SlideShare una empresa de Scribd logo
FACTORIZACIÓN DE TRINOMIOS DE LA FORMA  x2+bx+c
¿Cómo puede factorizarsex² + 6x + 8? Como los términos del polinomio carecen de factores comunes (excepto 1), éste no se puede factorizar como el producto de un monomio por un polinomio. ¿Será posible factorizarlo como producto de dos binomios?  
six² + 6x + 8 fuera el resultado de multiplicar dos binomios con término común, el coeficiente de x, es decir, 6, debería ser la suma de dos números cuyo producto sea el tercer término, esto es, 8. por tanto, se deben buscar dos números cuyo producto sea 8 y que sumen 6.
Probamos con las posibilidades obtenidas de los factores del término independiente c (8, en este caso), que es positivo, luego ambos términos deben ser de signos iguales:Entonces, su factorización es : (x+2)(x+4). Probemos: (x+2)(x+4)= x(x+2)+2(x+4) =x2+4x+2x+8=x2+6x+8.
¿Cuál es la factorización de x2+3x-10?  Primero se determina el factor común x. luego se buscan dos númeroscuyasuma sea 3 y suproducto -10. Como el productoes un númeronegativo, los factoresdeben ser de signoscontrarios. Los factores de diez son: 1, 2, 5 y 10.La factorización, es, entonces, (x – 2)(x – 10) = x² – 12x + 20
¿Cuál es la factorización de x²–12x+20? El término común es x; los factores de 10 deben poseer el mismo signo para que el producto sea positivo. Como la suma de esos factores debe ser negativa, sólo se inspeccionan las sumas de los factores negativos de 20.
Los factores de veinte son: 1, 2, 4, 5, 10 y 20.Entonces la factorización de x²-12x+20, es: (x-10)(x-2).
¿Cuál es la factorización de y²–5y–24? El término común es y. Como 24 es negativo, sus factores son de signos contrarios y el mayor debe ser negativo porque la suma (–5) es negativa. Los factores de –24 que cumplen esto son –8 y 3. Entonces y² – 5y – 24 = (y – 8)(y + 3)
El trinomio x²+bx+c se factoriza como producto de binomios con un término común mediante el siguiente procedimiento: 1. Se encuentra el término común calculando la raíz cuadrada de x². 2. Se buscan dos números cuya suma sea b (el coeficiente de x) y su producto sea c (el término independiente).
Esta búsqueda se realiza examinando las sumas de los factores de c. De esta manera, se encuentran los términos no comunes de los binomios.
¿Cuál es la factorización del polinomio x²+6x+9? El término común es x. Como el producto es positivo sus factores son de signos iguales y como la suma es positiva,  la descomposición de 9 en factores que suman 6 es 3 x 3.Por tanto, el polinomio se factoriza como: (x + 3)(x + 3) = (x + 3)², pues (x + 3)(x + 3) = x² + 6x + 9
Como x² + 6x + 9 es el resultado de elevar un binomio al cuadrado, es un trinomio cuadrado perfecto. Un trinomio de la forma x2 + bx + c es cuadrado perfecto si el término bx es el doble producto de las raíces cuadradas de los otros dos.
Los trinomios cuadrados perfectos se factorizan obteniendo la raíz cuadrada del término de segundo grado (x²), ése será un término del binomio; después se obtiene la raíz cuadrada del término independiente c, ése será el otro término del binomio. (Recordemos que el doble del producto de estas raíces está en medio de los términos anteriores.)
Por ejemplo, el trinomio anterior, x² + 6x + 9, se podía factorizar sacando raíz cuadrada de x² y de 9; así se obtiene (x + 3)² , que es la respuesta y además que 6x es el doble del producto de x y 3.
EJERCICIOS
Factoriza en tu cuaderno los trinomios.
Factorización
Indica cuáles de los siguientes son trinomios cuadrados perfectos.
Completa las expresiones: a) (x + 8)² = x²  _ __ 64 b) (3x –  ) ² = 9x² –__ + 25 c) (__ + 2)² =__ + 32x _ __ d) (__ – 5)² = 36x² –__ +__ e) (__ +__ )² = 4x² + __+ 81y²  f) (__ – __)² = __ _ 44xy _ 121
Factoriza los trinomios cuadrados perfectos:     a) h² + 14h + 49 b) k² – 10k + 25 c) m² + 8m + 16  d) x² + 2x + 1  e) y² – 6y + 9 f) z² + 18z + 81 g) t² + 64 – 16t h) 20s + 100 + s² i) 400 + 40y + y²   j) w² + 6084 + 156w.
FACTORIZACIÓN DE ax2+bx y ax2-c2
Un polinomio de la forma ax² + bx siempre se puede factorizar así: ax² + bx = x(ax + b) son posibles otras factorizaciones; por ejemplo: Factorizar 3x² + 12x. Los factores comunes de 3x² y 12x son 1, 3, x y 3x; entonces el polinomio puede factorizarse de estas tres formas:           3(x² + 4x), x(3x + 12) , o, 3x(x + 4).
Si el área de un rectángulo es 4x² + 12x y el ancho es 2x, ¿cuál es la altura? Puesto que 4x²+12x = (2x)(largo), el largo del rectángulo se obtiene factorizando 4x²+12x de manera que un factor sea 2x. Como 4x² = (2x)(2x) y 12x = (2x)(6), entonces: 4x²+12x = (2x)(2x)+(2x)(6) = (2x)(2x+6)
Por tanto, el largo del rectángulo es 2x+6. Esta figura se ilustra a la izquierda;
Los siguientes binomios se factorizarán por el método del máximo factor común. Factorizar 25x² + 5x. El máximo factor común de 25x² y 5x es 5x. Entonces: 25x² + 5x = 5x(5x + 1).Factorizar 3x²+8x. El máximo factor común de 3x² y 8x es x. Entonces: 3x² + 8x = x(3x + 8).    Factorizar 16x²–24x. El máximo factor común de 16x² y 24x es 8x.Entonces,16x² – 24x = 8x(4x-3)
El binomio x² – 25 es de la forma x² – c², con a=1; se factoriza del siguiente modo: se observa que el binomio está formado por la diferencia de dos cuadrados. Entonces, x² – 25 se factoriza como el producto de los binomios conjugados (x + 5) y (x – 5) porque (x + 5)(x – 5) = x² – 25 .
El binomio x²–c² se factoriza como un producto de binomios conjugados, en los cuales el término común es x. Es decir: x²–c² = (x+c)(x–c) obsérvese cómo se factorizan los siguientes binomios:
4z² – 100. Como 4z² es positivo, el término común de los binomios conjugados es 2z, pues (2z)² = 4z². El otro término es la raíz cuadrada de 100. Entonces, 4z²–100 = (2z + 10)(2z – 10). Factorizar 49–x². El término común es 7 pues el otro término es x, la raíz cuadrada de x². Entonces, 49 – x² = (7 + x)(7 – x).
Factorizar –x² + y². El término común es la raíz cuadrada del término con signo positivo, es decir, la raíz cuadrada de y². El otro término es x, la raíz cuadrada de x². La factorización es –x² + y² = y² – x² = (y + x)(y – x).
Factorizar (81u4-64w2).La raíz cuadrada de 81 es 9, la de 64 es 8, la de w² es w y la de u4 es u2. Entonces, los binomios conjugados son (9u²+8w) y (9u² – 8w). Por tanto: factorización de una diferencia de cuadrados x² – c² = (x + c)(x – c) 
EJERCICIOS
Factorizar los siguientes binomios por el método del máximo factor común:
Factorización
Factorización
Factorización
Factorización

