SlideShare una empresa de Scribd logo
TENDIENDO PUENTES EN
MATEMATICA
OBJETIVOS DEL TALLER
Comprender el enfoque de Resolución
de problemas que propone el área de
Matemática, a partir de la articulación
de la propuesta del PCR y las Rutas de
los Aprendizajes.
Reflexionar sobre la enseñanza y
aprendizaje de la matemática a través
del tiempo en el País y la región Puno.
Diseñar una sesión de interaprendizaje
y convivencia en matemática a partir del
contexto local, considerando la
propuesta articulada entre el PCR –
Puno y las rutas del aprendizaje.
Trabaj o I ndi vi dual
Cierra tus ojos y
recuerda tu época
escolar, a tu maestro
de matemática, tu
clase de matemática.
Expresa con un di buj o
t us sent i mi ent os.
¿Cómo estamos enseñando actualmente?
¿Qué papel debe desempeñar la matemática
en la vida?
¿Crees que la escuela responde a estos
requerimientos?
¿Por qué las matemáticas despiertan tan poco
interés entre los estudiantes?
Pcr y matematica
La falta de sentido o de
significatividad de las
actividades realizadas en
el aula
Enseñanza orientada al
desarrollo de contenidos
sin tomar en cuenta las
necesidades e intereses de
los estudiantes.
Los estudiantes son
expuestos a
memorizar, repetir
(Problemas tipo).
Enseñanza centrada en
ejercicios algoritmos.
… La letra entra con
sangre.
Algunas prácticas en la enseñanza de la
matemática a través del t i empo.
ESTRUCTURALISTA
 Centrado en la Teoría de
conjuntos.
 Considera que el
conocimiento
matemático solo es
posible mediante
estructuras lógicas
formales.
 Con este enfoque surge
la llamada matemática
moderna.
 La enseñanza de la
matemática es en base a
estructuras algebraicas.
 El ideal de este enfoque
es el desarrollo de la
abstracción pura.
LOGICISTA
 Centrado en la lógica
 Considera que:
 La razón pura es el único criterio
de la verdad.
 La verdad es absoluta.
 El conocimiento matemático se
puede desarrollar al margen de
la realidad.
 El conocimiento matemático se
construye a partir de principios,
leyes, axiomas, símbolos.
 Con este enfoque surge la llamada
matemática pura.
 La enseñanza de la matemática es
en base a demostraciones basadas
en sistemas axiomáticos.
 El ideal de este enfoque es la
racionalidad pura.
HISTORICISTA/RESOLUCIÓN
DE PROBLEMAS
 Centrado en la Resolución de
problemas.
 Considera que:
 La verdad se asienta en la
práctica social.
 El desarrollo de la
humanidad ha estado
ligado a la resolución de
problemas de necesidad
real.
 El desarrollo del
conocimiento matemático
es desde y mediante la
resolución de problemas.
 Con este enfoque surge la
matemática funcional.
 El ideal de este enfoque es el
desarrollo de competencias.
PARADIGMAS QUE HAN INFLUENCIADO EN LA ENSEÑANZA-
APRENDIZAJE DE LA MATEMÁTICA
Surge la necesidad de plantear y ASUMIR un
modelo formativo. Un enfoque:
Aprendizaje Centrado en la
Resolución de Problemas.
Aprendizaje que promueva la
matemática intercultural.
Una matemática Para la vida.
Trabajo en equipos
Resolvamos situaciones problemáticas en
matemática y ref l exi onemos.
1 2
4 3
RELEVANCIA SOCIAL ALTA
RELEVANCIA SOCIAL BAJA
Algoritmos
Ejercicios
Datos descontextualizados
Datos inventados
Lejos de la realidad.
Adquiere relevancia porque
parte de la realidad.
Adquiere significado.
A veces carece de utilidad social.
Aprendizaje in situ.
Simulaciones situadas.
¿Algunos
rasgos del
enfoque
centrado en la
resolución de
problemas?
El conocimiento matemático fue construido a partir
de la necesidad de resolver problemas.
El conocimiento
matemático fue
construido a
partir de la
necesidad de
resolver
problemas.
