SlideShare una empresa de Scribd logo
Todos los Pares de Rutas más Cortas
    (All-Pairs Shortest Paths)

        DR. JESÚS A. GONZÁLEZ BERNAL
         CIENCIAS COMPUTACIONALES
                     INAOE
Problema de Encontrar todos los Pares de Rutas más
                     Cortas
                                     2

 Encontrar las rutas más cortas entre todos los pares de vértices
 de un grafo
 Es el problema para hacer una tabla de distancias entre todos los
 pares de ciudades en un Atlas de carreteras
 Partimos de un grafo pesado y dirigido G = (V, E) con una
 función de pesos w : E R que mapea arcos a pesos con valores
 reales
 Encontrar para cada par de vértices u, v ∈ V
   Una ruta más corta (con menor peso) de u a v
   Donde el peso de la ruta es la suma de los pesos de sus arcos
   Salida en forma tabular
        Entrada en renglón u y columna v es el peso de la ruta más corta entre
        uyv
Problema de Encontrar todos los Pares de Rutas más
                     Cortas
                                 3

 Podemos resolver el problema ejecutando el algoritmo de
 rutas más cortas con una sola fuente |V| veces, una para cada
 vértice como la fuente
 Si todos los pesos son no-negativos, podemos utilizar el
 algoritmo de Dijkstra
    Con un arreglo lineal implementando una priority-queue
    podemos tener un tiempo de O(V3 +VE) = O(V3)
    Con min-heap binario para priority-queue, O(VElgV)
       Mejora para grafos poco densos
    Con Fibonacci-heap para priority-queue O(V2lgV+VE)
Problema de Encontrar todos los Pares de Rutas más
                     Cortas
                              4

 Si hay pesos negativos ya no podemos utilizar Dijkstra
   Entonces utilizaríamos Bellman-Ford (aunque más lento), una
   vez para cada vértice
   O(V2E), que para un grafo denso se convierte en O(V4)
 Estos tiempos se pueden mejorar con otros algoritmos
 Algunos algoritmos utilizan representación de matriz
 de adyacencia y no la de lista de adyacencia como en
 los algoritmos de una sola fuente
Modelado del Problema
                               5

 Grafo dirigido y pesado, G = (V, E)
 Representación de matriz de adyacencia
 Pesos: W =(wij)
      ⎧0                                 si i = j,
      ⎪
wij = ⎨ el peso del arco dirigido (i, j) si i ≠ j y (i, j) ∈ E,
      ⎪∞                                 si i ≠ j y (i, j) ∉ E
      ⎩
 Se permiten arcos con peso negativo
 El grafo de entrada no contiene ciclos con peso
 negativo
Modelado del Problema
                                  6

Salida tabular de todos los pares de rutas más
cortas
 Matriz de n x n, D = (dij)
 dij contiene el peso de una ruta más corta del vértice i al j
 δ(i,j) denota el peso de la ruta más corta del vértice i al j
   En la terminación del algoritmo dij = δ(i,j)
También calculamos una matriz de predecesores
 Π = (πij), con valor NIL si i = j o si no hay ruta de i a j y en
 otro caso πij es el predecesor de j para alguna ruta más
 corta desde i
Modelado del Problema
                               7

Subgrafo predecesor
 El subgrafo inducido por el i-ésimo renglón de la matriz
 Π debe ser un árbol de rutas más cortas con raíz en i
El subgrafo predecesor de G para i se define como
Gπ,i = (Vπ,i, Eπ,i), donde
 Vπ,i = {j ∈ V : πij ≠ NIL} ∪ {i}, y
 Eπ,i = {(πij, j) : j ∈ Vπ,i – {i}}.
Imprimir Ruta más Corta de i a j
                        8

Dada la matriz de predecesores Π podemos imprimir la
ruta más corta de i a j
Rutas más Cortas y Multiplicación de Matrices
                             9

Solución con programación dinámica para el problema
de todos los pares de rutas más cortas con un grafo
dirigido G = (V, E)
 Invoca operación parecida a multiplicación de matrices
 Primer algoritmo Θ(V4)
 Mejora en Θ(V3lgV)
Recordando Programación Dinámica
                           10

