Método Gauss Jordan
Introducción
Matriz inversa:
 Si es una matriz cuadrada, se llama matriz inversa de A
  y se denota A-1 a una matriz del mismo orden que A
  que verifica la siguiente igualdad:
               1     1                (Siendo I la matriz identidad
        A. A       A .A    I                 de igual orden que A)
 Si una matriz posee inversa se dice que es invertible en
  caso contrario se llama singular, debido a que no todas
  las matrices cuadradas pueden tener inversa.
Ejemplo:                       Sea A=
                                          2
                                          1   1
                                               1
                                                 , hallar si es posible A-1

                                                         Multiplico los elementos de
                           1                             las filas de la primer matriz
       A. A                               I              por los elementos de las
                                                         columnas de la segunda y
                                                         sumo los productos:
     2        1       a b               1 0
                  .                                      Para la fila 1, columna 1:
     1       1        c d               0 1              2.a+(-1).c=2.a-c
                                                         Para la fila 1, columna 2:
                                                         2.b+(-1).d=2.b-d
     2a c 2b d                         1 0               Para la fila 2, columna 1:
                                                         1.a+1.c=a+c
      a c             b d              0 1               Para la fila 2, columna 2:
                                                         1.b+a.d=b+d

Ahora a partir de esto puedo armar un sistema de ecuaciones que me permita hallar A-1
Ejemplo:           Sea A=
                                2
                                1   1
                                     1
                                       , hallar si es posible A-1

                                         A partir de esta igualdad podemos
 2a c 2b d              1 0              deducir las siguientes ecuaciones:
                                         2.a-c=1             2b-d=0
 a c         b d        0 1              a+c=0               b+d=1
  2a c 1           2b d      0
                                      Armar estos sistemas de ecuaciones…
  a c 0            b d 1
  2a c 1            2b d     0
                     b d 1              …Y resolverlos por alguno de los métodos vistos
   a c 0                                (suma, resta, igualación, sustitución, etc…)
 3a 0c 1           3b 0d 1
 3a 1              3b 1

  a   1/ 3         b 1/ 3
                                         En este caso fue resuelto por la suma de
 c    a            d   1 b               las ecuaciones del sistema y el posterior
                   d   1 1/ 3            despeje de las incógnitas….
 c    1/ 3
                   d   2/3
Ejemplo:                      Sea A=
                                       2
                                       1   1
                                            1
                                              , hallar si es posible A-1

Ahora que se el valor de mis incógnitas las ubico en la matriz y verifico que sea la
matriz inversa de A
                       1
    A. A                               I              Para la fila 1, columna 1:
                                                      2.(1/3)+(-1).(-1/3)= 1
                                                      Para la fila 1, columna 2:
  2        1       a     b                            2.(1/3)+(-1).(2/3)=0
               .                                      Para la fila 2, columna 1:
  1      1         c    d                             1.a+1.c=a+c
                                                      Para la fila 2, columna 2:
                                                      1.b+a.d=b+d
               1          1
    2      1   3          3         1 0          El resultado coincide con
             .
    1     1     1         2         0 1         los valores de la identidad…

                3         3
Ejemplo:              Sea A=
                               2
                               1   1
                                    1
                                      , hallar si es posible A-1



  … lo que significa que hemos encontrado la matriz inversa de A


                           1        1
                 1         3        3
             A
                            1       2
                            3       3
 El método recién explicado resulta sencillo con una
 matriz de 2x2 pero al querer aplicarlo en matrices mas
 grandes se hace mas complicado el despeje de las
 incógnitas….

… es por ello que veremos el método Gauss Jordan.
Método Gauss Jordan.
                                                     1   0   1
 Preparación de la matriz:                    A=    1   2   2
                                                     2   1   1

Para facilitar el entendimiento del método utilizaremos una grilla…
1.   En la parte izquierda de la grilla ingresamos los elementos de nuestra
     matriz en orden y respetando su ubicación original


                  1    0     1        1    0     0
                  1    2     2        0    1     0
                  2     1   1         0    0     1

2.   Mientras que en la parte izquierda ingresamos los valores de la matriz identidad
Método Gauss Jordan.
      Mecánica del procedimiento:
     1. Se elige como pivote cualquier elemento no nulo de la
        matriz dada, y se divide por él la fila correspondiente.

En este caso elijo el 1 para
ahorrar cuentas, ya que
debo dividir cada elemento
                               1   0    1    1   0   0
de la fila por el numero
que elijo.
                               1   2     2   0   1   0
                               2    1   1    0   0   1
Por lo tanto, debido a que
elegí el 1 se mantienen los
valores de la fila             1   0     1   1   0   0
Método Gauss Jordan.
 Mecánica del procedimiento:
2. Los restantes elementos de la columna del pivote se
  transforman en cero.


              1   0    1     1   0   0
              1   2     2    0   1   0
              2    1   1     0   0   1
              1   0     1    1   0   0
              0
              0
Método Gauss Jordan.
    Mecánica del procedimiento:
   3. El transformado de todo elemento que no figure en la fila ni en la
      columna del pivote se determina por la regla del rectángulo
 Seleccionamos el                                      Que consiste en
    elemento a
   transformar
                                                       restarle a dicho
                          1   0    1    1   0   0   elemento el producto
   Entre el pivote y el                                contra diagonal
elemento seleccionado     1   2     2   0   1   0
   hay un rectángulo                                dividido por el pivote
                          2    1   1    0   0   1
      imaginario
                                                    Entonces, para determinar
 Siendo la diagonal la    1   0     1   1   0   0
línea que va del pivote                              este elemento debemos
     al 2 la contra       0   2                        hacer la sig. cuenta…
 diagonal seria la que                                      2-(1.0)/1= 2
      va del 0 al 1       0                         Y lo ubicamos en la tabla…
Método Gauss Jordan.
    Mecánica del procedimiento:
   3. El transformado de todo elemento que no figure en la fila ni en la
      columna del pivote se determina por la regla del rectángulo
Ahora seleccionamos
  otro elemento a
    transformar
                        1   0    1    1   0   0
                        1   2     2                   -2 - [1.(-1)]/1 =
Armamos el rectángulo                 0   1   0
    imaginario                                        -2 - (-1) =
                        2    1   1    0   0   1       -2 + 1 = -1
 Y determinamos los     1   0     1   1   0   0      Y así sucesivamente
   elementos de la                                   hasta completar la
 contra diagonal para   0   2    -1                  tabla…
       hacer la
   transformación       0
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      0-( 1 . 1 )/1= -1
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1
                0
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      1-( 1 . 0 )/1= 1
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1
                0
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      0-( 1 . 0 )/1=0
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1    0
                0
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      -1-( 2 . 0 )/1=-1
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1   0
                0   -1
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      1-( 2 . -1 )/1=3
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1   0
                0   -1     3
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      0-( 2 . 1 )/1=-2
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1   0
                0   -1     3    -2
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      0-( 2 . 0 )/1=0
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1   0
                0   -1     3    -2    0
Método Gauss Jordan.
 Mecánica del procedimiento:
3. El transformado de todo elemento que no figure en la fila ni en la
  columna del pivote se determina por la regla del rectángulo


                                                      1-( 2 . 0 )/1=1
                1    0    1      1    0   0
                1    2     2     0    1   0
                2     1   1      0    0   1
                1   0      1     1    0    0
                0    2    -1    -1    1   0
                0   -1     3    -2    0   1
Método Gauss Jordan.
                            1   0    1    1    0   0
                            1   2     2   0    1   0
                            2    1   1    0    0   1
 Se elige otro pivote que
 no pertenezca ni a la      1   0     1   1    0   0
 fila ni a la columna del
 pivote anterior, y se      0    2   -1   -1   1   0
 divide por él la fila
 correspondiente.           0   -1    3   -2   0   1
    Los restantes                0
   elementos de la
columna del pivote se       0    1   -½   -½ ½     0
transforman en cero.
                                 0
Método Gauss Jordan.
  Seleccionamos el           1   0    1    1    0   0    El transformado de todo
     elemento a
                             1   2     2                 elemento que no figure
    transformar                            0    1   0    en la fila ni en la
                             2    1   1    0    0   1    columna del pivote se
   Entre el pivote y el                                  determina por la regla
elemento seleccionado        1   0     1   1    0   0    del rectángulo
   hay un rectángulo
      imaginario
                             0    2   -1   -1   1   0
                             0   -1    3   -2   0   1   Entonces, para determinar
                                                         este elemento debemos
  Siendo la diagonal la
 línea que va del pivote
                             1    0                        hacer la sig. cuenta…
                                                                1-(0.0)/1= 1
 al 1 la contra diagonal
seria la que va del 0 al 0
                             0    1   -½   -½ ½     0   Y lo ubicamos en la tabla…
                                  0
Método Gauss Jordan.
       1   0    1    1    0   0
       1   2     2   0    1   0   Y ahora se repiten
                                  los pasos hasta que
       2    1   1    0    0   1   se completa la
       1   0     1                tabla….
                     1    0   0
       0    2   -1   -1   1   0
       0   -1    3   -2   0   1    0-(0.-1)/2= 0
       1    0
       0    1   -½   -½ ½     0
       0    0
Método Gauss Jordan.
       1   0    1     1    0   0
       1   2     2    0    1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1     0    0   1   se completa la
       1   0     1                 tabla….
                      1    0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1   3-(-1.-1)/2= 5/2
       1    0
       0    1   -½    -½ ½     0
       0    0   5/2
Método Gauss Jordan.
       1   0    1      1     0   0
       1   2     2     0     1   0    Y ahora se repiten
                                      los pasos hasta que
       2    1   1      0     0   1    se completa la
       1   0     1                    tabla….
                       1     0   0
       0    2   -1    -1     1   0
       0   -1    3    -2     0   1   -2-(-1.-1)/2= -5/2
       1    0
       0    1   -½    -½ ½       0
       0    0   5/2   -5/2
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1   0-(-1.1)/2= 1/2
       1    0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1    1-(-1.0)/2= 1
       1    0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1    0-(0.0)/2= 0
       1    0                  0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1    0-(1.0)/2= 0
       1    0              0   0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1    1-(-1.0)/2= 1
       1    0          1   0   0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
       1   0     1     1   0   0
       1   2     2     0   1   0   Y ahora se repiten
                                   los pasos hasta que
       2    1   1      0   0   1   se completa la
       1   0     1                 tabla….
                       1   0   0
       0    2   -1    -1   1   0
       0   -1    3    -2   0   1   -1-(-1.0)/2= -1
       1    0   -1     1   0   0
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
                                   Una vez completa,
       1   0     1     1   0   0   repito los pasos
                                   hasta obtener una
       1   2     2     0   1   0   matriz identidad
       2    1   1      0   0   1   en la columna A y
                                   la inversa de A en
       1   0     1     1   0   0   la columna I…
       0    2   -1    -1   1   0   Como puede verse
                                   aquí aun hace falta
       0   -1    3    -2   0   1   otro cuadrante
                                   para cumplir con la
       1    0   -1     1   0   0   condición…
       0    1   -½    -½ ½     0
       0    0   5/2   -5/2 ½   1
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0    Una vez completa,
                    2    1   1      0    0     1    repito los pasos
                                                    hasta obtener una
                    1   0     1     1    0     0    matriz identidad
 Elijo mi tercer                                      Y aplico la
                                                    en la columna A y
 pivote…            0    2   -1    -1    1    0       regla del
                                                    la inversa de A en
                    0   -1    3          0    1       cuadrado al
                                                    la columna I…
 Divido los                                           resto de los
                                                    Como puede verse
 elementos de       1    0   -1     1   0      0      elementos…
                                                    aquí aun hace falta
 su fila por el                                     otro cuadrante
 pivote…
                    0    1   -½    -½ ½        0
                                                    para cumplir con la
 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1    condición…
 los elementos de   1        0
 la columna…                                        1-(-1.0)/5/2= 1
                             0
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                     Y aplico la
 pivote…            0    2   -1    -1    1    0      regla del
                    0   -1    3          0    1      cuadrado al
 Divido los                                          resto de los
 elementos de       1    0   -1     1   0      0     elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
 los elementos de            0
 la columna…
                    1    0
                                                    0-(-1.0)/5/2= 0
                             0
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                      Y aplico la
 pivote…            0    2   -1    -1    1    0       regla del
                    0   -1    3          0    1       cuadrado al
 Divido los                                           resto de los
 elementos de       1    0   -1     1   0      0      elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
 los elementos de            0
 la columna…
                    1    0
                                                    1-(-1/2.0)/5/2= 1
                         1   0
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                      Y aplico la
 pivote…            0    2   -1    -1    1    0       regla del
                    0   -1    3          0    1       cuadrado al
 Divido los                                           resto de los
 elementos de       1    0   -1     1   0      0      elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
 los elementos de            0
 la columna…
                    1    0
                                                    1-(-1/2.0)/5/2= 1
                    0    1   0
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    -1/2-(-1/2.-5/2)/5/2= -1
 los elementos de            0
 la columna…
                    1    0
                    0    1   0     -1
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    1/2-(-1/2.1/2)/5/2= 3/5
 los elementos de            0
 la columna…
                    1    0
                    0    1   0     -1   3/5
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    0-(-1/2.1)/5/2= 1/5
 los elementos de            0
 la columna…
                    1    0
                    0    1   0     -1   3/5   1/5
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    1-(-1.-5/2)/5/2= 0
 los elementos de            0
 la columna…
                    1    0          0
                    0    1   0     -1   3/5   1/5
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    0-(1/2.-1)/5/2= 1/5
 los elementos de            0
 la columna…
                    1    0          0   1/5
                    0    1   0     -1   3/5   1/5
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
                    1   0    1      1    0     0
                    1   2     2     0    1     0
                    2    1   1      0    0     1
                    1   0     1     1    0     0
 Elijo mi tercer                                       Y aplico la
 pivote…            0    2   -1    -1    1    0        regla del
                    0   -1    3          0    1        cuadrado al
 Divido los                                            resto de los
 elementos de       1    0   -1     1   0      0       elementos…
 su fila por el
 pivote…
                    0    1   -½    -½ ½        0

 Reemplazo por 0
                    0    0   5/2   -5/2 ½      1
                                                    0-(-1.1)/5/2= 2/5
 los elementos de            0
 la columna…
                    1    0          0   1/5   2/5
                    0    1   0     -1   3/5   1/5
                    0    0   1     -1   1/5   2/5
Método Gauss Jordan.
        1   0     1     1    0     0
        1   2     2     0    1     0
        2    1   1      0    0     1
        1   0     1     1    0     0
        0    2   -1    -1    1    0
        0   -1    3          0    1
        1    0   -1     1   0      0
        0    1   -½    -½ ½        0
        0    0   5/2   -5/2 ½      1

        1    0   0      0   1/5   2/5
                                         Esta seria nuestra
        0    1   0     -1   3/5   1/5   matriz inversa
        0    0   1     -1   1/5   2/5
Método Gauss Jordan.
Entonces, resulta que la inversa de A es:


                                     0      1/ 5 2 / 5
                                      1 3 / 5 1/ 5
                                      1 1/ 5 2 / 5
Matriz inversa

Más contenido relacionado

DOCX
Ejercicios propuestos inversa de una matriz y evaluación
PDF
Unidad 6. Seleccion sobre Determinantes
PDF
Unidad 5. Seleccion sobre Sistemas de Ecuaciones Lineales
PDF
Examenes resueltos algebra lineal
PDF
Método de Gauss Jordan
PDF
Formulas geometria analitica plana
PPSX
Cuadratura de gauss
PDF
ALGEBRA AREA A.pdf
Ejercicios propuestos inversa de una matriz y evaluación
Unidad 6. Seleccion sobre Determinantes
Unidad 5. Seleccion sobre Sistemas de Ecuaciones Lineales
Examenes resueltos algebra lineal
Método de Gauss Jordan
Formulas geometria analitica plana
Cuadratura de gauss
ALGEBRA AREA A.pdf

La actualidad más candente (20)

PPTX
Clase completa sistemas de ecuaciones lineales
DOC
S3 mcd mcm y fracciones
PPTX
Ecuación de la Circunferencia dados dos puntos
PPT
Producto de dos binomios con termino comun
PDF
Taller general sistemas de ecuaciones lineales ejercicios para resolver
PDF
Evaluacion de funcion cuadratica
DOCX
Ejercicios propuestos operaciones con matrices
PPT
PDF
Neville
PDF
Matrices - Multiplicacion
PDF
Unidad 4. Seleccion sobre Matrices
PDF
Tema VIII (Funciones Racionales)
PPTX
Practica 6 casos de factorización
PPTX
Ejercicios de matriz inversa
PDF
Productos notables y factorización
PDF
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
PDF
Ejercicios jacobi
PDF
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
DOC
Prod y cocientes notables
PDF
Integral Indefinida. Generalidades, Reglas de integración
Clase completa sistemas de ecuaciones lineales
S3 mcd mcm y fracciones
Ecuación de la Circunferencia dados dos puntos
Producto de dos binomios con termino comun
Taller general sistemas de ecuaciones lineales ejercicios para resolver
Evaluacion de funcion cuadratica
Ejercicios propuestos operaciones con matrices
Neville
Matrices - Multiplicacion
Unidad 4. Seleccion sobre Matrices
Tema VIII (Funciones Racionales)
Practica 6 casos de factorización
Ejercicios de matriz inversa
Productos notables y factorización
Tema-Geometría Análitica Unidad 3-Circunferencias-VOL 3
Ejercicios jacobi
Ecuaciones Diferenciales - Ecuaciones de Segundo orden
Prod y cocientes notables
Integral Indefinida. Generalidades, Reglas de integración
Publicidad

Similar a Matriz inversa (20)

PPTX
Clase # 3 inversa de una matríz y determinantes
PDF
Ejercicios Matemáticas Resueltos 1º LADE
PPTX
Matriz inversa by alfie
PDF
T1 matriz inversa
PDF
Taller 4 Algebra_Lineal (Determinantes)
PDF
Algebra+lineal+matriz+2011
PPTX
grossman
PDF
9.metododegauss
PDF
PPTX
Producto de Matrices y determinantes.pptx
PPTX
Fundamentos matrices y determinantes
PDF
Mod matrices y determinantes
DOCX
Algebra lineal
PPTX
ecuaciones 1er y 2do. grado
PPTX
LAS MATRICES PRENDIZAJE PARA ALUMNOS.pptx
DOCX
Metods lineales
PPTX
UTPL-MATEMÁTICAS PARA CIENCIAS BIOLÓGICAS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2...
Clase # 3 inversa de una matríz y determinantes
Ejercicios Matemáticas Resueltos 1º LADE
Matriz inversa by alfie
T1 matriz inversa
Taller 4 Algebra_Lineal (Determinantes)
Algebra+lineal+matriz+2011
grossman
9.metododegauss
Producto de Matrices y determinantes.pptx
Fundamentos matrices y determinantes
Mod matrices y determinantes
Algebra lineal
ecuaciones 1er y 2do. grado
LAS MATRICES PRENDIZAJE PARA ALUMNOS.pptx
Metods lineales
UTPL-MATEMÁTICAS PARA CIENCIAS BIOLÓGICAS-II-BIMESTRE-(OCTUBRE 2011-FEBRERO 2...
Publicidad

Último (20)

DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
DOCX
Programa_Sintetico_Fase_4.docx 3° Y 4°..
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
Telos 127 Generacion Al fa Beta - fundaciontelefonica
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PPTX
Clase 3 del silabo-gestion y control financiero
PDF
informe tipos de Informatica perfiles profesionales _pdf
PDF
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
PDF
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
PDF
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
PDF
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
DOC
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
PDF
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
PDF
IPERC...................................
PDF
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
PDF
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
PDF
2.0 Introduccion a processing, y como obtenerlo
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Programa_Sintetico_Fase_4.docx 3° Y 4°..
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
Telos 127 Generacion Al fa Beta - fundaciontelefonica
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Clase 3 del silabo-gestion y control financiero
informe tipos de Informatica perfiles profesionales _pdf
Esc. Sab. Lección 7. El pan y el agua de vida.pdf
ACERTIJO EL CONJURO DEL CAZAFANTASMAS MATEMÁTICO. Por JAVIER SOLIS NOYOLA
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
Como usar el Cerebro en las Aulas SG2 NARCEA Ccesa007.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
4°_GRADO_-_SESIONES_DEL_11_AL_15_DE_AGOSTO.doc
TALLER DE ESTADISTICA BASICA para principiantes y no tan basicos
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
IPERC...................................
La Formacion Universitaria en Nuevos Escenarios Ccesa007.pdf
E1 Guía_Matemática_5°_grado.pdf paraguay
Aqui No Hay Reglas Hastings-Meyer Ccesa007.pdf
2.0 Introduccion a processing, y como obtenerlo

Matriz inversa

  • 2. Introducción Matriz inversa:  Si es una matriz cuadrada, se llama matriz inversa de A y se denota A-1 a una matriz del mismo orden que A que verifica la siguiente igualdad: 1 1 (Siendo I la matriz identidad A. A A .A I de igual orden que A)  Si una matriz posee inversa se dice que es invertible en caso contrario se llama singular, debido a que no todas las matrices cuadradas pueden tener inversa.
  • 3. Ejemplo: Sea A= 2 1 1 1 , hallar si es posible A-1 Multiplico los elementos de 1 las filas de la primer matriz A. A I por los elementos de las columnas de la segunda y sumo los productos: 2 1 a b 1 0 . Para la fila 1, columna 1: 1 1 c d 0 1 2.a+(-1).c=2.a-c Para la fila 1, columna 2: 2.b+(-1).d=2.b-d 2a c 2b d 1 0 Para la fila 2, columna 1: 1.a+1.c=a+c a c b d 0 1 Para la fila 2, columna 2: 1.b+a.d=b+d Ahora a partir de esto puedo armar un sistema de ecuaciones que me permita hallar A-1
  • 4. Ejemplo: Sea A= 2 1 1 1 , hallar si es posible A-1 A partir de esta igualdad podemos 2a c 2b d 1 0 deducir las siguientes ecuaciones: 2.a-c=1 2b-d=0 a c b d 0 1 a+c=0 b+d=1 2a c 1 2b d 0  Armar estos sistemas de ecuaciones… a c 0 b d 1 2a c 1 2b d 0 b d 1 …Y resolverlos por alguno de los métodos vistos a c 0 (suma, resta, igualación, sustitución, etc…) 3a 0c 1 3b 0d 1 3a 1 3b 1 a 1/ 3 b 1/ 3 En este caso fue resuelto por la suma de c a d 1 b las ecuaciones del sistema y el posterior d 1 1/ 3 despeje de las incógnitas…. c 1/ 3 d 2/3
  • 5. Ejemplo: Sea A= 2 1 1 1 , hallar si es posible A-1 Ahora que se el valor de mis incógnitas las ubico en la matriz y verifico que sea la matriz inversa de A 1 A. A I Para la fila 1, columna 1: 2.(1/3)+(-1).(-1/3)= 1 Para la fila 1, columna 2: 2 1 a b 2.(1/3)+(-1).(2/3)=0 . Para la fila 2, columna 1: 1 1 c d 1.a+1.c=a+c Para la fila 2, columna 2: 1.b+a.d=b+d 1 1 2 1 3 3 1 0  El resultado coincide con . 1 1 1 2 0 1 los valores de la identidad… 3 3
  • 6. Ejemplo: Sea A= 2 1 1 1 , hallar si es posible A-1 … lo que significa que hemos encontrado la matriz inversa de A 1 1 1 3 3 A 1 2 3 3
  • 7.  El método recién explicado resulta sencillo con una matriz de 2x2 pero al querer aplicarlo en matrices mas grandes se hace mas complicado el despeje de las incógnitas…. … es por ello que veremos el método Gauss Jordan.
  • 8. Método Gauss Jordan. 1 0 1  Preparación de la matriz: A= 1 2 2 2 1 1 Para facilitar el entendimiento del método utilizaremos una grilla… 1. En la parte izquierda de la grilla ingresamos los elementos de nuestra matriz en orden y respetando su ubicación original 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 2. Mientras que en la parte izquierda ingresamos los valores de la matriz identidad
  • 9. Método Gauss Jordan.  Mecánica del procedimiento: 1. Se elige como pivote cualquier elemento no nulo de la matriz dada, y se divide por él la fila correspondiente. En este caso elijo el 1 para ahorrar cuentas, ya que debo dividir cada elemento 1 0 1 1 0 0 de la fila por el numero que elijo. 1 2 2 0 1 0 2 1 1 0 0 1 Por lo tanto, debido a que elegí el 1 se mantienen los valores de la fila 1 0 1 1 0 0
  • 10. Método Gauss Jordan.  Mecánica del procedimiento: 2. Los restantes elementos de la columna del pivote se transforman en cero. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 0
  • 11. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo Seleccionamos el Que consiste en elemento a transformar restarle a dicho 1 0 1 1 0 0 elemento el producto Entre el pivote y el contra diagonal elemento seleccionado 1 2 2 0 1 0 hay un rectángulo dividido por el pivote 2 1 1 0 0 1 imaginario Entonces, para determinar Siendo la diagonal la 1 0 1 1 0 0 línea que va del pivote este elemento debemos al 2 la contra 0 2 hacer la sig. cuenta… diagonal seria la que 2-(1.0)/1= 2 va del 0 al 1 0 Y lo ubicamos en la tabla…
  • 12. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo Ahora seleccionamos otro elemento a transformar 1 0 1 1 0 0 1 2 2 -2 - [1.(-1)]/1 = Armamos el rectángulo 0 1 0 imaginario -2 - (-1) = 2 1 1 0 0 1 -2 + 1 = -1 Y determinamos los 1 0 1 1 0 0 Y así sucesivamente elementos de la hasta completar la contra diagonal para 0 2 -1 tabla… hacer la transformación 0
  • 13. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  0-( 1 . 1 )/1= -1 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 0
  • 14. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  1-( 1 . 0 )/1= 1 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0
  • 15. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  0-( 1 . 0 )/1=0 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0
  • 16. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  -1-( 2 . 0 )/1=-1 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1
  • 17. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  1-( 2 . -1 )/1=3 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1 3
  • 18. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  0-( 2 . 1 )/1=-2 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2
  • 19. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  0-( 2 . 0 )/1=0 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0
  • 20. Método Gauss Jordan.  Mecánica del procedimiento: 3. El transformado de todo elemento que no figure en la fila ni en la columna del pivote se determina por la regla del rectángulo  1-( 2 . 0 )/1=1 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1
  • 21. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 Se elige otro pivote que no pertenezca ni a la 1 0 1 1 0 0 fila ni a la columna del pivote anterior, y se 0 2 -1 -1 1 0 divide por él la fila correspondiente. 0 -1 3 -2 0 1 Los restantes 0 elementos de la columna del pivote se 0 1 -½ -½ ½ 0 transforman en cero. 0
  • 22. Método Gauss Jordan. Seleccionamos el 1 0 1 1 0 0 El transformado de todo elemento a 1 2 2 elemento que no figure transformar 0 1 0 en la fila ni en la 2 1 1 0 0 1 columna del pivote se Entre el pivote y el determina por la regla elemento seleccionado 1 0 1 1 0 0 del rectángulo hay un rectángulo imaginario 0 2 -1 -1 1 0 0 -1 3 -2 0 1 Entonces, para determinar este elemento debemos Siendo la diagonal la línea que va del pivote 1 0 hacer la sig. cuenta… 1-(0.0)/1= 1 al 1 la contra diagonal seria la que va del 0 al 0 0 1 -½ -½ ½ 0 Y lo ubicamos en la tabla… 0
  • 23. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 0-(0.-1)/2= 0 1 0 0 1 -½ -½ ½ 0 0 0
  • 24. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 3-(-1.-1)/2= 5/2 1 0 0 1 -½ -½ ½ 0 0 0 5/2
  • 25. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 -2-(-1.-1)/2= -5/2 1 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2
  • 26. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 0-(-1.1)/2= 1/2 1 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½
  • 27. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 1-(-1.0)/2= 1 1 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 28. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 0-(0.0)/2= 0 1 0 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 29. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 0-(1.0)/2= 0 1 0 0 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 30. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 1-(-1.0)/2= 1 1 0 1 0 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 31. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Y ahora se repiten los pasos hasta que 2 1 1 0 0 1 se completa la 1 0 1 tabla…. 1 0 0 0 2 -1 -1 1 0 0 -1 3 -2 0 1 -1-(-1.0)/2= -1 1 0 -1 1 0 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 32. Método Gauss Jordan. Una vez completa, 1 0 1 1 0 0 repito los pasos hasta obtener una 1 2 2 0 1 0 matriz identidad 2 1 1 0 0 1 en la columna A y la inversa de A en 1 0 1 1 0 0 la columna I… 0 2 -1 -1 1 0 Como puede verse aquí aun hace falta 0 -1 3 -2 0 1 otro cuadrante para cumplir con la 1 0 -1 1 0 0 condición… 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1
  • 33. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 Una vez completa, 2 1 1 0 0 1 repito los pasos hasta obtener una 1 0 1 1 0 0 matriz identidad Elijo mi tercer Y aplico la en la columna A y pivote… 0 2 -1 -1 1 0 regla del la inversa de A en 0 -1 3 0 1 cuadrado al la columna I… Divido los resto de los Como puede verse elementos de 1 0 -1 1 0 0 elementos… aquí aun hace falta su fila por el otro cuadrante pivote… 0 1 -½ -½ ½ 0 para cumplir con la Reemplazo por 0 0 0 5/2 -5/2 ½ 1 condición… los elementos de 1 0 la columna… 1-(-1.0)/5/2= 1 0 0 0 1 -1 1/5 2/5
  • 34. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 los elementos de 0 la columna… 1 0 0-(-1.0)/5/2= 0 0 0 0 1 -1 1/5 2/5
  • 35. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 los elementos de 0 la columna… 1 0 1-(-1/2.0)/5/2= 1 1 0 0 0 1 -1 1/5 2/5
  • 36. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 los elementos de 0 la columna… 1 0 1-(-1/2.0)/5/2= 1 0 1 0 0 0 1 -1 1/5 2/5
  • 37. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 -1/2-(-1/2.-5/2)/5/2= -1 los elementos de 0 la columna… 1 0 0 1 0 -1 0 0 1 -1 1/5 2/5
  • 38. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 1/2-(-1/2.1/2)/5/2= 3/5 los elementos de 0 la columna… 1 0 0 1 0 -1 3/5 0 0 1 -1 1/5 2/5
  • 39. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 0-(-1/2.1)/5/2= 1/5 los elementos de 0 la columna… 1 0 0 1 0 -1 3/5 1/5 0 0 1 -1 1/5 2/5
  • 40. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 1-(-1.-5/2)/5/2= 0 los elementos de 0 la columna… 1 0 0 0 1 0 -1 3/5 1/5 0 0 1 -1 1/5 2/5
  • 41. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 0-(1/2.-1)/5/2= 1/5 los elementos de 0 la columna… 1 0 0 1/5 0 1 0 -1 3/5 1/5 0 0 1 -1 1/5 2/5
  • 42. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 Elijo mi tercer Y aplico la pivote… 0 2 -1 -1 1 0 regla del 0 -1 3 0 1 cuadrado al Divido los resto de los elementos de 1 0 -1 1 0 0 elementos… su fila por el pivote… 0 1 -½ -½ ½ 0 Reemplazo por 0 0 0 5/2 -5/2 ½ 1 0-(-1.1)/5/2= 2/5 los elementos de 0 la columna… 1 0 0 1/5 2/5 0 1 0 -1 3/5 1/5 0 0 1 -1 1/5 2/5
  • 43. Método Gauss Jordan. 1 0 1 1 0 0 1 2 2 0 1 0 2 1 1 0 0 1 1 0 1 1 0 0 0 2 -1 -1 1 0 0 -1 3 0 1 1 0 -1 1 0 0 0 1 -½ -½ ½ 0 0 0 5/2 -5/2 ½ 1 1 0 0 0 1/5 2/5  Esta seria nuestra 0 1 0 -1 3/5 1/5 matriz inversa 0 0 1 -1 1/5 2/5
  • 44. Método Gauss Jordan. Entonces, resulta que la inversa de A es: 0 1/ 5 2 / 5 1 3 / 5 1/ 5 1 1/ 5 2 / 5