El enfoque problémico
consiste en promover
formas de enseñanza-
aprendizaje que den
respuesta a
situaciones
problemáticas
cercanos a la vida
real.
Es el medio principal
para establecer
relaciones de
funcionalidad
matemática con la
realidad cotidiana.
Algunas creencias que aún tenemos los
docentes en nuestras prácticas educativas y
que, con espíritu innovador, tenemos que
corregir.
Los estándares de aprendizaje que los
estudiantes deben lograr al término del ciclo iv
y v de la educación básica en dos dominios:
número y operaciones y cambio y relaciones.
Las competencias, capacidades e indicadores
que permitirán alcanzar esos estándares de
aprendizaje, con mayor énfasis en el primer
dominio.
Orientaciones respecto de cómo facilitar el
desarrollo de las competencias y capacidades
matemáticas vinculadas a los dominios de
número y operaciones y cambio y relaciones.
En este fascículo encontrarás:
La matemática Intercultural
¿Qué es el área de
matemática
intercultural en el
PCR – Puno?
Ñawray yupaykuna kawsayninchikpi /
Jakhuwinakampi amuyt'añataki /
Matemática intercultural
Se aprende matemáticas
para comprender el mundo
y actuar en el,
comunicarnos con los
demás, resolver problemas
y desarrollar el
pensamiento lógico.
Se parte de la identidad y
practica cultural propia de los
estudiantes; desde los
primeros grados, con la
finalidad que vaya
desarrollando los saberes de
investigación, transformación
y producción que requieren
para plantear y resolver con
actitud analítica, critica y
emprendedora los problemas
de su contexto y de la
realidad.
Ñawray yupaykuna kawsayninchikpi /
Jakhuwinakampi amuyt'añataki /
Matemática intercultural
Ñawray yupaykuna kawsayninchikpi /
Jakhuwinakampi amuyt'añataki /
Matemática intercultural
Los saberes fundamentales
de la matemática en el
contexto intercultural se
van construyendo en cada
nivel educativo y son
valiosos para continuar con
el desarrollo de las ideas
matemáticas, que permitan
interrelacionarlas con otros
saberes fundamentales de
las diferentes áreas.
Al interrelacionar el área prima el valor formativo,
social, cultural y natural del área. En ese sentido,
adquieren relevancia las nociones de la
etnomatemática, etnogeometría, funciones,
equivalencias, proporcionalidad, variación,
estimación, representación, ecuaciones e
inecuaciones, argumentación, comunicación,
búsqueda de patrones y conexiones, entendidas
desde la variación cognitiva intercultural.
Ñawray yupaykuna kawsayninchikpi /
Jakhuwinakampi amuyt'añataki /
Matemática intercultural
Pcr y matematica
Pcr y matematica
Preguntas para reflexionar
1. ¿Qué prácticas etnomatemáticas de
nuestros pueblos se encuentran vigentes
para incorporar en la práctica pedagógica?
2. ¿Cómo incorporamos y articulamos los
saberes etnomatemáticos con los
conocimientos matemáticos universales?
3. Es posible plantear situaciones problémicas
a partir de los saberes etnomatemáticos?
El desarrollo curricular con enfoque intercultural
Refleja la diversidad
socio cultural y
lingüística de la región
y del país.
Recoge no sólo
conocimientos sino
también concepciones
y categorías de las
culturas locales.
Construye pedagogía a
partir de las formas de
aprender de los niños y
niñas.
Promueve el desarrollo
de valores y actitudes.
La educación etnomatemática. Propuesta EIB
Implica
Saberes etno
matemáticos
Reconocimiento
Valoración
Uso
Aceptación
Punto de partida Articulacion
Matematica
universal
El enfoque problémico desde la perspectiva
intercultural
Debe plantear situaciones
problemáticas de contexto
real
Además de contexto
sociocultural y lingüístico
concreto que refleje la
realidad del estudiante.
