SlideShare una empresa de Scribd logo
 
Un  número complejo   z  es un par ordenado de números reales  x  e  y,  escrito como : z =  ( x,y ) (Notación en componentes o coordenadas cartesianas).   x  se llama la  parte real  de  z :  Re ( z )   := x y  se llama la  parte imaginaria  de  z :  Im ( z )  :=y
Dos números complejos son iguales si y sólo si sus partes reales e imaginarias son iguales: (x 1 ,y 1 ) = (x 2 ,y 2 ) si, y sólo si, x 1 = x 2  , y 1 = y 2   El conjunto de números complejos, se denota por C:
(0,1) se llama la  unidad imaginaria  y se denota por: (Los ingenieros eléctricos a menudo usan “j” para evitar confusiones  con el símbolo “i”, que asocian a la intensidad eléctrica).
Si  x  = 0  ( z  =  i y ), entonces  z  se dice que es un  imaginario puro . Si y = 0 ( z  =  x ), entonces  z  se comporta como un  número real . z  =  x  +  i y Un número complejo  z = (x,y)  se escribe comúnmente  como ( notación algebraica o binómica, “afijo” en textos de antaño ):
El nacimiento de los números complejos Niccolo Fontana Tartaglia (1499-1557) En un críptico poema, Tartaglia revelaba a su amigo Cardano, el secreto para resolver determinadas ecuaciones de tercer grado, con un método que implicaba el uso de lo que ahora conocemos como “números complejos”
Girolamo Cardano  (1501-1576)   Ars Magna (1545) Considerada como la fecha de  nacimiento de los números  complejos. Resolución de ecuaciones de  tercer y cuarto grado. “ Divide 10 en dos partes,  de modo que una por la otra  dé 40.” x(10-x)=40; Solución “intrigante”.
Rafael Bombelli (1526-1572)  resolvió la situación operando  como lo hacemos hoy con números complejos. Forma general de la ecuación cúbica y solución: Funcionaba bien en algunos casos, como: Pero en otros ... : Cardano sabía que x = 4 es solución de esta ecuación.
  René Descartes (1596-1650) 60 años después de Bombelli:  “ A pesar de que podemos pensar que la ecuación  x 3  - 6x 2  + 13x - 10 = 0  tiene tres raíces,   únicamente una de ellas es real, la cual es 2, y las otras dos…son simplemente  imaginarias .”   Ren é  Descartes  "La Géométrie" (1637)
“ Los números imaginarios son un excelente y maravilloso refugio del Espíritu Santo, una especie de anfibio entre ser y no ser” Gottfried von   Leibnitz   (1.646 – 1.716) Otros términos que han sido  usados para referirse a los  números complejos incluyen : “ Sofisticados” (Cardano) “ Sin sentido”   (Néper) “ Inexplicables”   (Girard) “ Incomprensibles” (Huygens) “ Imposibles”  (Diversos autores)
“ Estos números no son nada,  ni menos que nada, lo cual  necesariamente los hace  imaginarios, o imposibles”. “…  formulam  littera  i  …” Leonhard Euler (1777) Leonhard Euler   (1.707 – 1.783) Con Euler los imaginarios se incorporan definitivamente en la Matemática. i 2  = -1; introdujo la notación binómica. Demostró que el conjunto de los números  “ imaginarios” era cerrado para las  cuatro operaciones básicas, así como  para la potenciación y la radicación.
  Karl Friedrich  Gauss (1777-1855) “ Números íntegros  complexos ” K. F. Gauss (1831) “ Nuestra aritmética (...),  constituye la creación de los tiempos modernos,  (...). A los números enteros se  han agregado las fracciones;  a las cantidades racionales,  las irracionales;  a las positivas, las negativas;  y a las reales, las imaginarias”. “ ¿Qué es un número complejo?” Gauss dio la respuesta satisfactoria definitiva en 1831 al establecer la interpretación geométrica:  x+iy  ->  (x,y).
