SlideShare una empresa de Scribd logo
POC SQL Server 2014 
División Gestión del Riesgo en 
Rubro Bancario. 
Sebastián Rodríguez Robotham 
11 de Junio 2014.
Resultados POC y 
Conclusiones. 
Contexto División 
Riesgos y 
Arquitectura DW 
Actual. 
POC – Objetivos y 
Plan de Trabajo
Contexto. 
• Gestión de Riesgo Crediticio: 
Posible Pérdida que asume un banco como 
consecuencia del inclumplimiento de 
obligaciones contraidas por un cliente. 
• El que cobra primero cobra mejor. 
• Clientes Buenos NO ESPERAN.
Areas y Procesos Involucrados 
Gerencias 
- Riesgo Personas. 
- Riesgo Empresas. 
- Riesgo Pyme. 
- Modelos & Herramientas. 
- Banca Comercial. 
Ciclo de Vida del Cliente (Visión Riesgo Crediticio) 
Tipos de Usuarios 
Usuarios 
de Negocio 
Usuarios 
Avanzados 
Administradores
Arquitectura 
Fuentes de Datos 
- Excel 
- TXT 
- CSV 
- SQL 2000 - 2005 
- Oracle 
- Access 
Algunos Datos Adicionales… 
- Cerca de 55 Proceso de Carga Diarios. 
- Tiempo de Proceso: 2 ½ horas. 
- ENFOQUE “SIN OPERADOR” 
- Todo se hace con T-SQL: 
- Conectar con FTP y descargar archivos. 
- Cargar fuentes de datos automáticas. 
- Procesamiento diario automático 
- Envío de correos y notificaciones. 
- 1.600 millones de filas. 
- 10 Cubos. 
- 27 Dimensiones. 
- 150 usuarios. 
- 1TB información comprimida (2008-R2) 
- Modificaciones de datos y estructuras es muy 
frecuente 
- Implementado en ROLAP. 
8 núcleos de 2.3GHz (Intel Xeon E5-2630), 38GB Ram, 2TB Disco Duro, 
Windows Server X64 Enterprise 2008R2, SQL Server 2008 R2 Enterprise 
X64.
Arquitectura 
Tipo de Modelo Tablas sin índices Tablas 3FN Modelo Estrella 
Objetivo 
Cargas / Limpieza 
Básica 
Integridad, 
Trazabilidad, Reglas 
de Negocio 
Reporting, Versión 
única de la verdad. 
Características 
A. Bajo impacto de error al 
modificar una Fuente de Datos. 
B. Alto grado de trazabilidad de la 
información: Auditorías. 
C. Permite modificar fácilmente 
lógicas de negocio en las cargas 
de dimensiones. 
D. Fácil administración de 
Filegroup / Particiones / Backup 
E. Adaptabilidad a cambios en el 
negocio.
Resultados POC y 
Conclusiones. 
Contexto División 
Riesgos y 
Arquitectura DW 
Actual. 
POC – Objetivos y 
Plan de Trabajo
Objetivos POC 
Objetivo General 
Probar las nuevas funcionalidades de SQL Server 2014 para 
- Mejorar el rendimiento de almacenamiento 
- Mejorar el rendimiento de tiempo de respuestas de consultas 
- Mejorar el rendimiento de tiempo en procesos de carga. 
Administración 
Agilidad / Eficiencia Analistas 
Oportunidad de la información 
Específicos 
- Tiempos de Respuesta: disminuir consultas más pesadas (sobre 30 segundos) 
- Disponibilidad: Antes de las 9:00 hrs; lo antes posible cuando hay retrasos. 
- Compresión: Aumentar información histórica disponible en Datamart. 
- Administración: Simplicidad por enfoque NO OPERADOR
Arquitectura: Cambios en el modelo. 
SQL Server 2014 In-Memory 
In-Memory, 
ColumnStore, Row 
ColumnStore 
SQL Server 2008 
R2 
Tablas sin índices ClusterIndex, FK ClusterIndex, Indices 
Pruebas 
A. Mínimo 3 ejecuciones en cada 
prueba 
B. Comparaciones son en base a 
RowTables.
Plan de Pruebas 
Planificación de Actividades. 
A. Creación de script de bases de 
datos 
B. Poblar información real. 
C. Pruebas de ejecución de 
consultas 
D. Pruebas con usuarios finales en 
ambiente real. 
Pruebas a Realizar en cada Ambiente 
Ambiente 
Carga 
Ambiente 
ODS 
Ambiente 
OLAP 
Optimización Carga de 
Información 
Optimización Procesamiento 
de datos 
Optimización de Consultas. 
Optimización Procesamiento 
de Datos 
Optimización de Consultas 
Mejoramiento en 
Administración del ambiente 
Mejoramiento en Backup 
Mejoramiento Accesibilidad 
Usuarios Finales.
Resultados POC y 
Conclusiones. 
Contexto División 
Riesgos y 
Arquitectura DW 
Actual. 
POC – Objetivos y 
Plan de Trabajo
dbcc DropCleanBuffers 
Elimina todo el contenido de páginas de datos que existen 
en memoria. 
dbcc FreeProcCache 
Elimina todos los planes de ejecución de la caché de 
procedimiento 
dbcc FreeSystemCache('ALL') 
Libera todas las entradas de caché no utilizadas de todas las 
memorias caché. 
dbcc FreeSessionCache 
Vacía la memoria caché de conexión de las consultas 
distribuidas utilizada por las consultas distribuidas con una 
instancia de Microsoft SQL Server.