En el marco de su
cosmovisión y su
racionalidad
Entendemos por Etnomatemática a los conocimientos
de un grupo sociocultural identificable, en el marco
de su cosmovisión, que se manifiestan a través de las
actividades siguientes:
Registro de prácticas etnomatemáticas
Contar
Medir
Localizar
Diseñar
Jugar
Explicar
Ejemplo de saberes etnomatemáticos
El wipi es un instrumento ancestral de medida de masa
utilizado actualmente en comunidades andinas de Huánuco
y Ancash
La Puchka
Pcr y matematica
LOS PEONES QUE PARTICIPARAN EN EL SHUYUNAKUY
La institución educativa N° 32855 de Rumichaka, como parte
del proyecto productivo cada año realiza el barbecho de la
chacra para el sembrío de papas, en el que participan los
padres de familia en el Shuyunakuy y las madres en la
preparación de los alimentos. Se sabe que la chacra de Don
Mauro se barbechaban en los años anteriores con seis
paradas de peones. Si en la escuela solo hay 12 padres de
familias y 3 madres. El Presidente de APAFA está rompiendo
su cabeza para terminar cuanto antes posible la faena.
Para realizar este trabajo tenemos que ayudar al presidente
a solucionar el problema.
SITUACIÓN PROBLEMÁTICA 01
Chacra
Cálculo de
medida
Paradas de peones (03) que terminan
el trabajo en un día de jornada
Yugadas
Semillaje de papa
Semillaje de cebada
Hectáreas
Otras medidas
Actividad N.° 1
• Visita a la chacra de don Mauro:
• Entrevistan a don Mauro sobre el tamaño de la chacra
usando las medidas de la localidad (yugadas, paradas,
semillaje, hectáreas, etc).
Chacra
Cálculo de medida con
pasos
Largo
Ancho
Perímetro
Área
Chacra
Cálculo de medida con
el metro lineal
Largo
Ancho
Perímetro
Área
Mide la chacra de don Mauro utilizando medidas arbitrarias
y el metro: primero los lados y luego calcula el área.
Actividad N.° 2
Si solo contamos con 12 padres de familia y la chacra de don
Mauro, en donde se realizará el sembrío de papas para la
escuela necesita 6 paradas de peones. ¿Cómo organizamos a
los padres de familia para terminar el barbecho en el menor
tiempo posible haciendo que todos trabajen a la vez?
¿Si se cuenta con solo 6 chaquitacllas en cuántos días se
terminará la tarea?
Cuántos platos, cucharas y tenedores debe llevar las
cocineras para los peones.
Actividad N.° 3
¿Qué recursos has empleado para realizar tus medidas?
¿Las operaciones que realizaste han sido exactas?
¿Es posible representar los resultados obtenidos en otras
formas de expresión? Justifica tu respuesta.

Más contenido relacionado

PDF
Diagnostico de la problematica de la enseñanza de la matematica ccesa007
PPT
TALLER DE INDUCCIÓN EN RUTAS DEL APRENDIZAJE: Enfoque centrado en la Resoluci...
PPTX
Uso de saberes matemáticos para resolver problemas
PPT
Estrategias de aprendisaje para las matematicas
PPT
Problemas Aditivos
PDF
trabajo de grado Juan Alberto Delgado
PPTX
ARITMÉTICA Y ALGEBRA
DOCX
“RESOLUCIÓN DE PROBLEMAS DE SUMA, RESTA Y MULTIPLICACIÓN EN PREESCOLAR, UN PU...
Diagnostico de la problematica de la enseñanza de la matematica ccesa007
TALLER DE INDUCCIÓN EN RUTAS DEL APRENDIZAJE: Enfoque centrado en la Resoluci...
Uso de saberes matemáticos para resolver problemas
Estrategias de aprendisaje para las matematicas
Problemas Aditivos
trabajo de grado Juan Alberto Delgado
ARITMÉTICA Y ALGEBRA
“RESOLUCIÓN DE PROBLEMAS DE SUMA, RESTA Y MULTIPLICACIÓN EN PREESCOLAR, UN PU...

La actualidad más candente (20)

PPT
Estrategias de aprendizaje matematicas en los diferentes niveles educativos
PPT
Enfoque matemático: RUTAS DE APRENDIZAJE
PPT
Estrategias De Las Matematicas [Autosaved]
PPTX
Estrategias para la enseñanza de las matemáticas
PPTX
Estrategias para la enseñanza de la matemática
PDF
Quaranta maria emilia por que enseñar matematica en el nivel inicial
DOCX
Ensayo de suma y resta
PPTX
Introducción en la propuesta de Literales.