Miguel de Guzmán  (1936-2004) “ La visualización de los números  reales mediante los puntos de una  recta o de los números complejos  mediante los puntos del plano no  solamente penetró sin gran resistencia en el análisis, sino que se puede decir  con razón que, en el caso de los  números complejos, esta  visualización (Argand, Gauss) fue  lo que hizo posible vencer la fuerte  oposición de la comunidad  matemática al dar carta de ciudadanía  a los números complejos”. El rincón de la pizarra: ensayos de  visualización en análisis matemático.
El plano complejo   (Plano z, de Argand o de Gauss) Eje real Eje imaginario
Suma y resta de números complejos  en el plano complejo En la suma (y la resta)  los números complejos  se comportan como vectores
C con la suma y el producto por un escalar posee estructura de espacio vectorial real bidimensional, es isomorfo a R 2 .  El conjunto  {1, i}  es base de ese espacio. Y podemos  identificar C con los vectores libres del plano R 2 . Pero  recordemos que C tiene algo más: el producto complejo.
Desigualdad triangular El módulo de z  es equivalente a  la distancia  euclidiana del  vector libre  (x,y). La distancia entre z 1  y  z 2  es  |z 1 -z 2 |.   Así disponemos de  un espacio métrico  donde podemos  definir límites,  continuidad, ... ¿Qué significa que   |z 1 | > |z 2 | ?
A partir de las  coordenadas polares ( r ,  )  tenemos : Forma polar y trigonométrica Forma trigonométrica
Producto de números complejos en el plano complejo
Potencias de  i Por ejemplo:
Multiplicar por  i  es equivalente a  girar 90 grados en sentido anti-horario (operador rotación). "The number you have  dialed is imaginary.  Please rotate your phone  90 degrees and try again."  Anonimous
Representación matricial de los números complejos Actúa como 1 Actúa como  i (una rotación de 90º) Con la suma y el producto matricial clásico, y teniendo en  cuenta que toda matriz no cero de este tipo es invertible,  tenemos un cuerpo. El módulo es igual a la raíz cuadrada del determinante. ¿A qué corresponde el conjugado de z en forma matricial?
Caspar Wessel   (1745 - 1818) Primera representación  geométrica en 1797. Jean Argand   (1768 - 1822) Idem y además consideró  i  como una rotación de 90º. Jhon Wallis  (1616 - 1703) “ Algebra ”(1673) ¿Qué significa un  número complejo? Anteriores a Gauss:
¿Qué significa un  número complejo? Bus parado en el  semáforo (arrancando) Tú corriendo  para pillarlo d v a x = 0 Alcanzar el bus en T: T es un tiempo complejo y no alcanzarás  el bus. Pero además tiene significado físico. Supongamos que perdemos  el bus, pero que queremos saber en que  momento estuvimos más cerca.  ¿En que tiempo s es mínimo? Es decir: el tiempo  correspondiente a la  parte real del tiempo  complejo T. ¿Qué significan  T+ y T-?
Relatividad especial: la importancia de  i Distancia espacial  (teorema de Pitágoras) Métrica euclidiana Invariancia frente a rotaciones y/o translaciones Albert Einstein (1879 – 1955)
Transformaciones  de Galileo Transformaciones  de Lorentz
¿Cómo hacer  (ds) 2   invariante? Lo que Minkowski descubrió es que en vez de usar  c(dt)  debemos tomar  ic(dt). Demostrar que de esta manera  (ds) 2   es invariante bajo  las transformaciones de Lorentz. Observa que usando  ic(dt)   o lo que es lo mismo  c(idt) , ¡tenemos un “tiempo imaginario”! “ Las consideraciones sobre el espacio y el tiempo que quisiera  presentarles surgieron en el seno de la física experimental, y en  ello radica su fuerza. Son radicales. De ahora en adelante el  espacio en sí mismo y el tiempo en sí mismo están condenados  a ser sombras; sólo un tipo de unión entre los dos conservará  una realidad independiente”. Hermann Minkowski (1864 – 1909)
Falacia
El segundo paso (extraer raíces a ambos lados) puede parecer  el origen de la falacia, pero no lo es. Basta con determinar el  valor principal en ambas raíces. El tercer paso es el origen de la falacia. No existe regla que garantice  que: excepto si  a>0  y  b>0 .  La única manera de que dos números  u  y  v  ( u,v  distintos de cero)  tengan el mismo cuadrado es que  u = v  o  u = -v . En nuestro caso,  podíamos haber escrito:
De esta manera no se produce falacia. Observemos que pasa lo mismo con:
A pesar de las diferencias entre  N, Z, Q, R y C ,  poseen muchas propiedades comunes como la conmutatividad y la asociatividad de la suma y  el producto, la distributividad del producto respecto  a la suma o la existencia de elemento unidad  para la multiplicación. Según el teorema de Frobenius  no es posible un campo mayor  que C. ¿Se puede ampliar más el concepto de número de modo que se conserven estas propiedades? F. Frobenius   (1849 - 1917)
Sir William Rowan Hamilton (1805 - 1865)     Los cuaterniones son números complejos en cuatro dimensiones en lugar de dos (Hamilton 1843). Así un cuaternión  q  se expresa como:   q = a+ib+jc+kd   donde  a,b,c,d  son números reales.  {1, i, j, k}  hacen de base en el hiperespacio de los cuaterniones.  {1, i}  era la base estándar para los números complejos, simplemente se añaden dos vectores unitarios,  j  y  k , perpendiculares entre sí. La propiedad conmutativa para el producto de cuaterniones no rige.  Cuaterniones e  hipercomplejos
El software de vuelo del  Space Shuttle  usaba cuaterniones para el control de navegación y vuelo. Su uso conseguía compacidad de código, velocidad de cómputo y evitaba aparición de singularidades en los cálculos.   Es el precio que pagamos por  obtener un álgebra consistente.  Así que en general, el producto  q ·q´  de dos cuaterniones no es igual que el producto  q´ ·q  (como ocurre con el producto matricial estándar, por ejemplo).  Las reglas de Hamilton para la base de cuaterniones son:    i j =  k,  j k =  i,  k i = j  j i = -k,  k j = -i,  i k = -j  i i = j j = k k = -1,  i j k = -1 Los cuaterniones se emplean para describir dinámicas en 3 dimensiones.
Hamilton desarrolló también otra álgebra alternativa: la de los números hipercomplejos. En vez de sacrificar la conmutatividad, sacrificó la existencia de inverso. En el álgebra hipercompleja no todo elemento  h  distinto de  0  posee inverso  1/h . La base de cuatro elementos posee la misma notación que la de cuaterniones, pero las reglas de multiplicación son distintas:    i j = k,  j k = -i,  k i = -j    j i = k,  k j = -i,  i k = -j    i i = j j = -k k = -1   i j k = 1    El puente de Brougham sobre el Canal Real, donde Hamilton inscribió sus  famosas reglas para  los cuaterniones.
Los números complejos sirven para expresar conjuntamente diversos aspectos de un mismo fenómeno, que aparecerían separados si utilizásemos números reales Ejemplo:  El índice de refracción complejo n  =  n R +  i n I
En ocasiones utilizamos los números complejos para simplificar cálculos complicados de realizar por otros caminos. Ejemplo: En lugar de operar con  Cos  , trabajamos con  e i   =  Cos   +  i Sen  Y al finalizar nos quedamos sólo con la parte real.
¿Son las oscilaciones cuánticas fluctuaciones estocásticas ordinarias? Analogía ecuación de Schroedinger y ecuación del movimiento browniano FQ:   FC:
La analogía formal se cumple si intercambiamos: y Rotación euclídea El tiempo se hace imaginario Interferencias  cuánticas
La probabilidad cuántica es  proporcional a En cambio, D se refiere directamente a  probabilidades en las fluctuaciones clásicas
De hecho, la función de onda ha de ser compleja  De lo contrario no aparecerían los típicos efectos cuánticos de  superposición de estados (interferencias)
CONCLUSIONES: Los números imaginarios no son “ficticios” Poseen numerosas aplicaciones científicas Indispensables en la FQ Sus generalizaciones dan ricas estructuras matemáticas Probablemente indiquen algo más allá del E-T

