UNIVERSIDAD VERACRUZANAPLANTEAMIENTO DE LA HIPOTESIS PARA MAS DE 2 POBLACIONESESTADISTICAINFERENCIALCHI CUADRADO UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOPLANTEAMIENTO DE HIPOTESIS EN MAS DE DOS POBLACIONES (Ji-Cuadrada)INDICEIntroducción…………………………………………………………………3Aplicación……………………………………………………………………..3Teoría…………………………………………………………………………………5Supuestos y Restricciones…………………………………………………………6Gráficos………………………………………………………………………………8Formulas…………………………………………………………………………12Tablas…………………………………………………………………………………13Utilidad	Ejemplos (5)……………………………………………………………………16Ejercicios –Resolución (20)……………………………………………17Glosario………………………………………………………………………………….49Fuente Bibliográfica………………………………………………………………..51Formulario……………………………………………………………………………12ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOINTRODUCCIONEn estadística, la distribución χ² (de Pearson) es una distribución de probabilidad continua con un parámetro k que representa los grados de libertad de la variable aleatoria:donde Zi son variables de distribución normal, de media cero y varianza uno. El que la variable aleatoria X tenga esta distribución se representa habitualmente así: .Es conveniente tener en cuenta que la letra griega χ se transcribe al latín como chi[1] y se pronuncia en castellano como ji.[2][3]ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOAPLICACIONESLa distribución χ² tiene muchas aplicaciones en inferencia estadística, por ejemplo en la denominada prueba χ² utilizada como prueba de independencia y como prueba de bondad de ajuste y en la estimación de varianzas. También está involucrada en el problema de estimar la media de una población normalmente distribuida y en el problema de estimar la pendiente de una recta de regresión lineal, a través de su papel en la distribución t de Student, y participa en todos los problemas de análisis de varianza, por su papel en la distribución F de Snedecor, que es la distribución del cociente de dos variables aleatorias independientes con distribución χ².PRUEBAS DE 2 BONDAD DE AJUSTESe utiliza para la comparación de la distribución de una muestra con alguna distribución teórica que se supone describe a la población de la cual se extrajo. INDEPENDENCIALa Ho indica que 2 variables o criterios de clasificación son independientes cuando se aplican a un conjunto de individuos (unidades de observación) Totales Marginales Aleatorios HOMOGENEIDADSe extraen Muestras Independientes de varias poblaciones y se prueban para ver si son homogéneas con respecto a algún criterio de clasificación. Un conjunto de Totales Marginales Son Fijos mientras que los otros marginales son Aleatorios.   ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOBondad de Ajuste (para una multinominal) Esta es una prueba para comparar las probabilidades de (πi) de una distribución multinominal (lo esperado), con las obtenidas en una muestra (lo observado) para determinar si son iguales o no. Distribución MultinominalLa Distribución Multinominaal es una extensión de la distribución Binominal. En vez de haber solo dos posibles resultados (éxitos y fracasos) tenemos k posibles resultados.Al igual que en la Binominal: Los experimentos son IndependientesHay un número fijo de experimentos La probabilidad de que ocurra cada uno de los resultados en un experimento π1,.. π2… πk..es constante. La prueba de Ji Cuadrado es un método útil para comparar resultados experimentales con aquellos que se esperan teóricamente en virtud de una hipótesis. La distribución ji_cuadrada nos permite probar, si dos o más proporciones de población pueden ser consideradas iguales.Si clasificamos a una población en diferentes categorías con respecto a dos atributos (edad, y desempeño en el trabajo), podemos utilizar una prueba ji_cuadrada, para comprobar si los dos atributos son independientes entre sí. la distribución Ji cuadrada, se denota por la letra griega X(Ji), elevada al cuadrado: X2.A medida que aumentan los grados de libertad la curva se va haciendo más simétrica y su cola derecha se va extendiendo.Características de la distribuciónTodos los valores de x2 son positivos.Es una curva sesgada hacia la derecha.La media de la distribución son sus grados de libertadESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOTEORIADistribución de Ji- cuadrado (²) Distribución de datos discretos, que es función de la densidadpoblacional y cuyos valores varían desde cero hasta +(infinitopositivo). A diferencia de la distribución Normal o la de t (Test de Student o de t),la función se aproxima asintóticamente al eje horizontal sólo en la coladerecha de la curva y NO en ambas colas. Como en la distribución de t, no hay solo una distribución de ji- cuadrado(²) sino que existe una distribución para cada número de gradosde libertad (). Por tanto, es función .ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOLas curvas son en forma de (jota invertida) al principio, pero más omenos acercándose a la simetría para los grados de libertad superiores. análisis de frecuencias.Pruebas de Bondad de Ajuste. Para evaluar el ajuste entre frecuencias observadas y esperadas existenestadísticos que prueban en qué medida difieren las mismas y si esadiferencia es significativa o no. Hay dos métodos que son los más utilizados: Método de Ji- cuadrado o Chi- cuadrado (²) Método G o prueba del logaritmo de la razón de VerosimilitudesMétodo de Ji- cuadrado o Chi- cuadrado (²)Donde fo= frecuencia observadafe = frecuencia esperada X²= ∑ (fo- fe)² /fe  La razón por la que la que esta prueba se ha denominado Ji- cuadrado ypor la que muchos han llamado así también al estadístico obtenido X²,es que la distribución de muestreo de esta sumatoria se aproxima a lade una distribución de ² con = 1 grados de libertad. La prueba es siempre a una cola ya que las desviaciones estánelevadas al cuadrado y conducen siempre a valores positivos ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOPROPIEDADES DE LAS DISTRIBUCIONES JI_CUADRADASl.