pq n = N 0,2; 0,2 · 0,8 169 ) = N (0,2; 0,03) Así: P [x ' > 0,24] = P z > [ 0,24 – 0,2 0,03 ] = P [z > 1,33] = 1 – F(1,33) = = 1 – 0,9082 = 0,0918 Unidad 13. Inferencia estadística: estimación de una proporción 12
  • 13. UNIDAD 13 b) La proporción de hombres accidentados cada fin de semana sigue una distribu- ción: ( √ y ' ≈ N 0,8; 0,8 · 0,2 169 ) = N (0,8; 0,03) Así: [ P [y ' > 0,85] = P z > 0,85 – 0,8 0,03 ] = P [z > 1,67] = 1 – F(1,67) = = 1 – 0,9525 = 0,0475 c) El número de hombres accidentados cada fin de semana sigue una distribución y ≈ B (169; 0,8). Así, μ = n · p = 169 · 0,8 = 135,2 es el “número esperado” de hombres accidentados cada fin de semana. CUESTIONES TEÓRICAS 14 A partir de una muestra de tamaño 400, se estima la proporción de individuos que leen el periódico en una gran ciudad. Se obtiene una cota de error de 0,0392 con un nivel de confianza del 95%. a) ¿Podríamos, con la misma muestra, mejorar el nivel de confianza en la es- timación? ¿Qué le ocurriría a la cota de error? b) ¿Sabrías calcular la proporción, pr, obtenida en la muestra? a) Aumentando la cota de error mejoraría el nivel de confianza. b) La cota de error es: pr (1 – pr ) E = za/2 · √ n Como E = 0,0392; n = 400 y 1 – a = 0,95 8 za/2 = 1,96, tenemos que: pr (1 – pr ) 0,0392 pr (1 – pr ) 0,0392 = 1,96 · √ 400 8 1,96 = √ 400 8 pr (1 – pr ) pr (1 – pr) 8 0,02 = √ 400 8 0,0004 = 400 8 0,16 = pr (1 – pr) 0,16 = pr – pr 2 8 pr 2 – pr + 0,16 = 0 1 ± √1 – 0,64 1 ± √0,36 1 ± 0,6 pr = 0,8 pr = = = 2 2 2 pr = 0,2 Podría ser pr = 0,8 o bien pr = 0,2. Con los datos que tenemos, no podemos decidir cuál de estos dos resultados es el válido. Unidad 13. Inferencia estadística: estimación de una proporción 13
  • 14. PARA PROFUNDIZAR 15 a) Un fabricante de medicamentos afirma que cierta medicina cura una en- fermedad de la sangre en el 80% de los casos. Los inspectores de sanidad utilizan el medicamento en una muestra de 100 pacientes y deciden acep- tar dicha afirmación si se curan 75 o más. Si lo que afirma el fabricante es realmente cierto, ¿cuál es la probabilidad de que los inspectores rechacen dicha afirmación? b) Supongamos que en la muestra se curan 60 individuos. Di, con una con- fianza del 95%, cuál es el error máximo cometido al estimar que el por- centaje de efectividad del medicamento es del 60%. a) Si lo que dice el fabricante es cierto, tenemos que p = 0,8 8 1 – p = 0,2 Considerando una muestra de tamaño n = 100, las proporciones muestrales, pr, siguen una distribución normal de media p = 0,8 y de desviación típica pq 0,8 · 0,2 √ n = √ 100 = 0,04; es decir, pr es N (0,8; 0,04). La probabilidad de que los inspectores rechacen la afirmación es P pr < [ 75 100 .] Calculamos esta probabilidad: [ P pr < 75 100 ] = P [ pr < 0,75] = –1,25 =P z<[ 0,75 – 0,8 0,04 ] = P [ z < –1,25] = = P [z > 1,25] = 1 – P [z Ì 1,25] = 1 – 0,8944 = 0,1056 es la probabilidad de que se rechace la afirmación. 60 b) Si la proporción muestral es pr = = 0,6 8 1 – pr = 0,4 100 Para za /2 = 1,96 (nivel de confianza del 95%), el error máximo será: pr (1 – pr ) 1,96 · 0,6 · 0,4 0,096 E = za/2 · √ n = √ 100 ≈ El error máximo cometido es de un 9,6%, es decir, de 10 personas. Página 309 AUTOEVALUACIÓN 1. En una población, la proporción de individuos que tienen una cierta caracte- rística C es 0,32. a) ¿Cómo se distribuyen las posibles proporciones pr de individuos que tie- nen la característica C en muestras de 200 individuos? Unidad 13. Inferencia estadística: estimación de una proporción 14