Más contenido relacionado

PPTX
Origen números imaginarios
PDF
Ejercicios binomio de newton y triangulo de pascal
PPTX
Permutaciones y combinaciones
PPTX
Funciones
PPTX
Teoria de conjuntos
PDF
16. funciones exponencial y logaritmica
POT
Power point funciones trigonométricas
PDF
Diapositivas de estructuras algebraicas
Origen números imaginarios
Ejercicios binomio de newton y triangulo de pascal
Permutaciones y combinaciones
Funciones
Teoria de conjuntos
16. funciones exponencial y logaritmica
Power point funciones trigonométricas
Diapositivas de estructuras algebraicas

La actualidad más candente (20)

PDF
Ejercicios Resueltos de Calculo II
PPT
Relaciones y funciones
PPT
3 Operaciones Binarias
PPTX
Ecuaciones en números complejos
PPTX
Grupos, subgrupos, anillo y cuerpo, Estructuras algebraicas
PPT
Inecuaciones lineales
PDF
Matemática: Función Raíz Cuadrada
PPTX
TEORÍA DE CONJUNTOS
PPTX
Concepto de Funciones
PPT
Ecuaciones e inecuaciones con valor absoluto (1) copy
PDF
Matrices y determinantes
PPSX
Teoria numeros complejos
PDF
FUNCIONES RACIONALES
PPT
Intensidad del campo electrico
PDF
Aplicaciones de los números complejos
PPTX
Funcion lineal
ODP
Raíces racionales de polinomios - Teorema de Gauss
PPS
Aplicacion de las funciones atematicas a la vida diaria
PPTX
Funciones, dominio, recorrido, funcion inyectiva, sobreyectiva, biyectiva y f...
PPTX
Numeros complejos
Ejercicios Resueltos de Calculo II
Relaciones y funciones
3 Operaciones Binarias
Ecuaciones en números complejos
Grupos, subgrupos, anillo y cuerpo, Estructuras algebraicas
Inecuaciones lineales
Matemática: Función Raíz Cuadrada
TEORÍA DE CONJUNTOS
Concepto de Funciones
Ecuaciones e inecuaciones con valor absoluto (1) copy
Matrices y determinantes
Teoria numeros complejos
FUNCIONES RACIONALES
Intensidad del campo electrico
Aplicaciones de los números complejos
Funcion lineal
Raíces racionales de polinomios - Teorema de Gauss
Aplicacion de las funciones atematicas a la vida diaria
Funciones, dominio, recorrido, funcion inyectiva, sobreyectiva, biyectiva y f...
Numeros complejos
Publicidad

Similar a Numeros complejos (20)

PDF
Int numeros complejos
PDF
Historia de-los-numeros-complejos.pdf
PDF
OPERACIONES CON NÚMEROS COMPLEJOS
PDF
000 Historia del Análisis Complejo.pdf
PDF
Números Complejos
PDF
Unidad i guia de números complejos
PPTX
Numeros complejos javier salazar
DOCX
Numeros complejos ronny
PPTX
Números Imaginarios: Origen, interpretación y utilidad.
PDF
C01 los numeros_complejos
PDF
C01 los numeros_complejos
PDF
1 numeroscomplejos
PDF
Fundamentos de la Teoría de los Números Complejos ccesa007
PDF
C01 los numeros_complejos
PPTX
Trabajo calculo1
PDF
Calculo, 8va Edición - Purcell, Vargerg & Rigdon.pdf
PPT
Viernes 14
PPTX
Números complejos
PPT
Tema numeros complejos
PPTX
Presentación mate
Int numeros complejos
Historia de-los-numeros-complejos.pdf
OPERACIONES CON NÚMEROS COMPLEJOS
000 Historia del Análisis Complejo.pdf
Números Complejos
Unidad i guia de números complejos
Numeros complejos javier salazar
Numeros complejos ronny
Números Imaginarios: Origen, interpretación y utilidad.
C01 los numeros_complejos
C01 los numeros_complejos
1 numeroscomplejos
Fundamentos de la Teoría de los Números Complejos ccesa007
C01 los numeros_complejos
Trabajo calculo1
Calculo, 8va Edición - Purcell, Vargerg & Rigdon.pdf
Viernes 14
Números complejos
Tema numeros complejos
Presentación mate
Publicidad