4 pasos
  Caracterizar la estructura de la solución óptima
  Definir recursivamente el valor de una solución óptima
  Calcular el valor de la solución óptima de manera bottom-
  up
  Construir la solución óptima con la información calculada
Estructura de la Ruta más Corta, con Lema 24.1
                                    11

Prueba al lema 24.1
  Descomponemos la ruta p en:            v1 ⎯⎯→ vi ⎯pij v j ⎯⎯→ vk
                                             p1i
                                                    ⎯→       pjk


  Tenemos entonces que:                  w( p ) = w( p1i ) + w( pij ) + w( p jk )
  Asumimos que hay una ruta
  p’ij de vi a vj con peso:              w( p 'ij ) < w( pij )
  Entonces la ruta de v1 a vk que
  pasa por p’ij:                         v1 ⎯⎯→ vi ⎯⎯→ v j ⎯⎯→ vk
                                             p1i    p 'ij   pjk


  Con peso:                                  w( p1i ) + w( p 'ij ) + w( p jk )
  Tiene un peso menor a w(p)
  Contradice lo que asumimos,
  que p es una ruta más corta de
  v1 a vk.
Solución Recursiva para Todos los Pares de Rutas más Cortas
                                                    12

 Sea lij(m) el mínimo peso de una ruta del vértice i al j que tiene al menos m arcos
 Cuando m = 0, hay una ruta más corta de i a j sin arcos sí y solo si i = j,
 entonces                      ⎧ 0 si i = j,
                             lij = ⎨
                          ( 0)

                                   ⎩∞        si i ≠ j.
 Para m ≥ 1, calculamos lij(m) como el mínimo de lij(m-1) y el mínimo peso de la
 ruta de i a j con a lo más m arcos
      Con todos los posibles predecesores k de j
                      lijm ) = min(lijm −1) , min{likm −1) + wkj })
                        (            (              (
                                                 1≤ k ≤ n

                      lijm ) = min (likm −1) + wkj )
                        (             (
                               1≤ k ≤ n

 Los pesos de la ruta más corta están dados por
     δ(i,j) =lij(n-1) = lij(n) = lij(n+1) = ….
 Hay a lo más n-1 arcos en la ruta más corta de i a j asumiendo que no
 hay ciclos con peso negativo
Calculando los Pesos de la Ruta más Corta Bottom-UP
                                  13

Tomamos como entrada la matriz W = (wij)
Calculamos las matrices
  L(1), L(2), …, L(n-1), donde para m = 1, 2, …, n-1 tenemos que L(m)
  = (lij(m))
La matriz final tiene los pesos de las rutas más cortas
  lij(1) = wij para todos los vértices i, j ∈ V, entonces L(1) = W
Algoritmo
                            14

Dadas las matrices L(m-1) y W regresa L(m)
   Extiende las rutas más cortas obtenidas hasta ahora con
   un arco
Algoritmo
                        15

El algoritmo se basa en la ecuación recursiva
Tiempo de ejecución Θ(n3) por los ciclos anidados
Parecido a multiplicación de matrices
Algoritmo
                            16

Algoritmo para encontrar todos los pares de rutas más
cortas
 Basado en Extend-Shortest-Paths
Este algoritmo se ejecuta en un tiempo de Θ(n4)
Ejemplo
   17
Algoritmo más Rápido
                                                18

No queremos calcular L(m) porque el resultado lo tenemos
desde L(n-1) asumiendo que no hay ciclos con peso negativo,
L(m) = L(n-1) para todos los enteros m ≥ n-1
Podemos calcular L(n-1) en ceiling(lg(n-1)) con la secuencia:
  L(1) = W
  L(2) = W2 = W ⋅ W
  L(4) = W4 = W2 ⋅ W2
  L(8) = W8 = W4 ⋅ W4
  L(2 ⎡ lg(n-1)⎤ ) = W2 ⎡ lg(n-1)⎤ = W2 ⎡ lg(n-1)⎤ -1 ⋅ W2 ⎡ lg(n-1)⎤ -1
  Continuamos hasta L(2 ⎡ lg(n-1)⎤ )
Proceso conocido como técnica de “repeating squaring”
  Requiere solo ⎡lg(n-1)⎤ productos de matrices, llamadas a Extend
Algoritmo más Rápido
                       19