Más contenido relacionado

PPTX
Taller de factorizaciòn
PPTX
ALGUNOS CASOS DE FACTORIZACIÓN
DOCX
Factorización de polinomios
PDF
Factorizacion
DOCX
Expresiones Algebraicas, Radicalizacion y factorizacion
PPTX
Taller de factorizacion
PPTX
Trinomio cuadrado perfecto
Taller de factorizaciòn
ALGUNOS CASOS DE FACTORIZACIÓN
Factorización de polinomios
Factorizacion
Expresiones Algebraicas, Radicalizacion y factorizacion
Taller de factorizacion
Trinomio cuadrado perfecto

La actualidad más candente (19)

DOC
Factorización aspa simple
PPTX
Operaciones u expresiones algebraicas
PPTX
Factorización de Productos Notables
PPTX
Taller casos de factorizacion
PDF
Algebra preuniv-ft
PPTX
Tercer caso de factoreo
PDF
Productos notables vs factorización
PPT
clase de factorizacion
PPTX
Factorización caso 6 y 7
PPTX
Casos de factorización
PPTX
Factorización
PPSX
Factorizacion de trinomios de la forma x2+bx+c
DOCX
Factorizacion
PPTX
FactorizacióN De Binomios
DOCX
Binomio Cuadrado Perfecto
PPTX
Factorización de suma o diferencia de cubos (1)
DOC
Taller de refuerzo clei 4º 1. y factorizacion
PPT
Factorizacion
PPTX
Factorizacion
Factorización aspa simple
Operaciones u expresiones algebraicas
Factorización de Productos Notables
Taller casos de factorizacion
Algebra preuniv-ft
Tercer caso de factoreo
Productos notables vs factorización
clase de factorizacion
Factorización caso 6 y 7
Casos de factorización
Factorización
Factorizacion de trinomios de la forma x2+bx+c
Factorizacion
FactorizacióN De Binomios
Binomio Cuadrado Perfecto
Factorización de suma o diferencia de cubos (1)
Taller de refuerzo clei 4º 1. y factorizacion
Factorizacion
Factorizacion
Publicidad

Destacado (9)

PPT
Factorizacion
PPT
Factorizacion
PPTX
Metodo completando cuadrado
PPTX
Factor Común
PPTX
Resolver una ecuación cuadrática completando el cuadrado
PPT
Trinomio cuadrado perfecto javier rivera
PPTX
Casos de factorización
PPT
ALGUNOS CASOS DE FACTORIZACIÓN.
PPT
Paginas de matematicas
Factorizacion
Factorizacion
Metodo completando cuadrado
Factor Común
Resolver una ecuación cuadrática completando el cuadrado
Trinomio cuadrado perfecto javier rivera
Casos de factorización
ALGUNOS CASOS DE FACTORIZACIÓN.
Paginas de matematicas
Publicidad

Similar a Factorización (20)

PPTX
FACTORIZACIÓN Área Académica Matemáticas
PPTX
FACTORIZACIÓN.pptx
PPTX
FACTORIZACIÓN Área Académica Matemáticas Paz María de Lourdes Cornejo Arteaga...
PPTX
Semana #3-PensamientoMatemático3 del 8 al 12 de abril.pptx
DOCX
PPTX
Taller casosdefactorizacion-121129184046-phpapp01
PPTX
Factorizaciones
PPT
Unidad 5 factorizacion_polinomios_revisada
PPTX
Diapositivas factorización
PPTX
Diapositivas factorización
PPTX
Tipos de factorización
PPTX
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
PDF
Tiposdefactorizacion 131027152310-phpapp02
PDF
Tipos de factorizacion
PDF
Casos de Factorizacion del Algebra de Baldor
PPTX
Semana #7- del 30 de enero al 3 de febrero.pptx
PPT
modulo-factorizacion.ppt Bachillerato internacional
PDF
guia-Factorización algebráica.pdf
PPTX
Los distintos casos de factorizacion.pptx
DOC
FACTORIZACIÓN Área Académica Matemáticas
FACTORIZACIÓN.pptx
FACTORIZACIÓN Área Académica Matemáticas Paz María de Lourdes Cornejo Arteaga...
Semana #3-PensamientoMatemático3 del 8 al 12 de abril.pptx
Taller casosdefactorizacion-121129184046-phpapp01
Factorizaciones
Unidad 5 factorizacion_polinomios_revisada
Diapositivas factorización
Diapositivas factorización
Tipos de factorización
EJEMPLOS DE CADA TIPO DE FACTORIZACIÓN.
Tiposdefactorizacion 131027152310-phpapp02
Tipos de factorizacion
Casos de Factorizacion del Algebra de Baldor
Semana #7- del 30 de enero al 3 de febrero.pptx
modulo-factorizacion.ppt Bachillerato internacional
guia-Factorización algebráica.pdf
Los distintos casos de factorizacion.pptx

Último (20)

PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
DOCX
Informe_practica pre Final.docxddadssasdddddddddddddddddddddddddddddddddddddddd
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
PDF
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
DOCX
PLAN DE CASTELLANO 2021 actualizado a la normativa
PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
PDF
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
PDF
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
PDF
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
PPTX
Presentación de la Cetoacidosis diabetica.pptx
PDF
Punto Critico - Brian Tracy Ccesa007.pdf
PDF
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
DOCX
V UNIDAD - SEGUNDO GRADO. del mes de agosto
PDF
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
PDF
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
PDF
Escuelas Desarmando una mirada subjetiva a la educación
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE.pdf
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
Informe_practica pre Final.docxddadssasdddddddddddddddddddddddddddddddddddddddd
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
PLAN DE CASTELLANO 2021 actualizado a la normativa
Fundamentos_Educacion_a_Distancia_ABC.pdf
SESION 12 INMUNIZACIONES - CADENA DE FRÍO- SALUD FAMILIAR - PUEBLOS INDIGENAS...
Unidad de Aprendizaje 5 de Educacion para el Trabajo EPT Ccesa007.pdf
Habitos de Ricos - Juan Diego Gomez Ccesa007.pdf
Presentación de la Cetoacidosis diabetica.pptx
Punto Critico - Brian Tracy Ccesa007.pdf
Escuela de Negocios - Robert kiyosaki Ccesa007.pdf
V UNIDAD - SEGUNDO GRADO. del mes de agosto
IDH_Guatemala_2.pdfnjjjkeioooe ,l dkdldp ekooe
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
Escuelas Desarmando una mirada subjetiva a la educación
Crear o Morir - Andres Oppenheimer Ccesa007.pdf