Más de raalbe autor (20)

PDF
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
PDF
Darwinismo y antidarwinismo
PDF
¿Hubo una Revolución Científica?
PDF
Misterio en el átomo (lucerna 2011)
PDF
Epstemologic controversy on quantum operators
PDF
El mito del sabio aislado
PDF
El origen químico de la vida
PDF
Universo y creador (lucerna caronte 2)
PDF
Alemañ thales(2010)
DOC
Misticismo cuántico
PDF
Rafael aleman-presenta-fnac-20091109
PDF
Rafael aleman-berenguer-muestra-201001081120
PDF
Finalistas premios ignotus_2005
PPT
Supercuerdas 40 años después
PPT
Significado e = mc2
PPT
Qué me importa la astronomía
PPT
Newton astrónomo
PPT
Movil perpetuo
PPT
Misterio de los pioneer
PPT
Métodos holograficos en astronomía
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
Darwinismo y antidarwinismo
¿Hubo una Revolución Científica?
Misterio en el átomo (lucerna 2011)
Epstemologic controversy on quantum operators
El mito del sabio aislado
El origen químico de la vida
Universo y creador (lucerna caronte 2)
Alemañ thales(2010)
Misticismo cuántico
Rafael aleman-presenta-fnac-20091109
Rafael aleman-berenguer-muestra-201001081120
Finalistas premios ignotus_2005
Supercuerdas 40 años después
Significado e = mc2
Qué me importa la astronomía
Newton astrónomo
Movil perpetuo
Misterio de los pioneer
Métodos holograficos en astronomía

Último (20)

DOCX
V UNIDAD - PRIMER GRADO. del mes de agosto
PDF
Híper Mega Repaso Histológico Bloque 3.pdf
PDF
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
PDF
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
PDF
Escuelas Desarmando una mirada subjetiva a la educación
PPTX
caso clínico iam clinica y semiología l3.pptx
PDF
Punto Critico - Brian Tracy Ccesa007.pdf
PDF
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
PDF
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
DOCX
V UNIDAD - SEGUNDO GRADO. del mes de agosto
PPTX
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
PDF
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
DOCX
2 GRADO UNIDAD 5 - 2025.docx para primaria
PDF
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
PDF
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
PDF
Fundamentos_Educacion_a_Distancia_ABC.pdf
PDF
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
PDF
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf
V UNIDAD - PRIMER GRADO. del mes de agosto
Híper Mega Repaso Histológico Bloque 3.pdf
CONFERENCIA-Deep Research en el aula universitaria-UPeU-EduTech360.pdf
Conecta con la Motivacion - Brian Tracy Ccesa007.pdf
Escuelas Desarmando una mirada subjetiva a la educación
caso clínico iam clinica y semiología l3.pptx
Punto Critico - Brian Tracy Ccesa007.pdf
benveniste-problemas-de-linguistica-general-i-cap-6 (1)_compressed.pdf
Educación Artística y Desarrollo Humano - Howard Gardner Ccesa007.pdf
V UNIDAD - SEGUNDO GRADO. del mes de agosto
AGENTES PATÓGENOS Y LAS PRINCIPAL ENFERMEAD.pptx
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
COMPLETO__PROYECTO_VIVAN LOS NIÑOS Y SUS DERECHOS_EDUCADORASSOS.pdf
GUIA DE: CANVA + INTELIGENCIA ARTIFICIAL
2 GRADO UNIDAD 5 - 2025.docx para primaria
Crear o Morir - Andres Oppenheimer Ccesa007.pdf
Guia de Tesis y Proyectos de Investigacion FS4 Ccesa007.pdf
Fundamentos_Educacion_a_Distancia_ABC.pdf
Romper el Circulo de la Creatividad - Colleen Hoover Ccesa007.pdf
Cronograma de clases de Práctica Profesional 2 2025 UDE.pdf