-Los valores de x2 son mayores o iguales que O2.-La forma de una distribución x2 depende del g I =n-l. En consecuencia hay un número infinito de distribuciones x2.3.-EI área bajo una curva ji_cuadrada y sobre el eje horizontal es 1.4.-Las distribuciones x2 no son simétricas, tienen colas estrechas que se extienden a la derecha; están sesgadas a la derecha.5.-cuando n>2 la media de una distribución x2 es n-l y la varianza es 2(n-l). 6.-EI valor modal de una distribución x2 se da en el valor (n-3).ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOSUPUESTOS Y RESTRICCIONES SUPUESTOS PARA LA PRUEBA DE 2 Experimento multinomial. Lo que se satisface tomando una muestra aleatoria de la población de interés. El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea  5, para  asegurar que 2 se aproxime a la distribución real (multinomial). Se puede recurrir a colapsar categorías contiguas (celdas) con valores esperados menores de 5.  La prueba estadística es: Donde pio representa  la proporción deseada en la i-ésima categoría, Obsi la frecuencia observada en la categoría  i  y  n es el tamaño de la muestra.  La prueba estadística se distribuye como una Ji-Cuadrado con k-1 grados de libertad donde, k es el número de categorías. Si el valor de la prueba estadística (2 calculado) es mayor que el valor crítico (2 de la tabla) se rechaza la hipótesis nula Ei: frec. Esperada de la i-ésima claseOi: frec. Observada de la i-ésima claseN: número de clasesk: número de parámetros estimados a partir de  la muestraESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOLa chi cuadrada permite al investigador comprobar una hipótesis acerca de una relación entre dos medidas nominales. La lógica x2  es la siguiente: el número total de observaciones en cada columna en cada columna y el número total de observaciones en cada renglón (positivo o negativo) son considerados o fijados y se conoce como frecuencia marginal.Existen abusos de esta prueba estadística  como su empleo en grupos independientes cuyas variables son numéricas, para lo cual debería usarse la t y no convertir los valores ordinales o nominales. Un ejemplo frecuente es usar puntos de corte arbitrariamente como la edad de 45 o 60 años cuando los datos numéricos con la estadística correspondiente nos brindan más información. Desventajas del método:1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5). Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste.ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO Desventajas del método:1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5). Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste. Por ello, Cochran(1954; Snedecor & Cochran, 1967) ha considerado que tal restricción debilita la sensibilidad del test y ha sugerido que los valores esperados no deben ser menores a 1 (∑fe≥1) y no a 5.El número de grados de libertad es entonces:                    µ=n° de clase luego de la agrupación –a-1 Teniendo a la interpretación mencionada más abajo.2) El número de grados de libertad es µ= n-a-1, donde a es el número de parámetros estimados para ajustar el modelo elegido; de manera que el número mínimo de clases que se pueden comparar es: 3, para el modelo de Poisson. El parámetro de este modelo es λ         (Lambda) y como los grados de libertad de cualquier distribución no pueden                                           ser menores a la unidad (µ ≥1):                                 µ= n-a-1 Siendo a=λ=1 parámetroµ= n-2Por tanto n debe ser ≥ 3ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO GRAFICOSGRAFICA DISTRIBUCION JI CUADRADA PARA V= 2, 5, Y 10 GRADOS DE LIBERTAD  ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO Distribución Ji cuadrada para v=2,5 y 10.La estadística de Ji cuadrada se calcula de la manera siguiente:Esta fórmula establece que ji_cuadrada, o x2, es la suma que obtendremos si:1.- Restamos Fe de Fo para cada una de las celdas de la tabla2.-Elevamos al cuadrado cada una de las diferencias3.- Dividimos cada diferencia al cuadrado entre Fe, y4.-Sumamos los resultados ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO  La función de densidad de la distribución X2 está dada por:para x>0la cual da valores críticos (gl) para veinte valores especiales de . Para denotar el valor crítico de una distribución X2 con gl grados de libertad se usa el símbolo (gl); este valor crítico determina a su derecha un área de bajo la curva X2 y sobre el eje horizontal. Por ejemplo para encontrar X20.05(6) en la tabla se localiza 6 gl en el lado izquierdo y a o largo del lado superior de la misma tabla.  ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIOESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO  FORMULALa fórmula es: Donde:X2 = valor estadístico de ji cuadrada.fo = frecuencia observada.fe = frecuencia esperada.  Pasos:Arreglar las observaciones en una tabla de contingencias. Determinar el valor teórico de las frecuencias para cada casilla. Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla. Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente. Obtener la sumatoria de los valores anteriores, que es el estadístico X2. Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1]. El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad. Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.    ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO  FORMULALa fórmula es: Donde:X2 = valor estadístico de ji cuadrada.fo = frecuencia observada.fe = frecuencia esperada.  