Factorización

  • 1. FACTORIZACIÓN DE TRINOMIOS DE LA FORMA x2+bx+c
  • 2. ¿Cómo puede factorizarsex² + 6x + 8? Como los términos del polinomio carecen de factores comunes (excepto 1), éste no se puede factorizar como el producto de un monomio por un polinomio. ¿Será posible factorizarlo como producto de dos binomios?  
  • 3. six² + 6x + 8 fuera el resultado de multiplicar dos binomios con término común, el coeficiente de x, es decir, 6, debería ser la suma de dos números cuyo producto sea el tercer término, esto es, 8. por tanto, se deben buscar dos números cuyo producto sea 8 y que sumen 6.
  • 4. Probamos con las posibilidades obtenidas de los factores del término independiente c (8, en este caso), que es positivo, luego ambos términos deben ser de signos iguales:Entonces, su factorización es : (x+2)(x+4). Probemos: (x+2)(x+4)= x(x+2)+2(x+4) =x2+4x+2x+8=x2+6x+8.
  • 5. ¿Cuál es la factorización de x2+3x-10? Primero se determina el factor común x. luego se buscan dos númeroscuyasuma sea 3 y suproducto -10. Como el productoes un númeronegativo, los factoresdeben ser de signoscontrarios. Los factores de diez son: 1, 2, 5 y 10.La factorización, es, entonces, (x – 2)(x – 10) = x² – 12x + 20
  • 6. ¿Cuál es la factorización de x²–12x+20? El término común es x; los factores de 10 deben poseer el mismo signo para que el producto sea positivo. Como la suma de esos factores debe ser negativa, sólo se inspeccionan las sumas de los factores negativos de 20.
  • 7. Los factores de veinte son: 1, 2, 4, 5, 10 y 20.Entonces la factorización de x²-12x+20, es: (x-10)(x-2).
  • 8. ¿Cuál es la factorización de y²–5y–24? El término común es y. Como 24 es negativo, sus factores son de signos contrarios y el mayor debe ser negativo porque la suma (–5) es negativa. Los factores de –24 que cumplen esto son –8 y 3. Entonces y² – 5y – 24 = (y – 8)(y + 3)
  • 9. El trinomio x²+bx+c se factoriza como producto de binomios con un término común mediante el siguiente procedimiento: 1. Se encuentra el término común calculando la raíz cuadrada de x². 2. Se buscan dos números cuya suma sea b (el coeficiente de x) y su producto sea c (el término independiente).
  • 10. Esta búsqueda se realiza examinando las sumas de los factores de c. De esta manera, se encuentran los términos no comunes de los binomios.
  • 11. ¿Cuál es la factorización del polinomio x²+6x+9? El término común es x. Como el producto es positivo sus factores son de signos iguales y como la suma es positiva, la descomposición de 9 en factores que suman 6 es 3 x 3.Por tanto, el polinomio se factoriza como: (x + 3)(x + 3) = (x + 3)², pues (x + 3)(x + 3) = x² + 6x + 9
  • 12. Como x² + 6x + 9 es el resultado de elevar un binomio al cuadrado, es un trinomio cuadrado perfecto. Un trinomio de la forma x2 + bx + c es cuadrado perfecto si el término bx es el doble producto de las raíces cuadradas de los otros dos.
  • 13. Los trinomios cuadrados perfectos se factorizan obteniendo la raíz cuadrada del término de segundo grado (x²), ése será un término del binomio; después se obtiene la raíz cuadrada del término independiente c, ése será el otro término del binomio. (Recordemos que el doble del producto de estas raíces está en medio de los términos anteriores.)