Numeros complejos

  • 1.  
  • 2. Un número complejo z es un par ordenado de números reales x e y, escrito como : z = ( x,y ) (Notación en componentes o coordenadas cartesianas). x se llama la parte real de z : Re ( z ) := x y se llama la parte imaginaria de z : Im ( z ) :=y
  • 3. Dos números complejos son iguales si y sólo si sus partes reales e imaginarias son iguales: (x 1 ,y 1 ) = (x 2 ,y 2 ) si, y sólo si, x 1 = x 2 , y 1 = y 2 El conjunto de números complejos, se denota por C:
  • 4. (0,1) se llama la unidad imaginaria y se denota por: (Los ingenieros eléctricos a menudo usan “j” para evitar confusiones con el símbolo “i”, que asocian a la intensidad eléctrica).
  • 5. Si x = 0 ( z = i y ), entonces z se dice que es un imaginario puro . Si y = 0 ( z = x ), entonces z se comporta como un número real . z = x + i y Un número complejo z = (x,y) se escribe comúnmente como ( notación algebraica o binómica, “afijo” en textos de antaño ):
  • 6. El nacimiento de los números complejos Niccolo Fontana Tartaglia (1499-1557) En un críptico poema, Tartaglia revelaba a su amigo Cardano, el secreto para resolver determinadas ecuaciones de tercer grado, con un método que implicaba el uso de lo que ahora conocemos como “números complejos”
  • 7. Girolamo Cardano (1501-1576) Ars Magna (1545) Considerada como la fecha de nacimiento de los números complejos. Resolución de ecuaciones de tercer y cuarto grado. “ Divide 10 en dos partes, de modo que una por la otra dé 40.” x(10-x)=40; Solución “intrigante”.
  • 8. Rafael Bombelli (1526-1572) resolvió la situación operando como lo hacemos hoy con números complejos. Forma general de la ecuación cúbica y solución: Funcionaba bien en algunos casos, como: Pero en otros ... : Cardano sabía que x = 4 es solución de esta ecuación.
  • 9.   René Descartes (1596-1650) 60 años después de Bombelli: “ A pesar de que podemos pensar que la ecuación x 3 - 6x 2 + 13x - 10 = 0 tiene tres raíces, únicamente una de ellas es real, la cual es 2, y las otras dos…son simplemente imaginarias .” Ren é Descartes "La Géométrie" (1637)
  • 10. “ Los números imaginarios son un excelente y maravilloso refugio del Espíritu Santo, una especie de anfibio entre ser y no ser” Gottfried von Leibnitz (1.646 – 1.716) Otros términos que han sido usados para referirse a los números complejos incluyen : “ Sofisticados” (Cardano) “ Sin sentido” (Néper) “ Inexplicables” (Girard) “ Incomprensibles” (Huygens) “ Imposibles” (Diversos autores)
  • 11. “ Estos números no son nada, ni menos que nada, lo cual necesariamente los hace imaginarios, o imposibles”. “… formulam littera i …” Leonhard Euler (1777) Leonhard Euler (1.707 – 1.783) Con Euler los imaginarios se incorporan definitivamente en la Matemática. i 2 = -1; introdujo la notación binómica. Demostró que el conjunto de los números “ imaginarios” era cerrado para las cuatro operaciones básicas, así como para la potenciación y la radicación.
  • 12.   Karl Friedrich Gauss (1777-1855) “ Números íntegros complexos ” K. F. Gauss (1831) “ Nuestra aritmética (...), constituye la creación de los tiempos modernos, (...). A los números enteros se han agregado las fracciones; a las cantidades racionales, las irracionales; a las positivas, las negativas; y a las reales, las imaginarias”. “ ¿Qué es un número complejo?” Gauss dio la respuesta satisfactoria definitiva en 1831 al establecer la interpretación geométrica: x+iy -> (x,y).
  • 13. Miguel de Guzmán (1936-2004) “ La visualización de los números reales mediante los puntos de una recta o de los números complejos mediante los puntos del plano no solamente penetró sin gran resistencia en el análisis, sino que se puede decir con razón que, en el caso de los números complejos, esta visualización (Argand, Gauss) fue lo que hizo posible vencer la fuerte oposición de la comunidad matemática al dar carta de ciudadanía a los números complejos”. El rincón de la pizarra: ensayos de visualización en análisis matemático.