Pasos:Arreglar las observaciones en una tabla de contingencias. Determinar el valor teórico de las frecuencias para cada casilla. Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla. Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente. Obtener la sumatoria de los valores anteriores, que es el estadístico X2. Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1]. El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad. Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.    ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANAESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANAESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANAESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANAESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA  UTILIDAD EJEMPLOS Se utiliza en el campo de la medicina, en hospitales, para realizar estudios en pacientes que padecen de cierta enfermedad o trastorno. Por ejemplo:La asociación entre reflujo gastroesofagico diurno y nocturno con la exposición esofágica al acido en 24h fue evaluada en 59 pacientes con pirosis 4 veces a la semana ene los últimos 6 meses.Ele ejemplo trata de relacionar la asociación entre estas dos variables nominales y cualitativas categóricas: 1. Presencia de reflujo gastroesofàgico nocturno o diurno y 2. Acidez esofágica en 24 h.La X cuadrada es una estadística frecuentemente usada para comparar proporciones en la literatura médica. Los datos nominales (categóricos) obtenidos de una muestra con n observaciones independientes son ordenados en una tabla de renglones y columnas. En la agronomía, se utiliza para estudiar el comportamiento de los cultivos.Por ejemplo:Si una mazorca de maíz, resultado de una cruza dihíbrida para estos caracteres, tiene un total de 381 granos, incluyendo 216 púrpuras y lisos, 79 púrpuras y rugosos, 65 amarillos y lisos, y 21 amarillas y rugosos. Indique realizando una prueba de Ji cuadrada si estos resultados concuerdan con su hipótesis.  En la economía, para realizar estudios acerca de los ingresos de la población.Por ejemplo:Se toma una muestra aleatoria de 2200 familias y se les clasifica en una tabla de doble entrada según su nivel de ingresos (alto, medio o bajo) y el tipo de colegio a la que envían sus hijos. La siguiente tabla muestra los resultados obtenidos: ¿A un nivel de significancia del 1% hay razón para creer que el ingreso y el tipo de colegio no son variables independientes?      PROGRAMA DE ESTUDIOESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO   Los 20 ejemplos se encuentran en el documento de wordESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO   GLOSARIODistribución de probabilidad:En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los eventos rango de valores de la variable aleatoria.Grados de Libertad:En estadística, grados de libertad es un estimador del número de categorías independientes en una prueba particular o experimento estadístico. Se encuentran mediante la fórmula n − r, donde n=número de sujetos en la muestra (también pueden ser representados por k − r, donde k=número de grupos, cuando se realizan operaciones con grupos y no con sujetos individuales) y r es el número de sujetos o grupos estadísticamente dependientes.Distribución Normal:En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO   Varianza:En teoría de probabilidad, la varianza de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.Hipótesis Estadística:Al intentar alcanzar una decisión, es útil hacer hipótesis (o conjeturas) sobre la población aplicada.Tales hipótesis, que pueden ser o no ciertas, se llaman hipótesis estadísticas.Son, en general, enunciados acerca de las distribuciones de probabilidad de las poblaciones.Hipótesis Nula:En muchos casos formulamos una hipótesis estadística con el único propósito de rechazarla o invalidarla. Así, si queremos decidir si una moneda está trucada, formulamos la hipótesis de que la moneda es buena ( o sea p = 0,5, donde p es la probabilidad de cara).ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO   Analógicamente, si deseamos decidir si un procedimiento es mejor que otro, formulamos la hipótesis de que no hay diferencia entre ellos (o sea. Que cualquier diferencia observada se debe simplemente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se suelen llamar hipótesis nula y se denotan por Ho.Hipótesis Alternativa.Toda hipótesis que difiere de una dada se llamará una hipótesis alternativa. Por ejemplo: Si una hipótesis es p = 0,5, hipótesis alternativa podrían ser p = 0,7, p " 0,5 ó p > 0,5.Una hipótesis alternativa a la hipótesis nula se denotará por H1.  ESTADISTICA INFERENCIAL
UNIVERSIDAD VERACRUZANA   PROGRAMA DE ESTUDIO    Referencia Bibliográficahttp://www.aray1.com/docupdf/ji2.pdfHttp://members.fortunecity.co/bucker4/estadística/pruebaji2mi.htm Introducción a la Bioestadística. Robert R. Sokal & F. James Rohlf.http://www.fcv.unlp.edu.ar/sitios-        cátedras/2/material/Distribucion%20de%20Ji.pdf http://www.scribd.com/doc/6703611/Ji-Cuadradohttp://www.naumkreiman.com.ar/test_ji_cuadrado.htmlhttp://www.monografias.com/trabajos27/hipotesis/hipotesis.shtmlhttp://www.unmsm.edu.pe/educacion/postgrado/est_inf_aplicada.pdfhttp://www.gastrocancerprev.com.mx/Documentos/MetodoINV/1%20_6_.pdfhttp://www.fcv.unlp.edu.ar/sitios-catedras/2/material/Distribucion%20de%20Ji.pdfhttp://www.eumed.net/libros/2006c/203/2r.htmhttp://webcache.googleusercontent.com/search?q=cache:KZxJxxMrsfYJ:www.fvet.edu.uy/fvestadis/teorico-chi2_08.ppt+supuestos+de+chi-+cuadrada&cd=1&hl=es&ct=clnk&gl=mx http://www.raydesign.com.mx/psicoparaest/index.php?option=com_content&view=article&id=235:ji-bartlett&catid=52:pruebaspara&Itemid=6 ESTADISTICA INFERENCIAL
Hipotesis (ji) p resentacion