Resultados: Carga de Información. 
# Prueba 
Normal (mm:ss) Column Store (mm:ss) 
Ej 
Prom 
Información de la prueba. 
- Tablas con 1 millón de registros. 
- 207 campos. 
- Números en formato texto con separadores 
- Fechas en formato texto. 
Diferencia 
(mm:ss) 
% Mejora 
In-Memory (mm:ss) 
Diferencia 
(mm:ss) 
% 
Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 
Mejora 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 
Ej 
Prom 
1 
Ejecución procedimiento 
almacenado de carga de archivo 
fuente de información 
12:49 12:49 12:49 12:49 17:57 17:57 17:57 17:57 -0:05:08 -40,05% 10:08 10:08 10:08 10:08 02:41 20,94% 
Resultados. 
- Carga de información diaria es 21% más rápida 
con tablas en memoria 
- Beneficio impacta directamente disponibilidad 
de información diaria.
Resultados: Procesamiento de Información 
# Prueba 
Normal (mm:ss) Column Store (mm:ss) 
Diferencia 
(mm:ss) 
% Mejora 
In-Memory (mm:ss) 
Diferencia 
(mm:ss) 
% 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 
Mejora 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 
Ej 
Prom 
1 
Nueva columna en dimensión: 
crear, actualizar y alterar (no nulos) 
17:32 17:32 17:32 17:32 34:15 34:15 34:15 34:15 -0:16:43 -95,34% 
2 
Actualización de campo en tabla de 
dimensión 
01:05 01:58 01:11 01:25 04:26 05:06 04:52 04:48 -0:03:23 -240,16% 00:17 00:23 00:18 00:19 01:05 77,17% 
3 
Actualización de campos en tabla 
de dimensión 
01:34 01:30 01:24 01:29 05:02 04:53 05:04 05:00 -0:03:30 -235,45% 00:18 00:16 00:17 00:17 01:12 80,97% 
4 
Actualización de campos en tabla 
de dimensión con filtro 
01:24 00:49 01:10 01:08 03:28 03:25 03:46 03:33 -0:02:25 -214,78% 00:12 00:14 00:12 00:13 00:55 81,28% 
5 Eliminación simple de filas con filtro 00:47 00:51 01:26 01:01 00:45 00:14 00:14 00:24 00:37 60,33% 00:02 00:15 00:01 00:06 00:55 90,22% 
Información de la prueba. 
- Tablas con 1 millón de registros. 
- 42 y 109 campos. 
Resultados. 
- Procesamiento de información es 6 veces más 
rápido con tablas en memoria 
- Beneficio impacta directamente disponibilidad 
de información diaria y reprocesos.
Resultados: Ejecución de Consultas (Querys) 
# Prueba 
Normal (mm:ss) Column Store (mm:ss) 
Diferencia 
(mm:ss) 
% Mejora 
In-Memory (mm:ss) 
Diferencia 
(mm:ss) 
% 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 
Mejora 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 
Ej 
Prom 
1 
Estadísticas básicas de tabla 
TabFAC_DeudaAnaMes_2 con filtro 
periodo 
01:19 01:05 01:10 01:11 00:04 00:04 00:03 00:04 01:08 94,86% 
2 
Consulta típica sobre tabla de 
hechos cruzada con tablas de 
dimensiones con filtro, agrupación 
y orden 
00:32 00:31 00:31 00:31 00:09 00:09 00:09 00:09 00:22 71,28% 
3 
Cruce de tabla in-memory con tabla 
de diferente tipo (normal, column 
store e in-memory) 
03:15 03:02 03:18 03:12 01:39 01:34 01:04 01:26 01:46 55,30% 01:19 01:20 01:20 01:20 01:52 58,43% 
Información de la prueba. 
- Tablas con 90 millones de registros. 
- 159 campos. 
Resultados. 
- Querys adhoc son 3 veces más rápidas 
utilizando tablas columnares. 
- Mejora en procesos de usuarios avanzados.
Resultados: Ejecución de Consultas (SRD) 
# Prueba 
Normal (mm:ss) Column Store (mm:ss) 
Diferencia 
(mm:ss) 
% Mejora 
In-Memory (mm:ss) 
Diferencia 
(mm:ss) 
% 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 
Mejora 
Ej 
Prom 
Ej 1 Ej 2 Ej 3 
Ej 
Prom 
1 
Informe SRD: Análisis CV Cliente 
(Judicial) 
01:35 01:10 01:16 01:20 00:21 00:21 00:20 00:21 01:00 74,27% 
2 
Informe SRD: Primas de Riesgo por 
Producto 
02:33 01:14 01:12 01:40 00:41 00:12 00:11 00:21 01:18 78,60% 
3 Informe SRD: CM IMC Convenios 03:12 01:39 01:45 02:12 00:53 00:23 00:23 00:33 01:39 75,00% 
Información de la prueba. 
- Tablas con 90 millones de registros. 
- 159 campos. 
Resultados. 
- Sistema de Reportes es 5 veces más rápido 
utilizando tablas columnares. 