  • 14. El plano complejo (Plano z, de Argand o de Gauss) Eje real Eje imaginario
  • 15. Suma y resta de números complejos en el plano complejo En la suma (y la resta) los números complejos se comportan como vectores
  • 16. C con la suma y el producto por un escalar posee estructura de espacio vectorial real bidimensional, es isomorfo a R 2 . El conjunto {1, i} es base de ese espacio. Y podemos identificar C con los vectores libres del plano R 2 . Pero recordemos que C tiene algo más: el producto complejo.
  • 17. Desigualdad triangular El módulo de z es equivalente a la distancia euclidiana del vector libre (x,y). La distancia entre z 1 y z 2 es |z 1 -z 2 |. Así disponemos de un espacio métrico donde podemos definir límites, continuidad, ... ¿Qué significa que |z 1 | > |z 2 | ?
  • 18. A partir de las coordenadas polares ( r ,  ) tenemos : Forma polar y trigonométrica Forma trigonométrica
  • 19. Producto de números complejos en el plano complejo
  • 20. Potencias de i Por ejemplo:
  • 21. Multiplicar por i es equivalente a girar 90 grados en sentido anti-horario (operador rotación). "The number you have dialed is imaginary. Please rotate your phone 90 degrees and try again." Anonimous
  • 22. Representación matricial de los números complejos Actúa como 1 Actúa como i (una rotación de 90º) Con la suma y el producto matricial clásico, y teniendo en cuenta que toda matriz no cero de este tipo es invertible, tenemos un cuerpo. El módulo es igual a la raíz cuadrada del determinante. ¿A qué corresponde el conjugado de z en forma matricial?
  • 23. Caspar Wessel (1745 - 1818) Primera representación geométrica en 1797. Jean Argand (1768 - 1822) Idem y además consideró i como una rotación de 90º. Jhon Wallis (1616 - 1703) “ Algebra ”(1673) ¿Qué significa un número complejo? Anteriores a Gauss:
  • 24. ¿Qué significa un número complejo? Bus parado en el semáforo (arrancando) Tú corriendo para pillarlo d v a x = 0 Alcanzar el bus en T: T es un tiempo complejo y no alcanzarás el bus. Pero además tiene significado físico. Supongamos que perdemos el bus, pero que queremos saber en que momento estuvimos más cerca. ¿En que tiempo s es mínimo? Es decir: el tiempo correspondiente a la parte real del tiempo complejo T. ¿Qué significan T+ y T-?
  • 25. Relatividad especial: la importancia de i Distancia espacial (teorema de Pitágoras) Métrica euclidiana Invariancia frente a rotaciones y/o translaciones Albert Einstein (1879 – 1955)
  • 26. Transformaciones de Galileo Transformaciones de Lorentz
  • 27. ¿Cómo hacer (ds) 2 invariante? Lo que Minkowski descubrió es que en vez de usar c(dt) debemos tomar ic(dt). Demostrar que de esta manera (ds) 2 es invariante bajo las transformaciones de Lorentz. Observa que usando ic(dt) o lo que es lo mismo c(idt) , ¡tenemos un “tiempo imaginario”! “ Las consideraciones sobre el espacio y el tiempo que quisiera presentarles surgieron en el seno de la física experimental, y en ello radica su fuerza. Son radicales. De ahora en adelante el espacio en sí mismo y el tiempo en sí mismo están condenados a ser sombras; sólo un tipo de unión entre los dos conservará una realidad independiente”. Hermann Minkowski (1864 – 1909)
  • 29. El segundo paso (extraer raíces a ambos lados) puede parecer el origen de la falacia, pero no lo es. Basta con determinar el valor principal en ambas raíces. El tercer paso es el origen de la falacia. No existe regla que garantice que: excepto si a>0 y b>0 . La única manera de que dos números u y v ( u,v distintos de cero) tengan el mismo cuadrado es que u = v o u = -v . En nuestro caso, podíamos haber escrito:
  • 30. De esta manera no se produce falacia. Observemos que pasa lo mismo con:
  • 31. A pesar de las diferencias entre N, Z, Q, R y C , poseen muchas propiedades comunes como la conmutatividad y la asociatividad de la suma y el producto, la distributividad del producto respecto a la suma o la existencia de elemento unidad para la multiplicación. Según el teorema de Frobenius no es posible un campo mayor que C. ¿Se puede ampliar más el concepto de número de modo que se conserven estas propiedades? F. Frobenius (1849 - 1917)
  • 32. Sir William Rowan Hamilton (1805 - 1865)     Los cuaterniones son números complejos en cuatro dimensiones en lugar de dos (Hamilton 1843). Así un cuaternión q se expresa como:   q = a+ib+jc+kd   donde a,b,c,d son números reales. {1, i, j, k} hacen de base en el hiperespacio de los cuaterniones. {1, i} era la base estándar para los números complejos, simplemente se añaden dos vectores unitarios, j y k , perpendiculares entre sí. La propiedad conmutativa para el producto de cuaterniones no rige. Cuaterniones e hipercomplejos
  • 33. El software de vuelo del Space Shuttle usaba cuaterniones para el control de navegación y vuelo. Su uso conseguía compacidad de código, velocidad de cómputo y evitaba aparición de singularidades en los cálculos.   Es el precio que pagamos por obtener un álgebra consistente. Así que en general, el producto q ·q´ de dos cuaterniones no es igual que el producto q´ ·q (como ocurre con el producto matricial estándar, por ejemplo). Las reglas de Hamilton para la base de cuaterniones son:   i j =  k,  j k =  i,  k i = j j i = -k,  k j = -i,  i k = -j i i = j j = k k = -1,  i j k = -1 Los cuaterniones se emplean para describir dinámicas en 3 dimensiones.
  • 34. Hamilton desarrolló también otra álgebra alternativa: la de los números hipercomplejos. En vez de sacrificar la conmutatividad, sacrificó la existencia de inverso. En el álgebra hipercompleja no todo elemento h distinto de 0 posee inverso 1/h . La base de cuatro elementos posee la misma notación que la de cuaterniones, pero las reglas de multiplicación son distintas:   i j = k,  j k = -i,  k i = -j   j i = k,  k j = -i,  i k = -j   i i = j j = -k k = -1   i j k = 1   El puente de Brougham sobre el Canal Real, donde Hamilton inscribió sus famosas reglas para los cuaterniones.
  • 35. Los números complejos sirven para expresar conjuntamente diversos aspectos de un mismo fenómeno, que aparecerían separados si utilizásemos números reales Ejemplo: El índice de refracción complejo n = n R + i n I
  • 36. En ocasiones utilizamos los números complejos para simplificar cálculos complicados de realizar por otros caminos. Ejemplo: En lugar de operar con Cos  , trabajamos con e i  = Cos  + i Sen  Y al finalizar nos quedamos sólo con la parte real.
  • 37. ¿Son las oscilaciones cuánticas fluctuaciones estocásticas ordinarias? Analogía ecuación de Schroedinger y ecuación del movimiento browniano FQ: FC:
  • 38. La analogía formal se cumple si intercambiamos: y Rotación euclídea El tiempo se hace imaginario Interferencias cuánticas
  • 39. La probabilidad cuántica es proporcional a En cambio, D se refiere directamente a probabilidades en las fluctuaciones clásicas
  • 40. De hecho, la función de onda ha de ser compleja  De lo contrario no aparecerían los típicos efectos cuánticos de superposición de estados (interferencias)
  • 41. CONCLUSIONES: Los números imaginarios no son “ficticios” Poseen numerosas aplicaciones científicas Indispensables en la FQ Sus generalizaciones dan ricas estructuras matemáticas Probablemente indiquen algo más allá del E-T

Notas del editor

  • #15: Argand: Jean Argand - a librarian in Paris, published paper on complex plane in 1806