Tiempo de ejecución Θ(n3lg n)
Algoritmo Floyd-Warshall
                        20

Utiliza un enfoque diferente de programación
dinámica
Tiempo de ejecución de Θ(V3)
Puede haber vértices con peso negativo pero no ciclos
con peso negativo
Seguimos el proceso de programación dinámica para
desarrollar el algoritmo
Algoritmo Floyd-Warshall
                                   21

Considera los vértices intermedios de una ruta más corta
  Si p = <v1, v2, …, vl>
  v2 … vl-1 son los vértices intermedios
El algoritmo Floyd-Warshall trabaja reduciendo
sucesivamente el número de vértices intermedios que pueden
ocurrir en una ruta más corta y sus subrutas
Sea el grafo G = (V, E) con vértices V numerados de 1...n, V =
{1, 2, …, n}, y considerando un subconjunto {1, 2, …, k} para
algún k
Sea p el mínimo peso de ruta desde el vértice i al vértice j para
el que los vértices intermedios son tomados de {1, 2, …, k},
puede ocurrir una de dos situaciones:
Algoritmo Floyd-Warshall
                              22

1) k no es un vértice intermedio de p
 i ↝p j
 Contiene los vértices de {1, 2, …, k-1}
2) k es un vértice intermedio de p
 i ↝p1 k ↝p2 j
 Contiene los vértices de {1, 2, …, k-1}
 p1 es la ruta más corta desde 1 a k
 p2 es la ruta más corta desde k a j
 Esto por el lema 24.1
Solución Recursiva
                          23

Sea dij(k) el peso de la ruta más corta desde i a j con
todos los vértices intermedios en {1, 2, …, k}
Como para cada ruta, los vértices intermedios están
en el conjunto {1, 2, …, n}, la matriz D(n) = (dij(n))
contendrá la solución final δ(i,j) para cada i, j ∈ V.
Recurrencia:

        ⎧wij                                si k = 0
   d =⎨
     (k )
                 ( k −1) ( k −1)    ( k −1)
        ⎩ min(d ij , d ik + d kj ) si k ≥ 1
    ij


   D = [d ij ] = [δ (i, j )], n =| V |
    (n)    (n)
Algoritmo
                             24

Calcula valores dij(k) en orden creciente de los valores de k
Entrada, matriz nxn W
Regresa D(n) con los pesos de las rutas más cortas
Tiempo de ejecución es Θ(n3), mejor que los anteriores con
O(n3lgn) y O(n4)
Ejemplo
   25
Ejemplo
   26
Ejemplo
   27
Ejemplo
   28
Construcción de la Ruta más Corta
                                           29

Hay varios métodos de construir las rutas con el algoritmo
Floyd-Warshall
   Construir la matriz D de pesos de rutas más cortas y luego la matriz
   de predecesores Π a partir de D
   Construir la matriz de predecesores en línea, conforme el algoritmo
   Floyd-Warshall construye las matrices D(k)


                    ⎧ NIL         si i = j ó w ij = ∞,
        π    (0)
                   =⎨
            ij
                    ⎩i            si i ≠ j y w ij ≤ ∞.
                     ⎧π ijk −1)
                     ⎪
                         (
                                   si d ijk −1) ≤ d ikk −1) + d kjk −1)
                                         (           (          (

        π ijk )
           (
                   = ⎨ ( k −1)
                     ⎪π kj         si d ijk −1) > d ikk −1) + d kjk −1)
                                         (           (          (
                     ⎩
Ejercicio

Ejecute el algoritmo de Floyd Warshall para el
siguiente grafo

Más contenido relacionado

PDF
Vlan.pdf
PPT
Fpga 06-data-types-system-tasks-compiler-directives
PDF
Rapport Administration des systémes Linux (Shells bash)
PPTX
1.8. equivalence of finite automaton and regular expressions
PPT
Floyd Warshall (Real Problem)
PPTX
Técnicas prácticas para la solución de algunos grafos 1
PPT
Grafos Iii
Vlan.pdf
Fpga 06-data-types-system-tasks-compiler-directives
Rapport Administration des systémes Linux (Shells bash)
1.8. equivalence of finite automaton and regular expressions
Floyd Warshall (Real Problem)
Técnicas prácticas para la solución de algunos grafos 1
Grafos Iii