  • 14. Por ejemplo, el trinomio anterior, x² + 6x + 9, se podía factorizar sacando raíz cuadrada de x² y de 9; así se obtiene (x + 3)² , que es la respuesta y además que 6x es el doble del producto de x y 3.
  • 16. Factoriza en tu cuaderno los trinomios.
  • 18. Indica cuáles de los siguientes son trinomios cuadrados perfectos.
  • 19. Completa las expresiones: a) (x + 8)² = x² _ __ 64 b) (3x – ) ² = 9x² –__ + 25 c) (__ + 2)² =__ + 32x _ __ d) (__ – 5)² = 36x² –__ +__ e) (__ +__ )² = 4x² + __+ 81y² f) (__ – __)² = __ _ 44xy _ 121
  • 20. Factoriza los trinomios cuadrados perfectos: a) h² + 14h + 49 b) k² – 10k + 25 c) m² + 8m + 16 d) x² + 2x + 1 e) y² – 6y + 9 f) z² + 18z + 81 g) t² + 64 – 16t h) 20s + 100 + s² i) 400 + 40y + y² j) w² + 6084 + 156w.
  • 22. Un polinomio de la forma ax² + bx siempre se puede factorizar así: ax² + bx = x(ax + b) son posibles otras factorizaciones; por ejemplo: Factorizar 3x² + 12x. Los factores comunes de 3x² y 12x son 1, 3, x y 3x; entonces el polinomio puede factorizarse de estas tres formas: 3(x² + 4x), x(3x + 12) , o, 3x(x + 4).
  • 23. Si el área de un rectángulo es 4x² + 12x y el ancho es 2x, ¿cuál es la altura? Puesto que 4x²+12x = (2x)(largo), el largo del rectángulo se obtiene factorizando 4x²+12x de manera que un factor sea 2x. Como 4x² = (2x)(2x) y 12x = (2x)(6), entonces: 4x²+12x = (2x)(2x)+(2x)(6) = (2x)(2x+6)
  • 24. Por tanto, el largo del rectángulo es 2x+6. Esta figura se ilustra a la izquierda;
  • 25. Los siguientes binomios se factorizarán por el método del máximo factor común. Factorizar 25x² + 5x. El máximo factor común de 25x² y 5x es 5x. Entonces: 25x² + 5x = 5x(5x + 1).Factorizar 3x²+8x. El máximo factor común de 3x² y 8x es x. Entonces: 3x² + 8x = x(3x + 8).  Factorizar 16x²–24x. El máximo factor común de 16x² y 24x es 8x.Entonces,16x² – 24x = 8x(4x-3)
  • 26. El binomio x² – 25 es de la forma x² – c², con a=1; se factoriza del siguiente modo: se observa que el binomio está formado por la diferencia de dos cuadrados. Entonces, x² – 25 se factoriza como el producto de los binomios conjugados (x + 5) y (x – 5) porque (x + 5)(x – 5) = x² – 25 .
  • 27. El binomio x²–c² se factoriza como un producto de binomios conjugados, en los cuales el término común es x. Es decir: x²–c² = (x+c)(x–c) obsérvese cómo se factorizan los siguientes binomios:
  • 28. 4z² – 100. Como 4z² es positivo, el término común de los binomios conjugados es 2z, pues (2z)² = 4z². El otro término es la raíz cuadrada de 100. Entonces, 4z²–100 = (2z + 10)(2z – 10). Factorizar 49–x². El término común es 7 pues el otro término es x, la raíz cuadrada de x². Entonces, 49 – x² = (7 + x)(7 – x).
  • 29. Factorizar –x² + y². El término común es la raíz cuadrada del término con signo positivo, es decir, la raíz cuadrada de y². El otro término es x, la raíz cuadrada de x². La factorización es –x² + y² = y² – x² = (y + x)(y – x).
  • 30. Factorizar (81u4-64w2).La raíz cuadrada de 81 es 9, la de 64 es 8, la de w² es w y la de u4 es u2. Entonces, los binomios conjugados son (9u²+8w) y (9u² – 8w). Por tanto: factorización de una diferencia de cuadrados x² – c² = (x + c)(x – c) 
  • 32. Factorizar los siguientes binomios por el método del máximo factor común: