UNIVERSIDAD MINUTO DE DIOS




            CIRCUITO SUMADOR BIT A BIT SOBRE PROTOBOARD




                         Asignatura: Electrónica Digital




                     Profesor: Ing. Diego Jaramillo Cuartas




                                  Estudiantes:
Jose Yahir Hernandez Suarez           -               Cód. 000214266
Dario Eduardo Murcia Aguirre          -               Cód. 000214889
Edgar Siervo Romero                   -               Cód. 000196963
Luis Fernando Capera                  -               Cód. 000209852
Omar Camilo Castillo                  -               Cód. 000063973
INTRODUCCIÓN

Los circuitos digitales (lógicos) operan en modo binario donde cada voltaje de entrada y de
salida es un 0 y un 1; las designaciones 0 y 1 representan intervalos predefinidos de voltaje.
Esta característica de los circuitos lógicos nos permite utilizar el álgebra booleana como
herramienta de para el análisis y diseño de sistemas digitales. En este laboratorio
estudiaremos las compuertas lógicas       (7404-NOT / 7408-AND / 7432-OR / 7486-XOR /
7400-NAND / 7402-NOR), que son los circuitos lógicos más fundamentales, y observaremos
cómo puede describirse su operación mediante el uso del álgebra booleana.



                                         OBJETIVOS

  Realizar un circuito que represente un sumador de Bits sobre una protoboard.

  Describir la operación de las tablas de la verdad para las compuertas () y construirlas.

  Escribir la expresión booleana para las compuertas lógicas y las combinaciones de
compuertas lógicas.

  Analizar los resultados experimentales en base a los planos sugeridos por el profesor
aplicando las tablas correspondientes.
MARCO TEORICO

QUE SON PUERTAS LOGICAS?

Una puerta lógica, o compuerta lógica, es un dispositivo electrónico que es la
expresión física de un operador booleano en la lógica de conmutación. Cada puerta
lógica consiste en una red de dispositivos interruptores que cumple las condiciones
booleanas para el operador particular. Son esencialmente circuitos de conmutación
integrados en un chip.

Booleano es un dato lógico que en computación aquel que puede representar
valores de lógica binaria, esto es, valores que representen falso o verdadero.



Puerta SI




Símbolos:
a) Contactos, b) Normalizado, c) No normalizado




Tabla de verdad puerta SI
 Entrada       Salida
     0            0
    1             1
Puerta AND (Y)




Símbolos AND (Y):
a) Contactos, b) Normalizado, c) No normalizado




Tabla de verdad puerta AND (Y)
Entrada     Entrada    Salida
    0            0        0
    0            1        0
    1            0        0
    1            1        1

La compuerta logica AND implementa el producto desde el punto de vista aritmético.

Puerta OR (O)




Símbolo OR (O): a) Contactos, b) Normalizado, c) No normalizado

La puerta lógica OR realiza operación de suma lógica.

Tabla de verdad puerta OR (O)
Entrada     Entrada   Salida
    0           0        0
    0           1        1
    1           0        1
    1           1        1
Puerta OR-exclusiva (XOR)




Símbolo O-exclusiva: a) Contactos, b) Normalizado, c) No normalizado

Tabla de verdad puerta XOR
Entrada    Entrada Salida
    0          0         0
    0          1         1
    1          0         1
    1          1         0

Se puede definir esta puerta como aquella que da por resultado uno, cuando los
valores en las entradas son distintos. Desde el punto de vista de la aritmética, la
puerta XOR implementa el producto.

Puerta NO (NOT)




Símbolo NO (NOT): a) Contactos, b) Normalizado, c) No normalizada



Puerta NO-O (NOR)




Símbolo NO-O: a) Contactos, b) Normalizado, c) No normalizado
La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la
operación de suma lógica negada.

Tabla de verdad puerta NOR
Entrada    Entrada Salida
   0          0         1
   0          1         0
   1          0         0
   1          1         0

Podemos definir la puerta NO-O como aquella que proporciona a su salida un 1
lógico sólo cuando todas sus entradas están a 0. La puerta lógica NOR constituye un
conjunto completo de operadores.

Puerta (XNOR)




Símbolo (XNOR): a) Contactos, b) Normalizado, c) No normalizado

Tabla de verdad puerta XNOR
Entrada A Entrada B Salida
    0             0         1
    0             1         0
    1             0         0
    1             1         1

Se puede definir esta puerta como aquella que proporciona un 1 lógico, sólo si las
dos entradas son iguales, esto es, 0 y 0 ó 1 y 1 (2 encendidos o 2 apagados).



QUE SON MAPAS DE KARNAUGH?

Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de
circuitos lógicos.
Cuando se tiene una función lógica con su tabla de verdad y se desea implementar
esa función de la manera más económica posible se utiliza este método.



Ejemplo: Se tiene la siguiente tabla de verdad para tres variables.



Se desarrolla la función lógica basada en ella. (primera forma canónica). Ver que en
la fórmula se incluyen solamente las variables (A, B, C) cuando F cuando es igual a
"1".



Si A en la tabla de verdad es "0" se pone A, si B = "1" se pone B, Si C = "0" se pone
C, etc.



Ejemplo de tabla de verdad de 3 variables. Mapas de Karnaugt - Electrónica
Unicrom



F = A B C + A B C + A BC + A B C + A B C + A B C



Una vez obtenida la función lógica, se implementa el mapa de Karnaugh.



Mapa de Karnaugh de 3 variables - Electrónica Unicrom



Este mapa tiene 8 casillas que corresponden a 2n, donde n = 3 (número de variables
(A, B, C))



La primera fila corresponde a A = 0

La segunda fila corresponde a A = 1

La primera columna corresponde a BC = 00 (B=0 y C=0)
La segunda columna corresponde a BC = 01 (B=0 y C=1)

La tercera columna corresponde a BC = 11 (B=1 y C=1)

La cuarta columna corresponde a BC = 10 (B=1 y C=0)



En el mapa de Karnaugh se han puesto "1" en las casillas que corresponden a los
valores de F = "1" en la tabla de verdad.



Tomar en cuenta la numeración de las filas de la tabla de verdad y la numeración de
las casillas en el mapa de Karnaugh.



Para proceder con la simplificación, se crean grupos de "1"s que tengan 1, 2, 4, 8,
16, etc. (sólo potencias de 2).



Los "1"s deben estar adyacentes (no en diagonal) y mientras más "1"s tenga el
grupo, mejor.



La función mejor simplificada es aquella que tiene el menor número de grupos con el
mayor número de "1"s en cada grupo

Grupos de "1" formados en mapa de karnaugh de 3 variables - Electrónica Unicrom



Se ve del gráfico que hay dos grupos cada uno de cuatro "1"s, (se permite compartir
casillas entre los grupos).



La nueva expresión de la función boolena simplificada se deduce del mapa de
Karnaugh.



- Para el primer grupo (rojo): la simplificación da B (los "1"s de la tercera y cuarta
columna) corresponden a B sin negar)

- Para el segundo grupo (azul): la simplificación da A (los "1"s están en la fila inferior
que corresponde a A sin negar)
Tabla de verdad para ejemplo de simplificación por mapa de Karnaugh - Electrónica
Unicrom



Entonces el resultado es F = B + A ó F = A + B



Ejemplo:



Una tabla de verdad como la de la derecha da la siguiente función booleana:



F = ABC + AB C + A B C + A B C



Se ve claramente que la función es un reflejo del contenido de la tabla de verdad
cuando F = "1"



Con esta ecuación se crea el mapa de Karnaugh y se escogen los grupos. Se
lograron hacer 3 grupos de dos "1"s cada uno.



Grupos de "1" formados en ejemplo de mapa de karnaugh de 3 variables -
Electrónica UnicromSe puede ver que no es posible hacer grupos de 3, porque 3 no
es potencia de 2. Se observa que hay una casilla que es compartida por los tres
grupos.



La función simplificada es:



F = AB + A C + B C



Grupo en azul: AB, grupo marrón:AC, grupo verde:BC
Que es Protoboard?

Es una placa de pruebas que permite interconectar componentes electrónicos sin
necesidad de soldarlos, en esta se pueden construir prototipos de circuitos
electrónicos.


Que es resistencia?
La resistencia de un objeto es una medida de su oposición al paso de corriente.

Que es Led?
Es un diodo emisor de luz.

Que es un Deep Switch?
Es un dispositivo que bloquea o da paso de corriente en sistemas electronicos.


MATERIALES

      1 Protoboard
      1 Deep Switch
      Almabre UTP
      Cargador de 5V
      3 Leds
       Resistencias 220Ω
      4 Compuertas Lógicas (2-7486, 7404, 7408)


PROCEDIMIENTO

Basándonos en los planos electrónicos obtenidos a través de los resultados de los
mapas de Harnaugh, se procedió a realizar el armado en nuestra Protoboard
siguiendo los siguientes pasos:

   1. Instalación del Deep Switch en el Protoboard.
   2. Instalacion de las 4 Compuertas Logicas en el Protoboard, en el siguiente
      orden (7484, 7404, 7408)
   3. Instalacion de los Leds Carry (C), Salida 1 (S1), Salida 0 (S0).
   4. Instalacion de las resistencias para el Deep Switch y para los Leds
   5. Union de los componentes anteriormente nombrados por medio del cable
      UTP
   6. Prueba del funcionamiento mediante el paso de corriente por medio de un
      cargador de 5V, pruebas de resultado para cada combinación de (C) (S0)
      (S1)
Tabla de resultados de sumador bit a bit

 A   B   C   D     C          S1        S0
 0   0   0   0     0           0         0
 0   0   0   1     0           0         1
 0   0   1   0     0           1         0
 0   0   1   1     0           1         1
 0   1   0   0     0           0         1
 0   1   0   1     0           1         0
 0   1   1   0     0           1         1
 0   1   1   1     1           0         0
 1   0   0   0     0           1         0
 1   0   0   1     0           1         1
 1   0   1   0     1           0         0
 1   0   1   1     1           0         1
 1   1   0   0     0           1         1
 1   1   0   1     1           0         0
 1   1   1   0     1           0         1
 1   1   1   1     1           1         0


Hallamos los máximos términos (1)



Realizamos mapas de karnaugh

HALLAMOS EL CARRY F(C)



             CD   00.   01.   11   10

 AB               CD    CD    CD   CD

 00.         AB

 01.         AB                1             K1 = AC

 11          AB         1      1   1

 10          AB                1   1
CD   00.   01.   11   10

 AB         CD    CD    CD   CD

 00.   AB

                                  K2 =
 01.   AB               1
                                  ABD

 11    AB         1     1    1

 10    AB               1    1




       CD   00.   01.   11   10

 AB         CD    CD    CD   CD

 00.   AB

                                  K3 =
 01.   AB               1
                                  BCD

 11    AB         1     1    1

 10    AB               1    1



F(c)= Carry = AC+ABD+BCD

HALLAMOS LA SALIDA 1 F(S1)



       CD   00.   01.   11   10

 AB         CD    CD    CD   CD

 00.   AB               1    1

 01.   AB         1          1     K1 = ABC

 11    AB   1           1

 10    AB   1     1
CD   00.   01.   11   10

AB         CD    CD    CD   CD

00.   AB               1    1

01.   AB         1          1    K2 = ACD

11    AB   1           1

10    AB   1     1




      CD   00.   01.   11   10

AB         CD    CD    CD   CD

00.   AB               1    1    K3 = CAB

01.   AB         1          1

11    AB   1           1

10    AB   1     1




      CD   00.   01.   11   10

AB         CD    CD    CD   CD

00.   AB               1    1

01.   AB         1          1    K4 = ADC

11    AB   1           1

10    AB   1     1
CD   00.   01.   11   10

      AB         CD    CD    CD   CD

      00.   AB               1    1

      01.   AB         1          1          K5 = BDAC

      11    AB   1           1

      10    AB   1     1




            CD   00.   01.   11   10

      AB         CD    CD    CD   CD

      00.   AB               1    1

      01.   AB         1          1          K6 = ABCD

      11    AB   1           1

      10    AB   1     1



     F(s1) = A BC + A CD + C AB + C AD + AC BD + ABCD


HALLAMOS LA SALIDA 0 F(S0)



            CD   00.   01.   11   10

      AB         CD    CD    CD   CD

      00.   AB         1     1

      01.   AB   1                1          K1 = B D

      11    AB   1                1

      10    AB         1     1
CD     00.   01.   11   10

       AB           CD    CD    CD   CD

       00.   AB           1     1

       01.   AB     1                1

       11    AB     1                1    K2 = B D

       10    AB           1     1



F(s0) = B D + B D




RESULTADOS DEL PROYECTO
PLANO DEL CIRCUITO




                             Conclusiones

 Con base en nuestras tablas de Karnaugh hallamos los valores para
  diagramar nuestro circuito

 Con este proyecto hemos aprendido que los circuitos pueden ser abreviados
  en mayor medida sabiendo aplicar el teorema de Morgan.

 Utilizando un diagrama apropiado bien resumido y utilizando las compuertas
  lógicas adecuadas el montaje del circuito será mucho más sencillo y los
  resultados serán los esperados al 100%.

Más contenido relacionado

PPTX
Aplicación de las seis fórmulas
PDF
Ejercicios detallados del obj 9 mat ii 178
PDF
Optimización corte de madera
PDF
PRE CALCULO N°7 ESAN
PDF
Manual de utilización zelio
PPT
Clase del 30 de agosto de 2012
PDF
Ejercicios resueltos-programacion-lineal
Aplicación de las seis fórmulas
Ejercicios detallados del obj 9 mat ii 178
Optimización corte de madera
PRE CALCULO N°7 ESAN
Manual de utilización zelio
Clase del 30 de agosto de 2012
Ejercicios resueltos-programacion-lineal

La actualidad más candente (9)

PDF
Diagramas de sistemas de control eléctrico
DOCX
Control de posicion
PPTX
Modelos matematicos simulacion
DOCX
Expo 2 método de dos fases
DOCX
Ejercicios resueltos io 1 parte 1
PDF
03 prog lineal problemas primera soluciones
PDF
EJERCICIOS LEP CON FALTANTE
PDF
110105553 programacion-lineal
DOCX
Investigacion de operaciones grupo # 10 modelo eoq
Diagramas de sistemas de control eléctrico
Control de posicion
Modelos matematicos simulacion
Expo 2 método de dos fases
Ejercicios resueltos io 1 parte 1
03 prog lineal problemas primera soluciones
EJERCICIOS LEP CON FALTANTE
110105553 programacion-lineal
Investigacion de operaciones grupo # 10 modelo eoq
Publicidad

Destacado (13)

PPTX
Tu primer circuito en protoboard
PPT
Puertas lógicas
DOCX
Trabajo del protoboard
PPT
Protoboard pratica uno
PPTX
Tema3 circuitos puertas_lógicas_y_álgebra_de_boole
DOCX
Informe trabajo electrónica 2 (2)
PDF
Compuertas Lógicas
PDF
DOCX
Reporte compuertas logicas
PPTX
CIRCUITOS EN PROTOBOARD
PPT
Valores ambientales
PDF
SSTQB - Glosario de terminos de pruebas de software
PPTX
Sistemas combinacionales introducción a los Codificadores y decodificadores
Tu primer circuito en protoboard
Puertas lógicas
Trabajo del protoboard
Protoboard pratica uno
Tema3 circuitos puertas_lógicas_y_álgebra_de_boole
Informe trabajo electrónica 2 (2)
Compuertas Lógicas
Reporte compuertas logicas
CIRCUITOS EN PROTOBOARD
Valores ambientales
SSTQB - Glosario de terminos de pruebas de software
Sistemas combinacionales introducción a los Codificadores y decodificadores
Publicidad

Similar a Montaje de Circuitos Electronicos (20)

PPS
2.3. simbología y herramientas digitales
PDF
Electronica Digital
DOC
Algebra de boole
PPT
Digital
PPT
Digital E
PPT
Electronica digital
DOCX
Slideshare maria
DOCX
María de los ángeles villanueva cañizalez
DOCX
María de los ángeles villanueva cañizalez
PDF
Funciones Lógicas Combinatorias
PPT
Electronica digital 4º ESO
PPT
Electronica Digital 4º Eso
PPT
Presentacion electronica-digital
PPTX
4.operación de la unidad aritmética y lógica
PPT
Electrónica Digital.ppt Tutorial completo
PPSX
Circuitos combinatorios
PPT
electronica digital mapas de karnaught compuertas logicas
DOCX
Algebra boole y circuitos con puerta lógicas
DOCX
Algebra boole y circuitos con puerta lógicas
PDF
2. compuertas lógicas y álgebra booleana
2.3. simbología y herramientas digitales
Electronica Digital
Algebra de boole
Digital
Digital E
Electronica digital
Slideshare maria
María de los ángeles villanueva cañizalez
María de los ángeles villanueva cañizalez
Funciones Lógicas Combinatorias
Electronica digital 4º ESO
Electronica Digital 4º Eso
Presentacion electronica-digital
4.operación de la unidad aritmética y lógica
Electrónica Digital.ppt Tutorial completo
Circuitos combinatorios
electronica digital mapas de karnaught compuertas logicas
Algebra boole y circuitos con puerta lógicas
Algebra boole y circuitos con puerta lógicas
2. compuertas lógicas y álgebra booleana

Montaje de Circuitos Electronicos

  • 1. UNIVERSIDAD MINUTO DE DIOS CIRCUITO SUMADOR BIT A BIT SOBRE PROTOBOARD Asignatura: Electrónica Digital Profesor: Ing. Diego Jaramillo Cuartas Estudiantes: Jose Yahir Hernandez Suarez - Cód. 000214266 Dario Eduardo Murcia Aguirre - Cód. 000214889 Edgar Siervo Romero - Cód. 000196963 Luis Fernando Capera - Cód. 000209852 Omar Camilo Castillo - Cód. 000063973
  • 2. INTRODUCCIÓN Los circuitos digitales (lógicos) operan en modo binario donde cada voltaje de entrada y de salida es un 0 y un 1; las designaciones 0 y 1 representan intervalos predefinidos de voltaje. Esta característica de los circuitos lógicos nos permite utilizar el álgebra booleana como herramienta de para el análisis y diseño de sistemas digitales. En este laboratorio estudiaremos las compuertas lógicas (7404-NOT / 7408-AND / 7432-OR / 7486-XOR / 7400-NAND / 7402-NOR), que son los circuitos lógicos más fundamentales, y observaremos cómo puede describirse su operación mediante el uso del álgebra booleana. OBJETIVOS Realizar un circuito que represente un sumador de Bits sobre una protoboard. Describir la operación de las tablas de la verdad para las compuertas () y construirlas. Escribir la expresión booleana para las compuertas lógicas y las combinaciones de compuertas lógicas. Analizar los resultados experimentales en base a los planos sugeridos por el profesor aplicando las tablas correspondientes.
  • 3. MARCO TEORICO QUE SON PUERTAS LOGICAS? Una puerta lógica, o compuerta lógica, es un dispositivo electrónico que es la expresión física de un operador booleano en la lógica de conmutación. Cada puerta lógica consiste en una red de dispositivos interruptores que cumple las condiciones booleanas para el operador particular. Son esencialmente circuitos de conmutación integrados en un chip. Booleano es un dato lógico que en computación aquel que puede representar valores de lógica binaria, esto es, valores que representen falso o verdadero. Puerta SI Símbolos: a) Contactos, b) Normalizado, c) No normalizado Tabla de verdad puerta SI Entrada Salida 0 0 1 1
  • 4. Puerta AND (Y) Símbolos AND (Y): a) Contactos, b) Normalizado, c) No normalizado Tabla de verdad puerta AND (Y) Entrada Entrada Salida 0 0 0 0 1 0 1 0 0 1 1 1 La compuerta logica AND implementa el producto desde el punto de vista aritmético. Puerta OR (O) Símbolo OR (O): a) Contactos, b) Normalizado, c) No normalizado La puerta lógica OR realiza operación de suma lógica. Tabla de verdad puerta OR (O) Entrada Entrada Salida 0 0 0 0 1 1 1 0 1 1 1 1
  • 5. Puerta OR-exclusiva (XOR) Símbolo O-exclusiva: a) Contactos, b) Normalizado, c) No normalizado Tabla de verdad puerta XOR Entrada Entrada Salida 0 0 0 0 1 1 1 0 1 1 1 0 Se puede definir esta puerta como aquella que da por resultado uno, cuando los valores en las entradas son distintos. Desde el punto de vista de la aritmética, la puerta XOR implementa el producto. Puerta NO (NOT) Símbolo NO (NOT): a) Contactos, b) Normalizado, c) No normalizada Puerta NO-O (NOR) Símbolo NO-O: a) Contactos, b) Normalizado, c) No normalizado
  • 6. La puerta lógica NO-O, más conocida por su nombre en inglés NOR, realiza la operación de suma lógica negada. Tabla de verdad puerta NOR Entrada Entrada Salida 0 0 1 0 1 0 1 0 0 1 1 0 Podemos definir la puerta NO-O como aquella que proporciona a su salida un 1 lógico sólo cuando todas sus entradas están a 0. La puerta lógica NOR constituye un conjunto completo de operadores. Puerta (XNOR) Símbolo (XNOR): a) Contactos, b) Normalizado, c) No normalizado Tabla de verdad puerta XNOR Entrada A Entrada B Salida 0 0 1 0 1 0 1 0 0 1 1 1 Se puede definir esta puerta como aquella que proporciona un 1 lógico, sólo si las dos entradas son iguales, esto es, 0 y 0 ó 1 y 1 (2 encendidos o 2 apagados). QUE SON MAPAS DE KARNAUGH? Los Mapas de Karnaugh son una herramienta muy utilizada para la simplificación de circuitos lógicos.
  • 7. Cuando se tiene una función lógica con su tabla de verdad y se desea implementar esa función de la manera más económica posible se utiliza este método. Ejemplo: Se tiene la siguiente tabla de verdad para tres variables. Se desarrolla la función lógica basada en ella. (primera forma canónica). Ver que en la fórmula se incluyen solamente las variables (A, B, C) cuando F cuando es igual a "1". Si A en la tabla de verdad es "0" se pone A, si B = "1" se pone B, Si C = "0" se pone C, etc. Ejemplo de tabla de verdad de 3 variables. Mapas de Karnaugt - Electrónica Unicrom F = A B C + A B C + A BC + A B C + A B C + A B C Una vez obtenida la función lógica, se implementa el mapa de Karnaugh. Mapa de Karnaugh de 3 variables - Electrónica Unicrom Este mapa tiene 8 casillas que corresponden a 2n, donde n = 3 (número de variables (A, B, C)) La primera fila corresponde a A = 0 La segunda fila corresponde a A = 1 La primera columna corresponde a BC = 00 (B=0 y C=0)