Similar a Flyd+Warshall (20)

PDF
Acerca del algoritmo de dijkstra compressed
PPT
Rutamascorta1
PPTX
Floyd Prim y Kruscal
PPTX
Presentación OR Problemas de Caminos Más Cortos
PPT
PPT
GRAFOS_Eulerianos_Hamiltonianos.ppthgfff
PPTX
S8-EDD-4.2 Aplicaciones de árboles en informática
PDF
Ensayo polanco euan_elias
PDF
TEORIA DE GRAFOS
PDF
Fundamentos de la Teoría de Grafos en Curso de Educagratis
PPT
Campos Electromagneticos - Tema 2
PPTX
Transformaciones lineales
PDF
Algoritmos de vuelta atrás
DOC
Divergencia
DOC
Divergencia (1)
PPTX
Funciones Analíticas Variable Compleja.pptx
PPT
PPT
DOCX
República bolivariana de venezuela
Acerca del algoritmo de dijkstra compressed
Rutamascorta1
Floyd Prim y Kruscal
Presentación OR Problemas de Caminos Más Cortos
GRAFOS_Eulerianos_Hamiltonianos.ppthgfff
S8-EDD-4.2 Aplicaciones de árboles en informática
Ensayo polanco euan_elias
TEORIA DE GRAFOS
Fundamentos de la Teoría de Grafos en Curso de Educagratis
Campos Electromagneticos - Tema 2
Transformaciones lineales
Algoritmos de vuelta atrás
Divergencia
Divergencia (1)
Funciones Analíticas Variable Compleja.pptx
República bolivariana de venezuela
Publicidad

Más de grupo6tic (20)

PPT
Huffman 2
PPT
Ejemplo+Huffman
PDF
Grafos+2+Parte 2
PDF
Bellman Ford1
PDF
Bellman Ford
PDF
Automata3
PDF
Automata2
PDF
Bellman Ford1
PDF
Bellman Ford1
PDF
Bellman Ford1
PDF
Bellman Ford1
PDF
Bellman Ford1
PDF
Bellman Ford1
PDF
Automata2
PDF
Bellman Ford
PDF
Automata3
PDF
Automata3
PDF
Automata2
PDF
Automata3
PDF
Automata2
Huffman 2
Ejemplo+Huffman
Grafos+2+Parte 2
Bellman Ford1
Bellman Ford
Automata3
Automata2
Bellman Ford1
Bellman Ford1
Bellman Ford1
Bellman Ford1
Bellman Ford1
Bellman Ford1
Automata2
Bellman Ford
Automata3
Automata3
Automata2
Automata3
Automata2
Publicidad

Último (20)

PPTX
ASERTIVIDAD EN EL TRABAJO PARA EL MANEJO DE RRHH
PPT
Teoria General de Sistemas empresariales
PDF
PRESEN-ventas DE VENTAS Y FIDELIZACIONN DE CLI
PPTX
Slide_Introducci_n_a_las_empresas.pptx__
PPT
Comercio-InternacionSSSSSSSSSSSSSSSSSSSSal-UC.ppt
PPTX
Elementos del Entorno-Elementos del Entorno
PDF
CLASE 4.pdfkjljbjkbkjbihviuvvuuuuuuuuuuuu
PPTX
El ascenso económico de Asia y sus implicancias para el sistema multilateral ...
PPTX
PrincipiosdelosDisenosExperimentales.pptx
PDF
Contextualización del Sena, etapa induccion
PPTX
CREACION DE MARCA EMPRESAS CONTEXTO EMPRESARIAL
PPTX
norma epidemiologica en el primer nivel de atencion
PPT
equipo_de_proteccion_personal de alida met
PDF
IDEAS PARA PROYECTOS EMPRENDIMIENTO EPT-
PDF
2003_Introducción al análisis de riesgo ambientales_Evans y colaboradores.pdf
PDF
alejandrobcjjjjjjjjjjjjjjjjjjjjjjjjjjj.pdf
PPTX
1748538606_68389hhhhhhhhhhh4ee56ae5.pptx
PDF
Primeros Auxilios_Enfermedades Ocupacionales.pdf
PDF
Otros Coeficientes Correlación_FHE_UCV.pdf
PDF
EMPRENDIMIENTO, MODELO1 LEANS CANVAS.pdf
ASERTIVIDAD EN EL TRABAJO PARA EL MANEJO DE RRHH
Teoria General de Sistemas empresariales
PRESEN-ventas DE VENTAS Y FIDELIZACIONN DE CLI
Slide_Introducci_n_a_las_empresas.pptx__
Comercio-InternacionSSSSSSSSSSSSSSSSSSSSal-UC.ppt
Elementos del Entorno-Elementos del Entorno
CLASE 4.pdfkjljbjkbkjbihviuvvuuuuuuuuuuuu
El ascenso económico de Asia y sus implicancias para el sistema multilateral ...
PrincipiosdelosDisenosExperimentales.pptx
Contextualización del Sena, etapa induccion
CREACION DE MARCA EMPRESAS CONTEXTO EMPRESARIAL
norma epidemiologica en el primer nivel de atencion
equipo_de_proteccion_personal de alida met
IDEAS PARA PROYECTOS EMPRENDIMIENTO EPT-
2003_Introducción al análisis de riesgo ambientales_Evans y colaboradores.pdf
alejandrobcjjjjjjjjjjjjjjjjjjjjjjjjjjj.pdf
1748538606_68389hhhhhhhhhhh4ee56ae5.pptx
Primeros Auxilios_Enfermedades Ocupacionales.pdf
Otros Coeficientes Correlación_FHE_UCV.pdf
EMPRENDIMIENTO, MODELO1 LEANS CANVAS.pdf