PDF
Laensenanzacalculomentalen1ºaño2008
PPT
Rutas del Aprendizaje de matematica
PPTX
Conversaciones matemáticas con Maria Antonia Canals
PDF
ESTRATEGIA DIDACTICA ENSEÑANZA MULTIPLICACION
DOCX
Tema 2 matemáticas
PPTX
Diapositivas proyecto innovación matemática
DOCX
Salvador linares cuadro
DOCX
Didactica de matematica
DOCX
Centro regional de educación normal ensayo
PDF
Dicultad matematica
PDF
Matematicas,Rutas de aprendizaje
PDF
Ensayo la competencia para enseñar y aprender y hacer matemáticas
Estrategias de aprendizaje matematicas en los diferentes niveles educativos
Enfoque matemático: RUTAS DE APRENDIZAJE
Estrategias De Las Matematicas [Autosaved]
Estrategias para la enseñanza de las matemáticas
Estrategias para la enseñanza de la matemática
Quaranta maria emilia por que enseñar matematica en el nivel inicial
Ensayo de suma y resta
Introducción en la propuesta de Literales.
Laensenanzacalculomentalen1ºaño2008
Rutas del Aprendizaje de matematica
Conversaciones matemáticas con Maria Antonia Canals
ESTRATEGIA DIDACTICA ENSEÑANZA MULTIPLICACION
Tema 2 matemáticas
Diapositivas proyecto innovación matemática
Salvador linares cuadro
Didactica de matematica
Centro regional de educación normal ensayo
Dicultad matematica
Matematicas,Rutas de aprendizaje
Ensayo la competencia para enseñar y aprender y hacer matemáticas
Publicidad

Similar a Pcr y matematica (20)

PDF
Enfoque de las Rutas de Aprendizaje de Matemáticas
PDF
Enfoque de Rutas de Matematica EBR Ccesa
PDF
Diapositivas matemc3a1tica-rutas-de-aprendizaje
PDF
Enfoque de Matematica Actual ccesa007
PPTX
Ppt matematica final
PPTX
RUTAS DE APRENDIZAJE Taller de inducción 2
PPTX
Taller de Induccion de Rutas de Aprendizajes de Matematicas.
PPTX
etnomatematica y las capacidades del area de matematica segun rutas del apren...
PDF
Enfoque del area mat. competencias capacidades e indicadores 25012013
PDF
Etnomatematica[1]
DOC
Proyecto educativo innovador
PPT
57223760 autoevaluacion
PPT
57223760 autoevaluacion
PPTX
Enfoque de Resolución de problemash.pptx
PPTX
Autoevaluacion2011
PPT
57223760 autoevaluacion
PPTX
PONENCIA RUTAS DE MATEMÁTICAS 2013- (1).pptx
PPTX
Flexibilización de currículos de matemática en situaciones de multiculturalid...
Enfoque de las Rutas de Aprendizaje de Matemáticas
Enfoque de Rutas de Matematica EBR Ccesa
Diapositivas matemc3a1tica-rutas-de-aprendizaje
Enfoque de Matematica Actual ccesa007
Ppt matematica final
RUTAS DE APRENDIZAJE Taller de inducción 2
Taller de Induccion de Rutas de Aprendizajes de Matematicas.
etnomatematica y las capacidades del area de matematica segun rutas del apren...
Enfoque del area mat. competencias capacidades e indicadores 25012013
Etnomatematica[1]
Proyecto educativo innovador
57223760 autoevaluacion
57223760 autoevaluacion
Enfoque de Resolución de problemash.pptx
Autoevaluacion2011
57223760 autoevaluacion
PONENCIA RUTAS DE MATEMÁTICAS 2013- (1).pptx
Flexibilización de currículos de matemática en situaciones de multiculturalid...