Más contenido relacionado

DOC
La prueba o estadístico chi cuadrado se utiliza para comprobar si la diferenc...
DOCX
Deber chi cuadrado
DOCX
5 Planteamiento de Hipotesis en mas de 2 Poblaciones (ji cuadrada)
 
PPT
Coef Contingencia
PPTX
Distribucion de Chi Cuadrado
PPTX
Estadistica chi cuadrado
DOCX
Chi cuadrado
La prueba o estadístico chi cuadrado se utiliza para comprobar si la diferenc...
Deber chi cuadrado
5 Planteamiento de Hipotesis en mas de 2 Poblaciones (ji cuadrada)
 
Coef Contingencia
Distribucion de Chi Cuadrado
Estadistica chi cuadrado
Chi cuadrado

La actualidad más candente (20)

PPT
Chi Cuadrado
DOCX
Deber chi cuadrado
PPT
14 prueba chi cuadrado
PDF
Prueba de Hipotesis para Muestras Pequeñas Est ind clase03
PDF
Ejemplo resuelto anova
DOCX
PDF
X cuadrada
DOCX
El chi cuadrado
DOCX
Prueba de independencia
PDF
Chi Cuadrado
PPTX
Estadistica 8
PPT
Pruebas no parametricas de wilcoxon 2007.
PPTX
PPTX
Prueba de la bondad del ajuste
PPTX
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
DOCX
RESUMEN DE ESTADISTICA II INIDAD 2
DOCX
Tarea chi cuadrado
PPTX
CHI CUADRADO
PPTX
Tb23 2012 3-prueba_de_chi_cuadrada
Chi Cuadrado
Deber chi cuadrado
14 prueba chi cuadrado
Prueba de Hipotesis para Muestras Pequeñas Est ind clase03
Ejemplo resuelto anova
X cuadrada
El chi cuadrado
Prueba de independencia
Chi Cuadrado
Estadistica 8
Pruebas no parametricas de wilcoxon 2007.
Prueba de la bondad del ajuste
Prueba De HipóTesis Para Dos Medias De PoblacióN (Muestras Grandes)
RESUMEN DE ESTADISTICA II INIDAD 2
Tarea chi cuadrado
CHI CUADRADO
Tb23 2012 3-prueba_de_chi_cuadrada
Publicidad

Destacado (20)

PDF
Distribucion polya eggenberger
PPT
Distribución binominal
PPTX
Reforma al Sistema binominal
PPTX
Distribucion binominal armando
PPTX
Distribucion binominal
PPTX
Distribucion binomial negativa
PDF
Trabajo e.e.indeterminadas de_estructura_ii_seccion_virtual_orlando_villarroel
PDF
Contrastar con estadística
PPT
DistribucióN De Poisson
PDF
Estadística avanzada
PPT
Valor P
PDF
21065741 distribucion-uniforme
PPTX
Distribución de poisson
PPTX
Distribución de poisson
PPTX
Análisis de Estructuras
PPTX
Distribución hipergeometrica
PPT
Distribucion Binomial
DOCX
Ejercicios de distribuciones de probabilidad
PPT
La distribucion binomial
Distribucion polya eggenberger
Distribución binominal
Reforma al Sistema binominal
Distribucion binominal armando
Distribucion binominal
Distribucion binomial negativa
Trabajo e.e.indeterminadas de_estructura_ii_seccion_virtual_orlando_villarroel
Contrastar con estadística
DistribucióN De Poisson
Estadística avanzada
Valor P
21065741 distribucion-uniforme
Distribución de poisson
Distribución de poisson
Análisis de Estructuras
Distribución hipergeometrica
Distribucion Binomial
Ejercicios de distribuciones de probabilidad
La distribucion binomial
Publicidad

Similar a Hipotesis (ji) p resentacion (20)

DOCX
Investigacion hipotesis (ji) rest 1
DOCX
Investigacion hipotesis (ji) rest 1
DOCX
Planteamiento de hipotesis en mas de dos poblaciones (ji cuadrada)
PPTX
(5)hipotesis (ji) p resentacion
 
DOCX
Investigacion unidad II
DOCX
Investigacion unidad II
DOCX
DOCX
ESTADISTICA UNIDAD II
DOCX
Investigacion unidadii
DOCX
Investigacion unidad II
DOCX
Investigacion unidadii
DOCX
Deber chi cuadrado
PDF
Chicuadrada
DOCX
Deber chi cuadrado (2)
PPTX
Chi cuadrado de Pearson para bioestadística
PDF
CHI CUADRADA.pdf
DOCX
Deber chi cuadrado
PPTX
Ajuste-Chi-cuadrado-pptx.pptx
PPTX
Ajuste-Chi-cuadrado-pptx.pptx
PDF
Chi cuadrada
Investigacion hipotesis (ji) rest 1
Investigacion hipotesis (ji) rest 1
Planteamiento de hipotesis en mas de dos poblaciones (ji cuadrada)
(5)hipotesis (ji) p resentacion
 
Investigacion unidad II
Investigacion unidad II
ESTADISTICA UNIDAD II
Investigacion unidadii
Investigacion unidad II
Investigacion unidadii
Deber chi cuadrado
Chicuadrada
Deber chi cuadrado (2)
Chi cuadrado de Pearson para bioestadística
CHI CUADRADA.pdf
Deber chi cuadrado
Ajuste-Chi-cuadrado-pptx.pptx
Ajuste-Chi-cuadrado-pptx.pptx
Chi cuadrada

Más de guest0e7a0f7 (8)

DOCX
W grafico encuestas
PPTX
Ppgraficos encuestas
DOCX
W grafico encuestas
PPTX
Ppgraficos encuestas
PPTX
Presentacion avance
PPTX
Presentacion avance
PPTX
Presentacion avance
PPTX
Bench.. esta
W grafico encuestas
Ppgraficos encuestas
W grafico encuestas
Ppgraficos encuestas
Presentacion avance
Presentacion avance
Presentacion avance
Bench.. esta

Último (20)

PPTX
MARIA RMMV TRABAJO DE PRESENTACION 2.pptx
PDF
Mujeres unidas agricultura sostenible en latinoameroca
PPTX
COBIT 5 PROYECTO 2111222221.pptx123.pptx
PPTX
GUMBORO..pptx---------------------------
PDF
4° grado Lectura Cuaderngdfdfgdgilyfyflo 2.pdf
PPTX
ADM de proyectos de diseño SEGUNDA SESION SINCRONA Documento guia para test 2...
PPTX
Tema 3 La Función Dirección.fundamental pptx
PPT
TutoríaJornada la tutorial académica en centro universitario de la ciencia de...
PPTX
El ascenso económico de Asia y sus implicancias para el sistema multilateral ...
DOCX
Nombre del Programa- El Juego de la Negociación_Carol Noriega.docx
PPT
EL_CRÉDIT...ppt-------------------------------------------
PPT
introeco.ppt - economia introduccion 3030
PDF
trabajo de tecnogia 2025 payanestebanodad
PPTX
Fundamentos_del_Lean_management_2014_Nathatlie_David.pptx
PPTX
1. ANATOMIA CLINICA DEL CORAZON.....pptx
PPT
JUGO DE CAÑA EN LEVANTE DE PORCINOS.ppt
PDF
PIELONEFRITIS aguda y crónica Luis Esquivel Peña uDocz.pdf
PPTX
rescate en altura vertical medidas de prevencion en los centros de trabajo
PPTX
ADMINISTRACCION Y DEPARTAMENTALIZACION.pptx
PPTX
Marketing y su desarrollo en el desarrollo empresarial
MARIA RMMV TRABAJO DE PRESENTACION 2.pptx
Mujeres unidas agricultura sostenible en latinoameroca
COBIT 5 PROYECTO 2111222221.pptx123.pptx
GUMBORO..pptx---------------------------
4° grado Lectura Cuaderngdfdfgdgilyfyflo 2.pdf
ADM de proyectos de diseño SEGUNDA SESION SINCRONA Documento guia para test 2...
Tema 3 La Función Dirección.fundamental pptx
TutoríaJornada la tutorial académica en centro universitario de la ciencia de...
El ascenso económico de Asia y sus implicancias para el sistema multilateral ...
Nombre del Programa- El Juego de la Negociación_Carol Noriega.docx
EL_CRÉDIT...ppt-------------------------------------------
introeco.ppt - economia introduccion 3030
trabajo de tecnogia 2025 payanestebanodad
Fundamentos_del_Lean_management_2014_Nathatlie_David.pptx
1. ANATOMIA CLINICA DEL CORAZON.....pptx
JUGO DE CAÑA EN LEVANTE DE PORCINOS.ppt
PIELONEFRITIS aguda y crónica Luis Esquivel Peña uDocz.pdf
rescate en altura vertical medidas de prevencion en los centros de trabajo
ADMINISTRACCION Y DEPARTAMENTALIZACION.pptx
Marketing y su desarrollo en el desarrollo empresarial

Hipotesis (ji) p resentacion

  • 1. UNIVERSIDAD VERACRUZANAPLANTEAMIENTO DE LA HIPOTESIS PARA MAS DE 2 POBLACIONESESTADISTICAINFERENCIALCHI CUADRADO UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOPLANTEAMIENTO DE HIPOTESIS EN MAS DE DOS POBLACIONES (Ji-Cuadrada)INDICEIntroducción…………………………………………………………………3Aplicación……………………………………………………………………..3Teoría…………………………………………………………………………………5Supuestos y Restricciones…………………………………………………………6Gráficos………………………………………………………………………………8Formulas…………………………………………………………………………12Tablas…………………………………………………………………………………13Utilidad Ejemplos (5)……………………………………………………………………16Ejercicios –Resolución (20)……………………………………………17Glosario………………………………………………………………………………….49Fuente Bibliográfica………………………………………………………………..51Formulario……………………………………………………………………………12ESTADISTICA INFERENCIAL
  • 2. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOINTRODUCCIONEn estadística, la distribución χ² (de Pearson) es una distribución de probabilidad continua con un parámetro k que representa los grados de libertad de la variable aleatoria:donde Zi son variables de distribución normal, de media cero y varianza uno. El que la variable aleatoria X tenga esta distribución se representa habitualmente así: .Es conveniente tener en cuenta que la letra griega χ se transcribe al latín como chi[1] y se pronuncia en castellano como ji.[2][3]ESTADISTICA INFERENCIAL
  • 3. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOAPLICACIONESLa distribución χ² tiene muchas aplicaciones en inferencia estadística, por ejemplo en la denominada prueba χ² utilizada como prueba de independencia y como prueba de bondad de ajuste y en la estimación de varianzas. También está involucrada en el problema de estimar la media de una población normalmente distribuida y en el problema de estimar la pendiente de una recta de regresión lineal, a través de su papel en la distribución t de Student, y participa en todos los problemas de análisis de varianza, por su papel en la distribución F de Snedecor, que es la distribución del cociente de dos variables aleatorias independientes con distribución χ².PRUEBAS DE 2 BONDAD DE AJUSTESe utiliza para la comparación de la distribución de una muestra con alguna distribución teórica que se supone describe a la población de la cual se extrajo. INDEPENDENCIALa Ho indica que 2 variables o criterios de clasificación son independientes cuando se aplican a un conjunto de individuos (unidades de observación) Totales Marginales Aleatorios HOMOGENEIDADSe extraen Muestras Independientes de varias poblaciones y se prueban para ver si son homogéneas con respecto a algún criterio de clasificación. Un conjunto de Totales Marginales Son Fijos mientras que los otros marginales son Aleatorios.   ESTADISTICA INFERENCIAL
  • 4. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOBondad de Ajuste (para una multinominal) Esta es una prueba para comparar las probabilidades de (πi) de una distribución multinominal (lo esperado), con las obtenidas en una muestra (lo observado) para determinar si son iguales o no. Distribución MultinominalLa Distribución Multinominaal es una extensión de la distribución Binominal. En vez de haber solo dos posibles resultados (éxitos y fracasos) tenemos k posibles resultados.Al igual que en la Binominal: Los experimentos son IndependientesHay un número fijo de experimentos La probabilidad de que ocurra cada uno de los resultados en un experimento π1,.. π2… πk..es constante. La prueba de Ji Cuadrado es un método útil para comparar resultados experimentales con aquellos que se esperan teóricamente en virtud de una hipótesis. La distribución ji_cuadrada nos permite probar, si dos o más proporciones de población pueden ser consideradas iguales.Si clasificamos a una población en diferentes categorías con respecto a dos atributos (edad, y desempeño en el trabajo), podemos utilizar una prueba ji_cuadrada, para comprobar si los dos atributos son independientes entre sí. la distribución Ji cuadrada, se denota por la letra griega X(Ji), elevada al cuadrado: X2.A medida que aumentan los grados de libertad la curva se va haciendo más simétrica y su cola derecha se va extendiendo.Características de la distribuciónTodos los valores de x2 son positivos.Es una curva sesgada hacia la derecha.La media de la distribución son sus grados de libertadESTADISTICA INFERENCIAL
  • 5. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOTEORIADistribución de Ji- cuadrado (²) Distribución de datos discretos, que es función de la densidadpoblacional y cuyos valores varían desde cero hasta +(infinitopositivo). A diferencia de la distribución Normal o la de t (Test de Student o de t),la función se aproxima asintóticamente al eje horizontal sólo en la coladerecha de la curva y NO en ambas colas. Como en la distribución de t, no hay solo una distribución de ji- cuadrado(²) sino que existe una distribución para cada número de gradosde libertad (). Por tanto, es función .ESTADISTICA INFERENCIAL
  • 6. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOLas curvas son en forma de (jota invertida) al principio, pero más omenos acercándose a la simetría para los grados de libertad superiores. análisis de frecuencias.Pruebas de Bondad de Ajuste. Para evaluar el ajuste entre frecuencias observadas y esperadas existenestadísticos que prueban en qué medida difieren las mismas y si esadiferencia es significativa o no. Hay dos métodos que son los más utilizados: Método de Ji- cuadrado o Chi- cuadrado (²) Método G o prueba del logaritmo de la razón de VerosimilitudesMétodo de Ji- cuadrado o Chi- cuadrado (²)Donde fo= frecuencia observadafe = frecuencia esperada X²= ∑ (fo- fe)² /fe  La razón por la que la que esta prueba se ha denominado Ji- cuadrado ypor la que muchos han llamado así también al estadístico obtenido X²,es que la distribución de muestreo de esta sumatoria se aproxima a lade una distribución de ² con = 1 grados de libertad. La prueba es siempre a una cola ya que las desviaciones estánelevadas al cuadrado y conducen siempre a valores positivos ESTADISTICA INFERENCIAL
  • 7. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOPROPIEDADES DE LAS DISTRIBUCIONES JI_CUADRADASl.-Los valores de x2 son mayores o iguales que O2.-La forma de una distribución x2 depende del g I =n-l. En consecuencia hay un número infinito de distribuciones x2.3.-EI área bajo una curva ji_cuadrada y sobre el eje horizontal es 1.4.-Las distribuciones x2 no son simétricas, tienen colas estrechas que se extienden a la derecha; están sesgadas a la derecha.5.-cuando n>2 la media de una distribución x2 es n-l y la varianza es 2(n-l). 6.-EI valor modal de una distribución x2 se da en el valor (n-3).ESTADISTICA INFERENCIAL
  • 8. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOSUPUESTOS Y RESTRICCIONES SUPUESTOS PARA LA PRUEBA DE 2 Experimento multinomial. Lo que se satisface tomando una muestra aleatoria de la población de interés. El tamaño de muestra es lo suficientemente grande para que el número esperado en las categorías sea  5, para  asegurar que 2 se aproxime a la distribución real (multinomial). Se puede recurrir a colapsar categorías contiguas (celdas) con valores esperados menores de 5.  La prueba estadística es: Donde pio representa  la proporción deseada en la i-ésima categoría, Obsi la frecuencia observada en la categoría  i  y  n es el tamaño de la muestra.  La prueba estadística se distribuye como una Ji-Cuadrado con k-1 grados de libertad donde, k es el número de categorías. Si el valor de la prueba estadística (2 calculado) es mayor que el valor crítico (2 de la tabla) se rechaza la hipótesis nula Ei: frec. Esperada de la i-ésima claseOi: frec. Observada de la i-ésima claseN: número de clasesk: número de parámetros estimados a partir de  la muestraESTADISTICA INFERENCIAL
  • 9. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOLa chi cuadrada permite al investigador comprobar una hipótesis acerca de una relación entre dos medidas nominales. La lógica x2 es la siguiente: el número total de observaciones en cada columna en cada columna y el número total de observaciones en cada renglón (positivo o negativo) son considerados o fijados y se conoce como frecuencia marginal.Existen abusos de esta prueba estadística como su empleo en grupos independientes cuyas variables son numéricas, para lo cual debería usarse la t y no convertir los valores ordinales o nominales. Un ejemplo frecuente es usar puntos de corte arbitrariamente como la edad de 45 o 60 años cuando los datos numéricos con la estadística correspondiente nos brindan más información. Desventajas del método:1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5). Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste.ESTADISTICA INFERENCIAL
  • 10. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO Desventajas del método:1) Deben agruparse aquellas clases con una frecuencia esperada menor o igual a 5 (fe≤5), hasta que su suma alcance un valor mayor o igual a 5 (∑fe≥5). Por esta restricción, el agrupamiento produce una reducción en el número de clases y es frecuente entonces que el número de grados de libertad no sea suficiente para evaluar estadísticamente el ajuste. Por ello, Cochran(1954; Snedecor & Cochran, 1967) ha considerado que tal restricción debilita la sensibilidad del test y ha sugerido que los valores esperados no deben ser menores a 1 (∑fe≥1) y no a 5.El número de grados de libertad es entonces: µ=n° de clase luego de la agrupación –a-1 Teniendo a la interpretación mencionada más abajo.2) El número de grados de libertad es µ= n-a-1, donde a es el número de parámetros estimados para ajustar el modelo elegido; de manera que el número mínimo de clases que se pueden comparar es: 3, para el modelo de Poisson. El parámetro de este modelo es λ (Lambda) y como los grados de libertad de cualquier distribución no pueden ser menores a la unidad (µ ≥1): µ= n-a-1 Siendo a=λ=1 parámetroµ= n-2Por tanto n debe ser ≥ 3ESTADISTICA INFERENCIAL
  • 11. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO GRAFICOSGRAFICA DISTRIBUCION JI CUADRADA PARA V= 2, 5, Y 10 GRADOS DE LIBERTAD  ESTADISTICA INFERENCIAL
  • 12. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO Distribución Ji cuadrada para v=2,5 y 10.La estadística de Ji cuadrada se calcula de la manera siguiente:Esta fórmula establece que ji_cuadrada, o x2, es la suma que obtendremos si:1.- Restamos Fe de Fo para cada una de las celdas de la tabla2.-Elevamos al cuadrado cada una de las diferencias3.- Dividimos cada diferencia al cuadrado entre Fe, y4.-Sumamos los resultados ESTADISTICA INFERENCIAL
  • 13. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO  La función de densidad de la distribución X2 está dada por:para x>0la cual da valores críticos (gl) para veinte valores especiales de . Para denotar el valor crítico de una distribución X2 con gl grados de libertad se usa el símbolo (gl); este valor crítico determina a su derecha un área de bajo la curva X2 y sobre el eje horizontal. Por ejemplo para encontrar X20.05(6) en la tabla se localiza 6 gl en el lado izquierdo y a o largo del lado superior de la misma tabla.  ESTADISTICA INFERENCIAL
  • 14. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIOESTADISTICA INFERENCIAL
  • 15. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO  FORMULALa fórmula es: Donde:X2 = valor estadístico de ji cuadrada.fo = frecuencia observada.fe = frecuencia esperada.  Pasos:Arreglar las observaciones en una tabla de contingencias. Determinar el valor teórico de las frecuencias para cada casilla. Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla. Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente. Obtener la sumatoria de los valores anteriores, que es el estadístico X2. Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1]. El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad. Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.    ESTADISTICA INFERENCIAL
  • 16. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO  FORMULALa fórmula es: Donde:X2 = valor estadístico de ji cuadrada.fo = frecuencia observada.fe = frecuencia esperada.  Pasos:Arreglar las observaciones en una tabla de contingencias. Determinar el valor teórico de las frecuencias para cada casilla. Calcular las diferencias entre los valores observados con respecto a los teóricos de cada casilla. Elevar al cuadrado las diferencias y dividirlas entre el valor teórico de la casilla correspondiente. Obtener la sumatoria de los valores anteriores, que es el estadístico X2. Calcular los grados de libertad (gl): gl = (K columnas -1) [H hileras -1]. El valor de X2 se compara con los valores críticos de ji cuadrada de la tabla de valores críticos de X2 y de acuerdo con los grados de libertad, y se determina la probabilidad. Decidir si se acepta o rechaza la hipótesis X2c ³ X2t se rechaza Ho.    ESTADISTICA INFERENCIAL
  • 21. UNIVERSIDAD VERACRUZANA  UTILIDAD EJEMPLOS Se utiliza en el campo de la medicina, en hospitales, para realizar estudios en pacientes que padecen de cierta enfermedad o trastorno. Por ejemplo:La asociación entre reflujo gastroesofagico diurno y nocturno con la exposición esofágica al acido en 24h fue evaluada en 59 pacientes con pirosis 4 veces a la semana ene los últimos 6 meses.Ele ejemplo trata de relacionar la asociación entre estas dos variables nominales y cualitativas categóricas: 1. Presencia de reflujo gastroesofàgico nocturno o diurno y 2. Acidez esofágica en 24 h.La X cuadrada es una estadística frecuentemente usada para comparar proporciones en la literatura médica. Los datos nominales (categóricos) obtenidos de una muestra con n observaciones independientes son ordenados en una tabla de renglones y columnas. En la agronomía, se utiliza para estudiar el comportamiento de los cultivos.Por ejemplo:Si una mazorca de maíz, resultado de una cruza dihíbrida para estos caracteres, tiene un total de 381 granos, incluyendo 216 púrpuras y lisos, 79 púrpuras y rugosos, 65 amarillos y lisos, y 21 amarillas y rugosos. Indique realizando una prueba de Ji cuadrada si estos resultados concuerdan con su hipótesis.  En la economía, para realizar estudios acerca de los ingresos de la población.Por ejemplo:Se toma una muestra aleatoria de 2200 familias y se les clasifica en una tabla de doble entrada según su nivel de ingresos (alto, medio o bajo) y el tipo de colegio a la que envían sus hijos. La siguiente tabla muestra los resultados obtenidos: ¿A un nivel de significancia del 1% hay razón para creer que el ingreso y el tipo de colegio no son variables independientes?    PROGRAMA DE ESTUDIOESTADISTICA INFERENCIAL
  • 22. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO   Los 20 ejemplos se encuentran en el documento de wordESTADISTICA INFERENCIAL
  • 23. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO   GLOSARIODistribución de probabilidad:En teoría de la probabilidad y estadística, la distribución de probabilidad de una variable aleatoria es una función que asigna a cada suceso definido sobre la variable aleatoria la probabilidad de que dicho suceso ocurra. La distribución de probabilidad está definida sobre el conjunto de todos los eventos rango de valores de la variable aleatoria.Grados de Libertad:En estadística, grados de libertad es un estimador del número de categorías independientes en una prueba particular o experimento estadístico. Se encuentran mediante la fórmula n − r, donde n=número de sujetos en la muestra (también pueden ser representados por k − r, donde k=número de grupos, cuando se realizan operaciones con grupos y no con sujetos individuales) y r es el número de sujetos o grupos estadísticamente dependientes.Distribución Normal:En estadística y probabilidad se llama distribución normal, distribución de Gauss o distribución gaussiana, a una de las distribuciones de probabilidad de variable continua que con más frecuencia aparece en fenómenos reales.ESTADISTICA INFERENCIAL
  • 24. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO   Varianza:En teoría de probabilidad, la varianza de una variable aleatoria es una medida de su dispersión definida como la esperanza del cuadrado de la desviación de dicha variable respecto a su media.Hipótesis Estadística:Al intentar alcanzar una decisión, es útil hacer hipótesis (o conjeturas) sobre la población aplicada.Tales hipótesis, que pueden ser o no ciertas, se llaman hipótesis estadísticas.Son, en general, enunciados acerca de las distribuciones de probabilidad de las poblaciones.Hipótesis Nula:En muchos casos formulamos una hipótesis estadística con el único propósito de rechazarla o invalidarla. Así, si queremos decidir si una moneda está trucada, formulamos la hipótesis de que la moneda es buena ( o sea p = 0,5, donde p es la probabilidad de cara).ESTADISTICA INFERENCIAL
  • 25. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO   Analógicamente, si deseamos decidir si un procedimiento es mejor que otro, formulamos la hipótesis de que no hay diferencia entre ellos (o sea. Que cualquier diferencia observada se debe simplemente a fluctuaciones en el muestreo de la misma población). Tales hipótesis se suelen llamar hipótesis nula y se denotan por Ho.Hipótesis Alternativa.Toda hipótesis que difiere de una dada se llamará una hipótesis alternativa. Por ejemplo: Si una hipótesis es p = 0,5, hipótesis alternativa podrían ser p = 0,7, p " 0,5 ó p > 0,5.Una hipótesis alternativa a la hipótesis nula se denotará por H1.  ESTADISTICA INFERENCIAL
  • 26. UNIVERSIDAD VERACRUZANA PROGRAMA DE ESTUDIO    Referencia Bibliográficahttp://www.aray1.com/docupdf/ji2.pdfHttp://members.fortunecity.co/bucker4/estadística/pruebaji2mi.htm Introducción a la Bioestadística. Robert R. Sokal & F. James Rohlf.http://www.fcv.unlp.edu.ar/sitios- cátedras/2/material/Distribucion%20de%20Ji.pdf http://www.scribd.com/doc/6703611/Ji-Cuadradohttp://www.naumkreiman.com.ar/test_ji_cuadrado.htmlhttp://www.monografias.com/trabajos27/hipotesis/hipotesis.shtmlhttp://www.unmsm.edu.pe/educacion/postgrado/est_inf_aplicada.pdfhttp://www.gastrocancerprev.com.mx/Documentos/MetodoINV/1%20_6_.pdfhttp://www.fcv.unlp.edu.ar/sitios-catedras/2/material/Distribucion%20de%20Ji.pdfhttp://www.eumed.net/libros/2006c/203/2r.htmhttp://webcache.googleusercontent.com/search?q=cache:KZxJxxMrsfYJ:www.fvet.edu.uy/fvestadis/teorico-chi2_08.ppt+supuestos+de+chi-+cuadrada&cd=1&hl=es&ct=clnk&gl=mx http://www.raydesign.com.mx/psicoparaest/index.php?option=com_content&view=article&id=235:ji-bartlett&catid=52:pruebaspara&Itemid=6 ESTADISTICA INFERENCIAL