  • 8. La segunda columna corresponde a BC = 01 (B=0 y C=1) La tercera columna corresponde a BC = 11 (B=1 y C=1) La cuarta columna corresponde a BC = 10 (B=1 y C=0) En el mapa de Karnaugh se han puesto "1" en las casillas que corresponden a los valores de F = "1" en la tabla de verdad. Tomar en cuenta la numeración de las filas de la tabla de verdad y la numeración de las casillas en el mapa de Karnaugh. Para proceder con la simplificación, se crean grupos de "1"s que tengan 1, 2, 4, 8, 16, etc. (sólo potencias de 2). Los "1"s deben estar adyacentes (no en diagonal) y mientras más "1"s tenga el grupo, mejor. La función mejor simplificada es aquella que tiene el menor número de grupos con el mayor número de "1"s en cada grupo Grupos de "1" formados en mapa de karnaugh de 3 variables - Electrónica Unicrom Se ve del gráfico que hay dos grupos cada uno de cuatro "1"s, (se permite compartir casillas entre los grupos). La nueva expresión de la función boolena simplificada se deduce del mapa de Karnaugh. - Para el primer grupo (rojo): la simplificación da B (los "1"s de la tercera y cuarta columna) corresponden a B sin negar) - Para el segundo grupo (azul): la simplificación da A (los "1"s están en la fila inferior que corresponde a A sin negar)
  • 9. Tabla de verdad para ejemplo de simplificación por mapa de Karnaugh - Electrónica Unicrom Entonces el resultado es F = B + A ó F = A + B Ejemplo: Una tabla de verdad como la de la derecha da la siguiente función booleana: F = ABC + AB C + A B C + A B C Se ve claramente que la función es un reflejo del contenido de la tabla de verdad cuando F = "1" Con esta ecuación se crea el mapa de Karnaugh y se escogen los grupos. Se lograron hacer 3 grupos de dos "1"s cada uno. Grupos de "1" formados en ejemplo de mapa de karnaugh de 3 variables - Electrónica UnicromSe puede ver que no es posible hacer grupos de 3, porque 3 no es potencia de 2. Se observa que hay una casilla que es compartida por los tres grupos. La función simplificada es: F = AB + A C + B C Grupo en azul: AB, grupo marrón:AC, grupo verde:BC
  • 10. Que es Protoboard? Es una placa de pruebas que permite interconectar componentes electrónicos sin necesidad de soldarlos, en esta se pueden construir prototipos de circuitos electrónicos. Que es resistencia? La resistencia de un objeto es una medida de su oposición al paso de corriente. Que es Led? Es un diodo emisor de luz. Que es un Deep Switch? Es un dispositivo que bloquea o da paso de corriente en sistemas electronicos. MATERIALES  1 Protoboard  1 Deep Switch  Almabre UTP  Cargador de 5V  3 Leds  Resistencias 220Ω  4 Compuertas Lógicas (2-7486, 7404, 7408) PROCEDIMIENTO Basándonos en los planos electrónicos obtenidos a través de los resultados de los mapas de Harnaugh, se procedió a realizar el armado en nuestra Protoboard siguiendo los siguientes pasos: 1. Instalación del Deep Switch en el Protoboard. 2. Instalacion de las 4 Compuertas Logicas en el Protoboard, en el siguiente orden (7484, 7404, 7408) 3. Instalacion de los Leds Carry (C), Salida 1 (S1), Salida 0 (S0). 4. Instalacion de las resistencias para el Deep Switch y para los Leds 5. Union de los componentes anteriormente nombrados por medio del cable UTP 6. Prueba del funcionamiento mediante el paso de corriente por medio de un cargador de 5V, pruebas de resultado para cada combinación de (C) (S0) (S1)
  • 11. Tabla de resultados de sumador bit a bit A B C D C S1 S0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 0 Hallamos los máximos términos (1) Realizamos mapas de karnaugh HALLAMOS EL CARRY F(C) CD 00. 01. 11 10 AB CD CD CD CD 00. AB 01. AB 1 K1 = AC 11 AB 1 1 1 10 AB 1 1
  • 12. CD 00. 01. 11 10 AB CD CD CD CD 00. AB K2 = 01. AB 1 ABD 11 AB 1 1 1 10 AB 1 1 CD 00. 01. 11 10 AB CD CD CD CD 00. AB K3 = 01. AB 1 BCD 11 AB 1 1 1 10 AB 1 1 F(c)= Carry = AC+ABD+BCD HALLAMOS LA SALIDA 1 F(S1) CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K1 = ABC 11 AB 1 1 10 AB 1 1
  • 13. CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K2 = ACD 11 AB 1 1 10 AB 1 1 CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 K3 = CAB 01. AB 1 1 11 AB 1 1 10 AB 1 1 CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K4 = ADC 11 AB 1 1 10 AB 1 1
  • 14. CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K5 = BDAC 11 AB 1 1 10 AB 1 1 CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K6 = ABCD 11 AB 1 1 10 AB 1 1 F(s1) = A BC + A CD + C AB + C AD + AC BD + ABCD HALLAMOS LA SALIDA 0 F(S0) CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 K1 = B D 11 AB 1 1 10 AB 1 1
  • 15. CD 00. 01. 11 10 AB CD CD CD CD 00. AB 1 1 01. AB 1 1 11 AB 1 1 K2 = B D 10 AB 1 1 F(s0) = B D + B D RESULTADOS DEL PROYECTO
  • 16. PLANO DEL CIRCUITO Conclusiones  Con base en nuestras tablas de Karnaugh hallamos los valores para diagramar nuestro circuito  Con este proyecto hemos aprendido que los circuitos pueden ser abreviados en mayor medida sabiendo aplicar el teorema de Morgan.  Utilizando un diagrama apropiado bien resumido y utilizando las compuertas lógicas adecuadas el montaje del circuito será mucho más sencillo y los resultados serán los esperados al 100%.