Flyd+Warshall

  • 1. Todos los Pares de Rutas más Cortas (All-Pairs Shortest Paths) DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE
  • 2. Problema de Encontrar todos los Pares de Rutas más Cortas 2 Encontrar las rutas más cortas entre todos los pares de vértices de un grafo Es el problema para hacer una tabla de distancias entre todos los pares de ciudades en un Atlas de carreteras Partimos de un grafo pesado y dirigido G = (V, E) con una función de pesos w : E R que mapea arcos a pesos con valores reales Encontrar para cada par de vértices u, v ∈ V Una ruta más corta (con menor peso) de u a v Donde el peso de la ruta es la suma de los pesos de sus arcos Salida en forma tabular Entrada en renglón u y columna v es el peso de la ruta más corta entre uyv
  • 3. Problema de Encontrar todos los Pares de Rutas más Cortas 3 Podemos resolver el problema ejecutando el algoritmo de rutas más cortas con una sola fuente |V| veces, una para cada vértice como la fuente Si todos los pesos son no-negativos, podemos utilizar el algoritmo de Dijkstra Con un arreglo lineal implementando una priority-queue podemos tener un tiempo de O(V3 +VE) = O(V3) Con min-heap binario para priority-queue, O(VElgV) Mejora para grafos poco densos Con Fibonacci-heap para priority-queue O(V2lgV+VE)
  • 4. Problema de Encontrar todos los Pares de Rutas más Cortas 4 Si hay pesos negativos ya no podemos utilizar Dijkstra Entonces utilizaríamos Bellman-Ford (aunque más lento), una vez para cada vértice O(V2E), que para un grafo denso se convierte en O(V4) Estos tiempos se pueden mejorar con otros algoritmos Algunos algoritmos utilizan representación de matriz de adyacencia y no la de lista de adyacencia como en los algoritmos de una sola fuente
  • 5. Modelado del Problema 5 Grafo dirigido y pesado, G = (V, E) Representación de matriz de adyacencia Pesos: W =(wij) ⎧0 si i = j, ⎪ wij = ⎨ el peso del arco dirigido (i, j) si i ≠ j y (i, j) ∈ E, ⎪∞ si i ≠ j y (i, j) ∉ E ⎩ Se permiten arcos con peso negativo El grafo de entrada no contiene ciclos con peso negativo
  • 6. Modelado del Problema 6 Salida tabular de todos los pares de rutas más cortas Matriz de n x n, D = (dij) dij contiene el peso de una ruta más corta del vértice i al j δ(i,j) denota el peso de la ruta más corta del vértice i al j En la terminación del algoritmo dij = δ(i,j) También calculamos una matriz de predecesores Π = (πij), con valor NIL si i = j o si no hay ruta de i a j y en otro caso πij es el predecesor de j para alguna ruta más corta desde i
  • 7. Modelado del Problema 7 Subgrafo predecesor El subgrafo inducido por el i-ésimo renglón de la matriz Π debe ser un árbol de rutas más cortas con raíz en i El subgrafo predecesor de G para i se define como Gπ,i = (Vπ,i, Eπ,i), donde Vπ,i = {j ∈ V : πij ≠ NIL} ∪ {i}, y Eπ,i = {(πij, j) : j ∈ Vπ,i – {i}}.