Publicidad

Más de Luis Marinho Calcina Tito (20)

PDF
PPT_SIMON 16 mayo.pdf
PPTX
DEMANDA COGNITIVA.pptx
PDF
Directiva 005 2015-drep-complementaria
PDF
Rm 023 2015-minedu-contrato docente 2015
PDF
Resolucion de secretaria general n° 2078 2014-minedu
PDF
Resolucion de secretaria general n° 2076 2014-minedu
PDF
Norma racionalizacion-2014
PDF
Rsg nro-1551-2014-minedu
PDF
Resolucion ministerial n° 0622 2013-ed- DIRECTIVA DESARROLLO AÑO ESCOLAR 2014
PDF
Marco de buen desempeño del directivo
PDF
Directiva n° 0023 de finalizacion año escoñar 2013
PDF
Resolucion ministerial n° 0582 2013-ed reasignaciones 2014
PPSX
Ugel puno ece-2013
PDF
Sesión de interaprendizaje y matematicas taller pcr y rutas 3° grado
PDF
Directiva concurso de directores 2013
PDF
Reglamento de la ley de reforma magisterial
PDF
Solucion de casos
PDF
Prueba nacional clasificatoria (v18 04-13)
PDF
Presentación prueba clasificatoria para acceso a cargos directivos versión 03
PDF
Marco del buen desempeño directivo
PPT_SIMON 16 mayo.pdf
DEMANDA COGNITIVA.pptx
Directiva 005 2015-drep-complementaria
Rm 023 2015-minedu-contrato docente 2015
Resolucion de secretaria general n° 2078 2014-minedu
Resolucion de secretaria general n° 2076 2014-minedu
Norma racionalizacion-2014
Rsg nro-1551-2014-minedu
Resolucion ministerial n° 0622 2013-ed- DIRECTIVA DESARROLLO AÑO ESCOLAR 2014
Marco de buen desempeño del directivo
Directiva n° 0023 de finalizacion año escoñar 2013
Resolucion ministerial n° 0582 2013-ed reasignaciones 2014
Ugel puno ece-2013
Sesión de interaprendizaje y matematicas taller pcr y rutas 3° grado
Directiva concurso de directores 2013
Reglamento de la ley de reforma magisterial
Solucion de casos
Prueba nacional clasificatoria (v18 04-13)
Presentación prueba clasificatoria para acceso a cargos directivos versión 03
Marco del buen desempeño directivo

Pcr y matematica

  • 2. OBJETIVOS DEL TALLER Comprender el enfoque de Resolución de problemas que propone el área de Matemática, a partir de la articulación de la propuesta del PCR y las Rutas de los Aprendizajes. Reflexionar sobre la enseñanza y aprendizaje de la matemática a través del tiempo en el País y la región Puno. Diseñar una sesión de interaprendizaje y convivencia en matemática a partir del contexto local, considerando la propuesta articulada entre el PCR – Puno y las rutas del aprendizaje.
  • 3. Trabaj o I ndi vi dual Cierra tus ojos y recuerda tu época escolar, a tu maestro de matemática, tu clase de matemática. Expresa con un di buj o t us sent i mi ent os.
  • 4. ¿Cómo estamos enseñando actualmente? ¿Qué papel debe desempeñar la matemática en la vida? ¿Crees que la escuela responde a estos requerimientos? ¿Por qué las matemáticas despiertan tan poco interés entre los estudiantes?
  • 6. La falta de sentido o de significatividad de las actividades realizadas en el aula Enseñanza orientada al desarrollo de contenidos sin tomar en cuenta las necesidades e intereses de los estudiantes. Los estudiantes son expuestos a memorizar, repetir (Problemas tipo). Enseñanza centrada en ejercicios algoritmos. … La letra entra con sangre. Algunas prácticas en la enseñanza de la matemática a través del t i empo.