- Mejora en Reporting diarios y mensuales, 
ejecutado por analistas de negocio.
Resultados: Pruebas de Almacenamiento. 
Tipos de Tablas Tablas 
Normales (MB) 
Tablas 
Columnares 
(MB) 
Ahorro en 
MB 
N° Filas 
Dimensiones 3.684 935 2.749 (75%) 35.515.177 
Hechos 54.823 40.141 14.642 (27%) 459.148.171 
Total 58.507 41.116 17.391 (30%) 494.663.348 
Información de la prueba. 
- Servidor 200GB espacio disponible 
- Tablas fueron cargadas parcialmente para 
realizer pruebas. 
- 80% de columnas en tablas de hechos son datos 
numéricos (deudas, dias de mora, flujos…) 
Resultados. 
- Con esta configuración se puede mejorar en 
30% el rendimiento de compresión de datos, 
sin perjudicar rendimiento. 
- Ratio puede mejorar incorporando Archival 
Compression.
Resultados: Resumen 
Pruebas Realizadas 
Ambiente 
Carga 
Ambiente 
ODS 
Ambiente 
OLAP 
Optimización Carga de 
Información: 20% 
Optimización Procesamiento de 
datos: 6X 
Optimización de Consultas: 3X 
Optimización Procesamiento de 
Datos: 6X 
Optimización de Consultas: 5X 
Mejoramiento en 
Administración del ambiente: 
30% almacenamiento 
Mejoramiento en Backup: 
30% almacenamiento 
Mejoramiento Accesibilidad 
Usuarios Finales. 
Impactos de la Implementación 
A. Implementación Manual de 
Integridad Referencial 
• Actualmente implementadas con FK – constraint. 
• Se implementarán triggers tipo “instead of” para 
evitar inconsistencia. 
• Impacto en programación: Bajo. 
B. Consultas entre bases de datos con 
Tablas en Memoria. 
• Ambientes “CARGA” Y “ODS” comparten tablas 
para tareas ETL y traspaso de información entre 
modelos. 
• Se deberán crear tablas de memoria 
especializadas en cada modelo 
• Impacto en programación: Medio.
¿ Preguntas ? 
19
POC SQL 2014

Más contenido relacionado

PDF
La colaboración y cooperación como estrategias en la educación superior
PPTX
Introducción a DataWarehouse e Inteligencia de Negocios
PPTX
Escalabilidad Analysis Services 2012
PPTX
Mejores prácticas de Data Warehouse con SQL Server
PPTX
Casos de bodegas de datos con SQL Server
PDF
Carbura tusql sesion2_slideshare
PPTX
24 HOP edición Español - Optimizacion de motores sql server desde el codigo h...
PDF
SQLSaturday 322 Guatemala 2014 Cubes Performance
La colaboración y cooperación como estrategias en la educación superior
Introducción a DataWarehouse e Inteligencia de Negocios
Escalabilidad Analysis Services 2012
Mejores prácticas de Data Warehouse con SQL Server
Casos de bodegas de datos con SQL Server
Carbura tusql sesion2_slideshare
24 HOP edición Español - Optimizacion de motores sql server desde el codigo h...
SQLSaturday 322 Guatemala 2014 Cubes Performance

Similar a POC SQL 2014 (20)

PDF
SQLSaturday 346 El Salvador 2015 Cubes Performance
PPTX
In-Memory OLTP en SQL Server 2016
DOCX
Trabajo ayudantia
PDF
Optimizacion de Modelos Multidimensionales con Analysis Services
PPTX
Diagnostico y resolución de problemas en sql server
PPTX
SQL Server Fundamentals 3ra Sesion
PPTX
Optimización de motores sql server 24 horas SQL Pass
PDF
Carbura tusql sesion1_slideshare
PDF
Novedades sql server 2008 para developers
PDF
Eesi prac4
PDF
Dimensionado y gestión del entorno virtual
PPTX
Escalabilidad en azure web sites y sql database
PPTX
24 HOP edición Español - Patrones de escalalidad en microsoft azure sql datab...
PPTX
Cómo nos va a ayudar la tecnología de in memory en sql server 2014 para desem...
PDF
02.1 metod
PPTX
Minería datos con SQL Server 2012
PPTX
Vistazo a lo nuevo en SQL Server 2016
PPTX
SQL 2016 Column Store Index
PDF
Cuando QueryStore no sirve, ¿qué opciones tenemos?
PDF
Diseño físico y rendimiento de la bd2
SQLSaturday 346 El Salvador 2015 Cubes Performance
In-Memory OLTP en SQL Server 2016
Trabajo ayudantia
Optimizacion de Modelos Multidimensionales con Analysis Services
Diagnostico y resolución de problemas en sql server
SQL Server Fundamentals 3ra Sesion
Optimización de motores sql server 24 horas SQL Pass
Carbura tusql sesion1_slideshare
Novedades sql server 2008 para developers
Eesi prac4
Dimensionado y gestión del entorno virtual
Escalabilidad en azure web sites y sql database
24 HOP edición Español - Patrones de escalalidad en microsoft azure sql datab...
Cómo nos va a ayudar la tecnología de in memory en sql server 2014 para desem...