  • 8. Imprimir Ruta más Corta de i a j 8 Dada la matriz de predecesores Π podemos imprimir la ruta más corta de i a j
  • 9. Rutas más Cortas y Multiplicación de Matrices 9 Solución con programación dinámica para el problema de todos los pares de rutas más cortas con un grafo dirigido G = (V, E) Invoca operación parecida a multiplicación de matrices Primer algoritmo Θ(V4) Mejora en Θ(V3lgV)
  • 10. Recordando Programación Dinámica 10 4 pasos Caracterizar la estructura de la solución óptima Definir recursivamente el valor de una solución óptima Calcular el valor de la solución óptima de manera bottom- up Construir la solución óptima con la información calculada
  • 11. Estructura de la Ruta más Corta, con Lema 24.1 11 Prueba al lema 24.1 Descomponemos la ruta p en: v1 ⎯⎯→ vi ⎯pij v j ⎯⎯→ vk p1i ⎯→ pjk Tenemos entonces que: w( p ) = w( p1i ) + w( pij ) + w( p jk ) Asumimos que hay una ruta p’ij de vi a vj con peso: w( p 'ij ) < w( pij ) Entonces la ruta de v1 a vk que pasa por p’ij: v1 ⎯⎯→ vi ⎯⎯→ v j ⎯⎯→ vk p1i p 'ij pjk Con peso: w( p1i ) + w( p 'ij ) + w( p jk ) Tiene un peso menor a w(p) Contradice lo que asumimos, que p es una ruta más corta de v1 a vk.
  • 12. Solución Recursiva para Todos los Pares de Rutas más Cortas 12 Sea lij(m) el mínimo peso de una ruta del vértice i al j que tiene al menos m arcos Cuando m = 0, hay una ruta más corta de i a j sin arcos sí y solo si i = j, entonces ⎧ 0 si i = j, lij = ⎨ ( 0) ⎩∞ si i ≠ j. Para m ≥ 1, calculamos lij(m) como el mínimo de lij(m-1) y el mínimo peso de la ruta de i a j con a lo más m arcos Con todos los posibles predecesores k de j lijm ) = min(lijm −1) , min{likm −1) + wkj }) ( ( ( 1≤ k ≤ n lijm ) = min (likm −1) + wkj ) ( ( 1≤ k ≤ n Los pesos de la ruta más corta están dados por δ(i,j) =lij(n-1) = lij(n) = lij(n+1) = …. Hay a lo más n-1 arcos en la ruta más corta de i a j asumiendo que no hay ciclos con peso negativo
  • 13. Calculando los Pesos de la Ruta más Corta Bottom-UP 13 Tomamos como entrada la matriz W = (wij) Calculamos las matrices L(1), L(2), …, L(n-1), donde para m = 1, 2, …, n-1 tenemos que L(m) = (lij(m)) La matriz final tiene los pesos de las rutas más cortas lij(1) = wij para todos los vértices i, j ∈ V, entonces L(1) = W
  • 14. Algoritmo 14 Dadas las matrices L(m-1) y W regresa L(m) Extiende las rutas más cortas obtenidas hasta ahora con un arco
  • 15. Algoritmo 15 El algoritmo se basa en la ecuación recursiva Tiempo de ejecución Θ(n3) por los ciclos anidados Parecido a multiplicación de matrices
  • 16. Algoritmo 16 Algoritmo para encontrar todos los pares de rutas más cortas Basado en Extend-Shortest-Paths Este algoritmo se ejecuta en un tiempo de Θ(n4)
  • 17. Ejemplo 17