  • 7. ESTRUCTURALISTA  Centrado en la Teoría de conjuntos.  Considera que el conocimiento matemático solo es posible mediante estructuras lógicas formales.  Con este enfoque surge la llamada matemática moderna.  La enseñanza de la matemática es en base a estructuras algebraicas.  El ideal de este enfoque es el desarrollo de la abstracción pura. LOGICISTA  Centrado en la lógica  Considera que:  La razón pura es el único criterio de la verdad.  La verdad es absoluta.  El conocimiento matemático se puede desarrollar al margen de la realidad.  El conocimiento matemático se construye a partir de principios, leyes, axiomas, símbolos.  Con este enfoque surge la llamada matemática pura.  La enseñanza de la matemática es en base a demostraciones basadas en sistemas axiomáticos.  El ideal de este enfoque es la racionalidad pura. HISTORICISTA/RESOLUCIÓN DE PROBLEMAS  Centrado en la Resolución de problemas.  Considera que:  La verdad se asienta en la práctica social.  El desarrollo de la humanidad ha estado ligado a la resolución de problemas de necesidad real.  El desarrollo del conocimiento matemático es desde y mediante la resolución de problemas.  Con este enfoque surge la matemática funcional.  El ideal de este enfoque es el desarrollo de competencias. PARADIGMAS QUE HAN INFLUENCIADO EN LA ENSEÑANZA- APRENDIZAJE DE LA MATEMÁTICA
  • 8. Surge la necesidad de plantear y ASUMIR un modelo formativo. Un enfoque: Aprendizaje Centrado en la Resolución de Problemas. Aprendizaje que promueva la matemática intercultural. Una matemática Para la vida.
  • 9. Trabajo en equipos Resolvamos situaciones problemáticas en matemática y ref l exi onemos.
  • 10. 1 2 4 3 RELEVANCIA SOCIAL ALTA RELEVANCIA SOCIAL BAJA Algoritmos Ejercicios Datos descontextualizados Datos inventados Lejos de la realidad. Adquiere relevancia porque parte de la realidad. Adquiere significado. A veces carece de utilidad social. Aprendizaje in situ. Simulaciones situadas.
  • 11. ¿Algunos rasgos del enfoque centrado en la resolución de problemas?
  • 12. El conocimiento matemático fue construido a partir de la necesidad de resolver problemas. El conocimiento matemático fue construido a partir de la necesidad de resolver problemas.
  • 13. El enfoque problémico consiste en promover formas de enseñanza- aprendizaje que den respuesta a situaciones problemáticas cercanos a la vida real. Es el medio principal para establecer relaciones de funcionalidad matemática con la realidad cotidiana.
  • 14. Algunas creencias que aún tenemos los docentes en nuestras prácticas educativas y que, con espíritu innovador, tenemos que corregir. Los estándares de aprendizaje que los estudiantes deben lograr al término del ciclo iv y v de la educación básica en dos dominios: número y operaciones y cambio y relaciones. Las competencias, capacidades e indicadores que permitirán alcanzar esos estándares de aprendizaje, con mayor énfasis en el primer dominio. Orientaciones respecto de cómo facilitar el desarrollo de las competencias y capacidades matemáticas vinculadas a los dominios de número y operaciones y cambio y relaciones. En este fascículo encontrarás:
  • 16. ¿Qué es el área de matemática intercultural en el PCR – Puno?
  • 17. Ñawray yupaykuna kawsayninchikpi / Jakhuwinakampi amuyt'añataki / Matemática intercultural Se aprende matemáticas para comprender el mundo y actuar en el, comunicarnos con los demás, resolver problemas y desarrollar el pensamiento lógico.
  • 18. Se parte de la identidad y practica cultural propia de los estudiantes; desde los primeros grados, con la finalidad que vaya desarrollando los saberes de investigación, transformación y producción que requieren para plantear y resolver con actitud analítica, critica y emprendedora los problemas de su contexto y de la realidad. Ñawray yupaykuna kawsayninchikpi / Jakhuwinakampi amuyt'añataki / Matemática intercultural
  • 19. Ñawray yupaykuna kawsayninchikpi / Jakhuwinakampi amuyt'añataki / Matemática intercultural Los saberes fundamentales de la matemática en el contexto intercultural se van construyendo en cada nivel educativo y son valiosos para continuar con el desarrollo de las ideas matemáticas, que permitan interrelacionarlas con otros saberes fundamentales de las diferentes áreas.