  • 15. UNIDAD 13 b) Halla el intervalo característico de pr correspondiente al 95%. c) Calcula la probabilidad de que en una muestra la proporción sea menor que 0,3. a) En la población, p = 0,32. Las proporciones muestrales, pr, se distribuyen N p, ( √ pq n). pq 0,32 · 0,68 √ n = √ 200 = 0,033 Es decir, pr se distribuye N (0,32; 0,033). b) En una normal N (0, 1), el intervalo característico correspondiente al 95% es (–1,96; 1,96). 0,32 – 1,96 · 0,033 = 0,255 0,32 + 1,96 · 0,033 = 0,647 El intervalo característico para pr (al 95%) es (0,255; 0,647). [ c) P [pr < 0,3] = P z < 0,3 – 0,32 0,033 ] = P [z < –0,61] = 1 – F (0,61) = 1 – 0,7291 = 0,2709 2. Se sabe que el 10% de los habitantes de una determinada ciudad va regular- mente al teatro. Se toma una muestra al azar de 100 habitantes de esta ciudad. ¿Cuál es la probabilidad de que, al menos, un 13% de ellos vaya regularmente al teatro? La distribución x = “número de personas que van regularmente al teatro” es una B (100; 0,1), donde p = 0,1 y q = 1 – p = 0,9. Como 100 · 0,1 > 5 y 100 · 0,9 > 5, aproximamos con una distribución: x' › N (np, √npq ) = N (10, 3), a la que aplicamos la corrección por continuidad: P [x Ó 13] = P [x' Ó 12,5] = P z Ó [ 12,5 – 10 3 ] = P [z Ó 0,83] = = 1 – F (0,83) = 1 – 0,7967 = 0,2033 3. En una muestra de 60 estudiantes de una universidad, un tercio habla inglés. a) Halla, con un nivel de confianza del 90%, un intervalo para estimar la pro- porción de estudiantes que hablan inglés. b) A la vista del resultado anterior, se va a repetir la experiencia para conse- guir una cota de error de 0,01 con el mismo nivel de confianza. ¿Cuántos individuos tendrá la muestra? 1 2 La proporción muestral es pr = 8 1 – pr = 3 3 Para un nivel de confianza del 90%, sabemos que za/2 = 1,645. Unidad 13. Inferencia estadística: estimación de una proporción 15
  • 16. a) El intervalo de confianza para estimar la proporción en la población es: ( pr – za/2 · √ pr (1 – pr) n , pr + za/2 · √ pr (1 – pr) n ) En este caso queda: ( 1 3 – 1,645 · √ (1/3) · (1/2) 1 60 , + 1,645 · 3 √ (1/3) · (1/2) 60 ) es decir: (0,2332; 0,4334) pr (1 – pr) b) En la expresión del error, E = za/2 · √ n , sabemos que: E = 0,01 za/2 = 1,645 (para un nivel de confianza del 90%) 1 2 pr = ; 1 – pr = 3 3 Por tanto: (1/3) · (1/2) 0,01 = 1,645 · √ 60 ò n › 6 013,4 Habrá que tomar una muestra de, al menos, 6 014 individuos. 4. Una encuesta realizada en cierto país sobre una muestra de 800 personas arroja el dato de que 300 son analfabetas. Para estimar la proporción de analfabetos del país, hemos obtenido el inter- valo de confianza (0,3414; 0,4086). ¿Con qué nivel de confianza se ha hecho la estimación? 300 3 5 La proporción muestral es pr = = 8 1 – pr = 800 8 8 El error máximo admisible es la semiamplitud del intervalo de confianza; es decir: 0,4086 – 0,3414 E= = 0,0336 2 pr (1 – pr) (3/8) · (5/8) Por tanto: E = za/2 · √ n 8 0,0336 = za/2 · √ 800 8 za/2 = 1,96 P [z Ì 1,96] = 0,9750 a 1–a = P [z > 1,96] = 1 – 0,9750 = 0,025 a/2 a/2 2 a = 0,025 · 2 = 0,05 8 1 – a = 0,95 1,96 El nivel de confianza es del 95%. Unidad 13. Inferencia estadística: estimación de una proporción 16