  • 18. Algoritmo más Rápido 18 No queremos calcular L(m) porque el resultado lo tenemos desde L(n-1) asumiendo que no hay ciclos con peso negativo, L(m) = L(n-1) para todos los enteros m ≥ n-1 Podemos calcular L(n-1) en ceiling(lg(n-1)) con la secuencia: L(1) = W L(2) = W2 = W ⋅ W L(4) = W4 = W2 ⋅ W2 L(8) = W8 = W4 ⋅ W4 L(2 ⎡ lg(n-1)⎤ ) = W2 ⎡ lg(n-1)⎤ = W2 ⎡ lg(n-1)⎤ -1 ⋅ W2 ⎡ lg(n-1)⎤ -1 Continuamos hasta L(2 ⎡ lg(n-1)⎤ ) Proceso conocido como técnica de “repeating squaring” Requiere solo ⎡lg(n-1)⎤ productos de matrices, llamadas a Extend
  • 19. Algoritmo más Rápido 19 Tiempo de ejecución Θ(n3lg n)
  • 20. Algoritmo Floyd-Warshall 20 Utiliza un enfoque diferente de programación dinámica Tiempo de ejecución de Θ(V3) Puede haber vértices con peso negativo pero no ciclos con peso negativo Seguimos el proceso de programación dinámica para desarrollar el algoritmo
  • 21. Algoritmo Floyd-Warshall 21 Considera los vértices intermedios de una ruta más corta Si p = <v1, v2, …, vl> v2 … vl-1 son los vértices intermedios El algoritmo Floyd-Warshall trabaja reduciendo sucesivamente el número de vértices intermedios que pueden ocurrir en una ruta más corta y sus subrutas Sea el grafo G = (V, E) con vértices V numerados de 1...n, V = {1, 2, …, n}, y considerando un subconjunto {1, 2, …, k} para algún k Sea p el mínimo peso de ruta desde el vértice i al vértice j para el que los vértices intermedios son tomados de {1, 2, …, k}, puede ocurrir una de dos situaciones:
  • 22. Algoritmo Floyd-Warshall 22 1) k no es un vértice intermedio de p i ↝p j Contiene los vértices de {1, 2, …, k-1} 2) k es un vértice intermedio de p i ↝p1 k ↝p2 j Contiene los vértices de {1, 2, …, k-1} p1 es la ruta más corta desde 1 a k p2 es la ruta más corta desde k a j Esto por el lema 24.1
  • 23. Solución Recursiva 23 Sea dij(k) el peso de la ruta más corta desde i a j con todos los vértices intermedios en {1, 2, …, k} Como para cada ruta, los vértices intermedios están en el conjunto {1, 2, …, n}, la matriz D(n) = (dij(n)) contendrá la solución final δ(i,j) para cada i, j ∈ V. Recurrencia: ⎧wij si k = 0 d =⎨ (k ) ( k −1) ( k −1) ( k −1) ⎩ min(d ij , d ik + d kj ) si k ≥ 1 ij D = [d ij ] = [δ (i, j )], n =| V | (n) (n)
  • 24. Algoritmo 24 Calcula valores dij(k) en orden creciente de los valores de k Entrada, matriz nxn W Regresa D(n) con los pesos de las rutas más cortas Tiempo de ejecución es Θ(n3), mejor que los anteriores con O(n3lgn) y O(n4)
  • 25. Ejemplo 25
  • 26. Ejemplo 26
  • 27. Ejemplo 27
  • 28. Ejemplo 28
  • 29. Construcción de la Ruta más Corta 29 Hay varios métodos de construir las rutas con el algoritmo Floyd-Warshall Construir la matriz D de pesos de rutas más cortas y luego la matriz de predecesores Π a partir de D Construir la matriz de predecesores en línea, conforme el algoritmo Floyd-Warshall construye las matrices D(k) ⎧ NIL si i = j ó w ij = ∞, π (0) =⎨ ij ⎩i si i ≠ j y w ij ≤ ∞. ⎧π ijk −1) ⎪ ( si d ijk −1) ≤ d ikk −1) + d kjk −1) ( ( ( π ijk ) ( = ⎨ ( k −1) ⎪π kj si d ijk −1) > d ikk −1) + d kjk −1) ( ( ( ⎩
  • 30. Ejercicio Ejecute el algoritmo de Floyd Warshall para el siguiente grafo