02.1 metod
Minería datos con SQL Server 2012
Vistazo a lo nuevo en SQL Server 2016
SQL 2016 Column Store Index
Cuando QueryStore no sirve, ¿qué opciones tenemos?
Diseño físico y rendimiento de la bd2
Publicidad

Más de Sebastian Rodriguez Robotham (6)

PDF
Desafíos No Tecnológicos para implementar Big Data
PDF
Evolucion y desafios del sistema de aseguramiento de la calidad en la educaci...
PPTX
Diseño eficiente de un cubo para resolver problemas en las áreas de negocio
PDF
Método SQL para comprimir archivos de carga de datos
PDF
Método SQL para Calcular el valor máximo de un conjunto de columnas de una Tabla
PDF
Estrategia para la Implementación y Administración Inteligente de DataWarehouse
Desafíos No Tecnológicos para implementar Big Data
Evolucion y desafios del sistema de aseguramiento de la calidad en la educaci...
Diseño eficiente de un cubo para resolver problemas en las áreas de negocio
Método SQL para comprimir archivos de carga de datos
Método SQL para Calcular el valor máximo de un conjunto de columnas de una Tabla
Estrategia para la Implementación y Administración Inteligente de DataWarehouse
Publicidad

Último (6)

PPTX
Conceptos basicos de Base de Datos y sus propiedades
PDF
AutoCAD Herramientas para el futuro, Juan Fandiño
PPTX
Derechos_de_Autor_y_Creative_Commons.pptx
PPTX
sistemas de informacion.................
DOCX
trabajo programacion.docxxdxxxddxdxxdxdxxxdxxdxdxd
PDF
Su punto de partida en la IA: Microsoft 365 Copilot Chat
Conceptos basicos de Base de Datos y sus propiedades
AutoCAD Herramientas para el futuro, Juan Fandiño
Derechos_de_Autor_y_Creative_Commons.pptx
sistemas de informacion.................
trabajo programacion.docxxdxxxddxdxxdxdxxxdxxdxdxd
Su punto de partida en la IA: Microsoft 365 Copilot Chat

POC SQL 2014

  • 1. POC SQL Server 2014 División Gestión del Riesgo en Rubro Bancario. Sebastián Rodríguez Robotham 11 de Junio 2014.
  • 2. Resultados POC y Conclusiones. Contexto División Riesgos y Arquitectura DW Actual. POC – Objetivos y Plan de Trabajo
  • 3. Contexto. • Gestión de Riesgo Crediticio: Posible Pérdida que asume un banco como consecuencia del inclumplimiento de obligaciones contraidas por un cliente. • El que cobra primero cobra mejor. • Clientes Buenos NO ESPERAN.
  • 4. Areas y Procesos Involucrados Gerencias - Riesgo Personas. - Riesgo Empresas. - Riesgo Pyme. - Modelos & Herramientas. - Banca Comercial. Ciclo de Vida del Cliente (Visión Riesgo Crediticio) Tipos de Usuarios Usuarios de Negocio Usuarios Avanzados Administradores
  • 5. Arquitectura Fuentes de Datos - Excel - TXT - CSV - SQL 2000 - 2005 - Oracle - Access Algunos Datos Adicionales… - Cerca de 55 Proceso de Carga Diarios. - Tiempo de Proceso: 2 ½ horas. - ENFOQUE “SIN OPERADOR” - Todo se hace con T-SQL: - Conectar con FTP y descargar archivos. - Cargar fuentes de datos automáticas. - Procesamiento diario automático - Envío de correos y notificaciones. - 1.600 millones de filas. - 10 Cubos. - 27 Dimensiones. - 150 usuarios. - 1TB información comprimida (2008-R2) - Modificaciones de datos y estructuras es muy frecuente - Implementado en ROLAP. 8 núcleos de 2.3GHz (Intel Xeon E5-2630), 38GB Ram, 2TB Disco Duro, Windows Server X64 Enterprise 2008R2, SQL Server 2008 R2 Enterprise X64.
  • 6. Arquitectura Tipo de Modelo Tablas sin índices Tablas 3FN Modelo Estrella Objetivo Cargas / Limpieza Básica Integridad, Trazabilidad, Reglas de Negocio Reporting, Versión única de la verdad. Características A. Bajo impacto de error al modificar una Fuente de Datos. B. Alto grado de trazabilidad de la información: Auditorías. C. Permite modificar fácilmente lógicas de negocio en las cargas de dimensiones. D. Fácil administración de Filegroup / Particiones / Backup E. Adaptabilidad a cambios en el negocio.
  • 7. Resultados POC y Conclusiones. Contexto División Riesgos y Arquitectura DW Actual. POC – Objetivos y Plan de Trabajo
  • 8. Objetivos POC Objetivo General Probar las nuevas funcionalidades de SQL Server 2014 para - Mejorar el rendimiento de almacenamiento - Mejorar el rendimiento de tiempo de respuestas de consultas - Mejorar el rendimiento de tiempo en procesos de carga. Administración Agilidad / Eficiencia Analistas Oportunidad de la información Específicos - Tiempos de Respuesta: disminuir consultas más pesadas (sobre 30 segundos) - Disponibilidad: Antes de las 9:00 hrs; lo antes posible cuando hay retrasos. - Compresión: Aumentar información histórica disponible en Datamart. - Administración: Simplicidad por enfoque NO OPERADOR
  • 9. Arquitectura: Cambios en el modelo. SQL Server 2014 In-Memory In-Memory, ColumnStore, Row ColumnStore SQL Server 2008 R2 Tablas sin índices ClusterIndex, FK ClusterIndex, Indices Pruebas A. Mínimo 3 ejecuciones en cada prueba B. Comparaciones son en base a RowTables.
  • 10. Plan de Pruebas Planificación de Actividades. A. Creación de script de bases de datos B. Poblar información real. C. Pruebas de ejecución de consultas D. Pruebas con usuarios finales en ambiente real. Pruebas a Realizar en cada Ambiente Ambiente Carga Ambiente ODS Ambiente OLAP Optimización Carga de Información Optimización Procesamiento de datos Optimización de Consultas. Optimización Procesamiento de Datos Optimización de Consultas Mejoramiento en Administración del ambiente Mejoramiento en Backup Mejoramiento Accesibilidad Usuarios Finales.
  • 11. Resultados POC y Conclusiones. Contexto División Riesgos y Arquitectura DW Actual. POC – Objetivos y Plan de Trabajo
  • 12. dbcc DropCleanBuffers Elimina todo el contenido de páginas de datos que existen en memoria. dbcc FreeProcCache Elimina todos los planes de ejecución de la caché de procedimiento dbcc FreeSystemCache('ALL') Libera todas las entradas de caché no utilizadas de todas las memorias caché. dbcc FreeSessionCache Vacía la memoria caché de conexión de las consultas distribuidas utilizada por las consultas distribuidas con una instancia de Microsoft SQL Server.
  • 13. Resultados: Carga de Información. # Prueba Normal (mm:ss) Column Store (mm:ss) Ej Prom Información de la prueba. - Tablas con 1 millón de registros. - 207 campos. - Números en formato texto con separadores - Fechas en formato texto. Diferencia (mm:ss) % Mejora In-Memory (mm:ss) Diferencia (mm:ss) % Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 Mejora Ej Prom Ej 1 Ej 2 Ej 3 Ej Prom 1 Ejecución procedimiento almacenado de carga de archivo fuente de información 12:49 12:49 12:49 12:49 17:57 17:57 17:57 17:57 -0:05:08 -40,05% 10:08 10:08 10:08 10:08 02:41 20,94% Resultados. - Carga de información diaria es 21% más rápida con tablas en memoria - Beneficio impacta directamente disponibilidad de información diaria.
  • 14. Resultados: Procesamiento de Información # Prueba Normal (mm:ss) Column Store (mm:ss) Diferencia (mm:ss) % Mejora In-Memory (mm:ss) Diferencia (mm:ss) % Ej Prom Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 Mejora Ej Prom Ej 1 Ej 2 Ej 3 Ej Prom 1 Nueva columna en dimensión: crear, actualizar y alterar (no nulos) 17:32 17:32 17:32 17:32 34:15 34:15 34:15 34:15 -0:16:43 -95,34% 2 Actualización de campo en tabla de dimensión 01:05 01:58 01:11 01:25 04:26 05:06 04:52 04:48 -0:03:23 -240,16% 00:17 00:23 00:18 00:19 01:05 77,17% 3 Actualización de campos en tabla de dimensión 01:34 01:30 01:24 01:29 05:02 04:53 05:04 05:00 -0:03:30 -235,45% 00:18 00:16 00:17 00:17 01:12 80,97% 4 Actualización de campos en tabla de dimensión con filtro 01:24 00:49 01:10 01:08 03:28 03:25 03:46 03:33 -0:02:25 -214,78% 00:12 00:14 00:12 00:13 00:55 81,28% 5 Eliminación simple de filas con filtro 00:47 00:51 01:26 01:01 00:45 00:14 00:14 00:24 00:37 60,33% 00:02 00:15 00:01 00:06 00:55 90,22% Información de la prueba. - Tablas con 1 millón de registros. - 42 y 109 campos. Resultados. - Procesamiento de información es 6 veces más rápido con tablas en memoria - Beneficio impacta directamente disponibilidad de información diaria y reprocesos.
  • 15. Resultados: Ejecución de Consultas (Querys) # Prueba Normal (mm:ss) Column Store (mm:ss) Diferencia (mm:ss) % Mejora In-Memory (mm:ss) Diferencia (mm:ss) % Ej Prom Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 Mejora Ej Prom Ej 1 Ej 2 Ej 3 Ej Prom 1 Estadísticas básicas de tabla TabFAC_DeudaAnaMes_2 con filtro periodo 01:19 01:05 01:10 01:11 00:04 00:04 00:03 00:04 01:08 94,86% 2 Consulta típica sobre tabla de hechos cruzada con tablas de dimensiones con filtro, agrupación y orden 00:32 00:31 00:31 00:31 00:09 00:09 00:09 00:09 00:22 71,28% 3 Cruce de tabla in-memory con tabla de diferente tipo (normal, column store e in-memory) 03:15 03:02 03:18 03:12 01:39 01:34 01:04 01:26 01:46 55,30% 01:19 01:20 01:20 01:20 01:52 58,43% Información de la prueba. - Tablas con 90 millones de registros. - 159 campos. Resultados. - Querys adhoc son 3 veces más rápidas utilizando tablas columnares. - Mejora en procesos de usuarios avanzados.
  • 16. Resultados: Ejecución de Consultas (SRD) # Prueba Normal (mm:ss) Column Store (mm:ss) Diferencia (mm:ss) % Mejora In-Memory (mm:ss) Diferencia (mm:ss) % Ej Prom Ej 1 Ej 2 Ej 3 Ej 1 Ej 2 Ej 3 Mejora Ej Prom Ej 1 Ej 2 Ej 3 Ej Prom 1 Informe SRD: Análisis CV Cliente (Judicial) 01:35 01:10 01:16 01:20 00:21 00:21 00:20 00:21 01:00 74,27% 2 Informe SRD: Primas de Riesgo por Producto 02:33 01:14 01:12 01:40 00:41 00:12 00:11 00:21 01:18 78,60% 3 Informe SRD: CM IMC Convenios 03:12 01:39 01:45 02:12 00:53 00:23 00:23 00:33 01:39 75,00% Información de la prueba. - Tablas con 90 millones de registros. - 159 campos. Resultados. - Sistema de Reportes es 5 veces más rápido utilizando tablas columnares. - Mejora en Reporting diarios y mensuales, ejecutado por analistas de negocio.
  • 17. Resultados: Pruebas de Almacenamiento. Tipos de Tablas Tablas Normales (MB) Tablas Columnares (MB) Ahorro en MB N° Filas Dimensiones 3.684 935 2.749 (75%) 35.515.177 Hechos 54.823 40.141 14.642 (27%) 459.148.171 Total 58.507 41.116 17.391 (30%) 494.663.348 Información de la prueba. - Servidor 200GB espacio disponible - Tablas fueron cargadas parcialmente para realizer pruebas. - 80% de columnas en tablas de hechos son datos numéricos (deudas, dias de mora, flujos…) Resultados. - Con esta configuración se puede mejorar en 30% el rendimiento de compresión de datos, sin perjudicar rendimiento. - Ratio puede mejorar incorporando Archival Compression.
  • 18. Resultados: Resumen Pruebas Realizadas Ambiente Carga Ambiente ODS Ambiente OLAP Optimización Carga de Información: 20% Optimización Procesamiento de datos: 6X Optimización de Consultas: 3X Optimización Procesamiento de Datos: 6X Optimización de Consultas: 5X Mejoramiento en Administración del ambiente: 30% almacenamiento Mejoramiento en Backup: 30% almacenamiento Mejoramiento Accesibilidad Usuarios Finales. Impactos de la Implementación A. Implementación Manual de Integridad Referencial • Actualmente implementadas con FK – constraint. • Se implementarán triggers tipo “instead of” para evitar inconsistencia. • Impacto en programación: Bajo. B. Consultas entre bases de datos con Tablas en Memoria. • Ambientes “CARGA” Y “ODS” comparten tablas para tareas ETL y traspaso de información entre modelos. • Se deberán crear tablas de memoria especializadas en cada modelo • Impacto en programación: Medio.

Notas del editor

  • #2: In this session we will take a closer look at the unique design points of Microsoft SQL Server’s in-memory solution and the significant impact it can have on your business.
  • #3: This is the track agenda slide, meant to orient your audience on where they are in the day. This session is the first session in the Data Platform track, and should be delivered before “Drive Business Faster with SQL Server 2014 In-Memory Technologies” and “New Hybrid Cloud Scenarios with SQL Server 2014.” Please edit this slide to align with your event’s agenda.
  • #4: Before we get into the details of in-memory, lets talk about why so many people in today’s business world are interested in this technology. One of the key goals businesses are trying to achieve today is getting to a state—or getting closer to a state—where the business can be driven in real-time, powered by real-time insights. The barriers here are speed and throughput. With data volumes getting larger and larger how do you gain insights quickly across your transactional business, your historical data, third party data (relational or non-relational), so you can make better and faster business decisions. This is the heart of the problem that in-memory technology helps to solve. With Microsoft SQL Server 2014 in-memory technologies built-in across all database workloads, we’ll show how we can drive significantly faster transactions, faster queries and faster insights. It also increases throughput in terms of number of users. The key thing to remember in this presentation is that all of the in-memory capabilities we will share are built into SQL Server 2014, meaning a single sku, not options and add-ons.
  • #5: Now lets take a closer look at how we can impact your business with our in-memory technology. We are the only provider to date that can speed transactions as well as queries and insights with in-memory technology optimized for each workload: OLTP, data warehousing, and analytics. With our new in-memory OLTP engine in SQL Server 2014, we have customers that have seen up to 30x faster transaction processing. I am not talking about query speed, but actual transaction write speed, up to 30x faster. I know many of you might be thinking, well Oracle and other database vendors are talking 100x. What they are talking about is query speed, not transactional speed. We are the only vendor that delivers an in-memory engine designed for OLTP transaction performance increase. There’s also built-in In-Memory columnstore for data warehousing workloads to speed queries. We were already benchmarking over 100x performance gains with many customers in the SQL Server 2012 release of the in-memory columnstore. With SQL Server 2014, the in-memory columnstore gets even better, we will talk about that in just a few minutes. Again, we can also increase query speed by over 100x. Finally we offer business users the ability to analyze data and data models much faster with built-in in-memory capabilities for Excel through PowerPivot, and Analysis Services. The benefit is that you can analyze billions of rows of data per second in Excel. Meaning a business user can analyze data of nearly any size with the tools they are most familiar with. This is what we mean when we say “driving real-time business with real-time insights.” We can significantly speed your transaction business tied to your revenue stream. We can massively speed the process to analyze both real-time transaction data, along with historical and third party data from IT or business users. This is why we are already seeing in-memory technologies transforming the way businesses run.
  • #6: Lets start off by taking a look at how in-memory technologies have evolved in SQL Server. This may be a surprise to many of you, but our in-memory journey actually started way back in SQL Server 2008 R2, when our engineering team made a key design decision to build in-memory technology into the core data platform, rather than acquire and stitch in an in-memory solution to run in parallel to the core database. Around this timeframe, both Oracle and IBM went down the acquire-and-stitch route: Oracle acquired TimesTen in-memory database and IBM acquired Natiza. The challenge with the acquire-and-stitch solution is that in-memory impacts to the overall database, which in the past were designed to run on disk. So the challenge we often hear from customers using TimesTen or Natiza is that using in-memory breaks other core DB2 and Oracle database functionality. For example, we have heard from many customers that RAC break when you use TimesTen. Not only is there a functional compatibility issue, the customer is also forced to learn a new set of APIs because it is a completely different database. This is not the design approach we took. We believe our customers want to utilize other key capabilities that SQL Server and the broader Microsoft Data Platform have to offer in conjunction with in-memory. They don’t want to use a different tool set for in-memory database than they do for disk database, they still wan to use T-SQL and SQL Server management when enabling in-memory. This is the unique design approach we took back when we first started improving analytics by building in-memory into PowerPivot for billions for rows of data analysis in Excel. Then in SQL Server 2012, we expanded our in-memory footprint with the same built-in approach by adding in-memory to Analysis Services so IT could build data models much faster, and introduced an in-memory column store that could improve query speeds by 100x. With SQL Server 2014, we are covering the final workload by introducing an in-memory OLTP solution—or in-memory rowstore—to significantly speed transactional performance. We also enhanced the in-memory columnstore with faster performance and significantly higher data compression so memory utilization can be optimized. Now, here’s one point to note if you listened to the keynote at Oracle openworld. Larry announced a new in-memory columnstore that would be built-in to the core database. So as you can see Oracle is following our footsteps and realizing the stitch strategy doesn’t work when it comes to something as critical to the overall database as in-memory. And he also mentioned that it will be an optio—we all know what that means. And their new solution is in an early beta. SQL Server 2014 is our third release of in-memory solutions across the data platform, and in a single sku, no options or add ons.
  • #7: Lets start off by taking a look at how in-memory technologies have evolved in SQL Server. This may be a surprise to many of you, but our in-memory journey actually started way back in SQL Server 2008 R2, when our engineering team made a key design decision to build in-memory technology into the core data platform, rather than acquire and stitch in an in-memory solution to run in parallel to the core database. Around this timeframe, both Oracle and IBM went down the acquire-and-stitch route: Oracle acquired TimesTen in-memory database and IBM acquired Natiza. The challenge with the acquire-and-stitch solution is that in-memory impacts to the overall database, which in the past were designed to run on disk. So the challenge we often hear from customers using TimesTen or Natiza is that using in-memory breaks other core DB2 and Oracle database functionality. For example, we have heard from many customers that RAC break when you use TimesTen. Not only is there a functional compatibility issue, the customer is also forced to learn a new set of APIs because it is a completely different database. This is not the design approach we took. We believe our customers want to utilize other key capabilities that SQL Server and the broader Microsoft Data Platform have to offer in conjunction with in-memory. They don’t want to use a different tool set for in-memory database than they do for disk database, they still wan to use T-SQL and SQL Server management when enabling in-memory. This is the unique design approach we took back when we first started improving analytics by building in-memory into PowerPivot for billions for rows of data analysis in Excel. Then in SQL Server 2012, we expanded our in-memory footprint with the same built-in approach by adding in-memory to Analysis Services so IT could build data models much faster, and introduced an in-memory column store that could improve query speeds by 100x. With SQL Server 2014, we are covering the final workload by introducing an in-memory OLTP solution—or in-memory rowstore—to significantly speed transactional performance. We also enhanced the in-memory columnstore with faster performance and significantly higher data compression so memory utilization can be optimized. Now, here’s one point to note if you listened to the keynote at Oracle openworld. Larry announced a new in-memory columnstore that would be built-in to the core database. So as you can see Oracle is following our footsteps and realizing the stitch strategy doesn’t work when it comes to something as critical to the overall database as in-memory. And he also mentioned that it will be an optio—we all know what that means. And their new solution is in an early beta. SQL Server 2014 is our third release of in-memory solutions across the data platform, and in a single sku, no options or add ons.
  • #8: This is the track agenda slide, meant to orient your audience on where they are in the day. This session is the first session in the Data Platform track, and should be delivered before “Drive Business Faster with SQL Server 2014 In-Memory Technologies” and “New Hybrid Cloud Scenarios with SQL Server 2014.” Please edit this slide to align with your event’s agenda.
  • #9: Before we jump into Microsoft’s in-memory engineering design points, lets take a look at a couple of key trends that have impacted our design. One, of course, is the significant drop in-memory pricing that makes in-memory databases feasible for customers. The second is around CPU performance flattening out, meaning that just throwing more compute at a problem may not resolve performance bottlenecks. Our design approach took into account how to better utilize existing CPU capacity, as we often hear from customers that typical CPU utilization is below the 50% mark—often due to contention.
  • #10: Lets start off by taking a look at how in-memory technologies have evolved in SQL Server. This may be a surprise to many of you, but our in-memory journey actually started way back in SQL Server 2008 R2, when our engineering team made a key design decision to build in-memory technology into the core data platform, rather than acquire and stitch in an in-memory solution to run in parallel to the core database. Around this timeframe, both Oracle and IBM went down the acquire-and-stitch route: Oracle acquired TimesTen in-memory database and IBM acquired Natiza. The challenge with the acquire-and-stitch solution is that in-memory impacts to the overall database, which in the past were designed to run on disk. So the challenge we often hear from customers using TimesTen or Natiza is that using in-memory breaks other core DB2 and Oracle database functionality. For example, we have heard from many customers that RAC break when you use TimesTen. Not only is there a functional compatibility issue, the customer is also forced to learn a new set of APIs because it is a completely different database. This is not the design approach we took. We believe our customers want to utilize other key capabilities that SQL Server and the broader Microsoft Data Platform have to offer in conjunction with in-memory. They don’t want to use a different tool set for in-memory database than they do for disk database, they still wan to use T-SQL and SQL Server management when enabling in-memory. This is the unique design approach we took back when we first started improving analytics by building in-memory into PowerPivot for billions for rows of data analysis in Excel. Then in SQL Server 2012, we expanded our in-memory footprint with the same built-in approach by adding in-memory to Analysis Services so IT could build data models much faster, and introduced an in-memory column store that could improve query speeds by 100x. With SQL Server 2014, we are covering the final workload by introducing an in-memory OLTP solution—or in-memory rowstore—to significantly speed transactional performance. We also enhanced the in-memory columnstore with faster performance and significantly higher data compression so memory utilization can be optimized. Now, here’s one point to note if you listened to the keynote at Oracle openworld. Larry announced a new in-memory columnstore that would be built-in to the core database. So as you can see Oracle is following our footsteps and realizing the stitch strategy doesn’t work when it comes to something as critical to the overall database as in-memory. And he also mentioned that it will be an optio—we all know what that means. And their new solution is in an early beta. SQL Server 2014 is our third release of in-memory solutions across the data platform, and in a single sku, no options or add ons.
  • #11: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #12: This is the track agenda slide, meant to orient your audience on where they are in the day. This session is the first session in the Data Platform track, and should be delivered before “Drive Business Faster with SQL Server 2014 In-Memory Technologies” and “New Hybrid Cloud Scenarios with SQL Server 2014.” Please edit this slide to align with your event’s agenda.
  • #13: Now lets take a closer look at our unique in-memory design points—from our engineers deciding to make in-memory pervasive by building it in to the data platform to how we have made it easy to implement in-memory into your applications.
  • #14: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #15: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #16: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #17: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #18: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #19: Lets take a look at the first design point our engineering team took back during the release of SQL Server 2008 R2, which was to build-in in-memory technology and make it pervasive throughout the platform—from analytics, to data warehousing to OLTP. One of the main benefits of building in-memory into the platform is that you as the customer don’t have to learn new development tools or new APIs and you can take advantage of all of the other rich features and capabilities in SQL Server along with in-memory. You can even take advantage of other data platform services on-premises or in the cloud with Microsoft Azure along with in-memory performance. This is not the case when you look at competitive technologies that have chosen to acquire-and-stitch together a solution like TimesTen from Oracle or Natiza from IBM. The stitched solutions often break core database functionality for both DB2 and Oracle as the core databases were designed to run on disk. For example, RAC does not work with TimesTen and you have to learn a whole new set of APIs and tools to use TimesTen. Ferranti computer systems—we’ll take a closer look them later in the session—designs software for utility companies. They are helping to transform the utility industry and revolutionize the way electricity is consumed and sold by improving the way utilities leverage data. They not only need the help of in-memory technology to quickly process large amounts of relational data, but they also need a solution for tackling non-relational data. Because SQL Server 2014 offered the built-in approach for in-memory, they were able to utilize in-memory OLTP as well as our Microsoft Azure HDInsight service to tackle big data. They are now able to write more than 200 million rows in 15 minutes. The last point I will make on “built-in” is that because we have designed in-memory into the platform, it’s not only pervasive throughout the platform across all workloads, it is also built-in to a single enterprise sku, so you don’t have to pay more or purchase additional sku’s to gain all of the in-memory capabilities.
  • #20: So Ferranti is just on example. But imagine what you could do with you business if you could determine customer purchasing trends in real-time—not at the end of the day, week or month—but as they happened. And if you could tie that to social sentiment data in real-time and combine it with historical data or current events or even mobile data. How could you transform your business? Speed and throughput of data are at the heart of this puzzle and in-memory technology will revolutionize databases, much like virtualization revolutionized physical compute. Imagine a new level of customer personalization by acting on a world of data in real-time