  • 20. Al interrelacionar el área prima el valor formativo, social, cultural y natural del área. En ese sentido, adquieren relevancia las nociones de la etnomatemática, etnogeometría, funciones, equivalencias, proporcionalidad, variación, estimación, representación, ecuaciones e inecuaciones, argumentación, comunicación, búsqueda de patrones y conexiones, entendidas desde la variación cognitiva intercultural. Ñawray yupaykuna kawsayninchikpi / Jakhuwinakampi amuyt'añataki / Matemática intercultural
  • 23. Preguntas para reflexionar 1. ¿Qué prácticas etnomatemáticas de nuestros pueblos se encuentran vigentes para incorporar en la práctica pedagógica? 2. ¿Cómo incorporamos y articulamos los saberes etnomatemáticos con los conocimientos matemáticos universales? 3. Es posible plantear situaciones problémicas a partir de los saberes etnomatemáticos?
  • 24. El desarrollo curricular con enfoque intercultural Refleja la diversidad socio cultural y lingüística de la región y del país. Recoge no sólo conocimientos sino también concepciones y categorías de las culturas locales. Construye pedagogía a partir de las formas de aprender de los niños y niñas. Promueve el desarrollo de valores y actitudes.
  • 25. La educación etnomatemática. Propuesta EIB Implica Saberes etno matemáticos Reconocimiento Valoración Uso Aceptación Punto de partida Articulacion Matematica universal
  • 26. El enfoque problémico desde la perspectiva intercultural Debe plantear situaciones problemáticas de contexto real Además de contexto sociocultural y lingüístico concreto que refleje la realidad del estudiante. En el marco de su cosmovisión y su racionalidad
  • 27. Entendemos por Etnomatemática a los conocimientos de un grupo sociocultural identificable, en el marco de su cosmovisión, que se manifiestan a través de las actividades siguientes: Registro de prácticas etnomatemáticas Contar Medir Localizar Diseñar Jugar Explicar
  • 28. Ejemplo de saberes etnomatemáticos
  • 29. El wipi es un instrumento ancestral de medida de masa utilizado actualmente en comunidades andinas de Huánuco y Ancash
  • 32. LOS PEONES QUE PARTICIPARAN EN EL SHUYUNAKUY La institución educativa N° 32855 de Rumichaka, como parte del proyecto productivo cada año realiza el barbecho de la chacra para el sembrío de papas, en el que participan los padres de familia en el Shuyunakuy y las madres en la preparación de los alimentos. Se sabe que la chacra de Don Mauro se barbechaban en los años anteriores con seis paradas de peones. Si en la escuela solo hay 12 padres de familias y 3 madres. El Presidente de APAFA está rompiendo su cabeza para terminar cuanto antes posible la faena. Para realizar este trabajo tenemos que ayudar al presidente a solucionar el problema. SITUACIÓN PROBLEMÁTICA 01
  • 33. Chacra Cálculo de medida Paradas de peones (03) que terminan el trabajo en un día de jornada Yugadas Semillaje de papa Semillaje de cebada Hectáreas Otras medidas Actividad N.° 1 • Visita a la chacra de don Mauro: • Entrevistan a don Mauro sobre el tamaño de la chacra usando las medidas de la localidad (yugadas, paradas, semillaje, hectáreas, etc).
  • 34. Chacra Cálculo de medida con pasos Largo Ancho Perímetro Área Chacra Cálculo de medida con el metro lineal Largo Ancho Perímetro Área Mide la chacra de don Mauro utilizando medidas arbitrarias y el metro: primero los lados y luego calcula el área.
  • 35. Actividad N.° 2 Si solo contamos con 12 padres de familia y la chacra de don Mauro, en donde se realizará el sembrío de papas para la escuela necesita 6 paradas de peones. ¿Cómo organizamos a los padres de familia para terminar el barbecho en el menor tiempo posible haciendo que todos trabajen a la vez? ¿Si se cuenta con solo 6 chaquitacllas en cuántos días se terminará la tarea? Cuántos platos, cucharas y tenedores debe llevar las cocineras para los peones. Actividad N.° 3 ¿Qué recursos has empleado para realizar tus medidas? ¿Las operaciones que realizaste han sido exactas? ¿Es posible representar los resultados obtenidos en otras formas de expresión? Justifica tu respuesta.