SlideShare una empresa de Scribd logo
Sistemas de Numeración Hernán Flores Velazco
5 Número y Numeral Idea que se tiene de cantidad. Representación de un número por medio de símbolos. Número: Numeral: V
Un Sistema de Numeración,  es un conjunto de reglas y principios , que se emplean para representar correctamente los números. Entre estos principios tenemos: 1. Principio de Orden 2. Principio de la Base ¿ Qué es un Sistema de Numeración ? 3. Principio posicional
Toda cifra en un numeral, tiene un orden, por convención,  el orden se cuenta de derecha a izquierda . Ejemplo: 568 1. Principio de Orden 1er. Orden 2do. Orden 3er. Orden No confundir el  lugar  de una cifra, con el  orden  de una cifra,  el lugar se cuenta de izquierda a derecha . Observación:
Todo sistema de numeración, tiene una base,  que es un número entero mayor que la unidad , el cual nos indica la forma como debemos agrupar. Ejemplo: 2. Principio de la Base En el  Sistema Senario (Base 6),  debemos agrupar las unidades de 6 en 6, veamos: 2 3 (6) Grupos Unidades que sobran = 15
¿ Cómo se representa Veinte en el Sistema Quinario ( Base 5 ) ? 4 0 (5) Grupos Unidades que sobran = 20 En el sistema “Quinario”, debemos agrupar de 5 en 5.
Para representar un número  en un sistema diferente al decimal, se emplea el método de: “ Divisiones Sucesivas” ¿ Cómo representar un número en otra base ? Ejemplo: Representar 243 en el sistema heptal  ( Base 7 ) 243 7 34 5 7 4 6 Entonces: 243 = 465 (7)
La Base de un sistema de numeración también nos indica cuantas cifras pueden usarse en el sistema, veamos: 2 Binario 0; 1 3 Ternario 0; 1; 2 4 Cuaternario 0; 1; 2; 3 5 Quinario 0; 1; 2; 3; 4 6 Senario 0; 1; 2; 3; 4; 5 7 Heptal 0; 1; 2; 3; 4; 5; 6 8 Octal 0; 1; 2; 3; 4; 5; 6; 7 9 Nonario 0; 1; 2; 3; 4; 5; 6; 7; 8 10 Decimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 11 Undecimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9;  A 12 Duodecimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9;  A ;  B A =  10 B =  11 Cifras que emplea Sistema Base
En un numeral toda cifra tiene un  ”valor posicional” , veamos un ejemplo: 457 3. Principio posicional: Unidades Decenas Centenas La suma de los valores posiciónales, nos da el número. Observación: = 7.1 =  7 = 5.10 =  50 = 4.100 =  400 400 + 50 + 7 =  457
Consiste en expresar un numeral como la suma de los  valores posiciónales  de sus cifras. Ejemplos: Descomposición Polinómica en el Sistema Decimal 4x2x 2ab (x+1)xyx 3ab ab = 4.1000 + x.100 + 2.10 + x.1 = 2.100 + a.10 + b.1 = (x+1).1000 + x.100 + y.10 + x.1 = 3.100 + a.10 + b.1 = a.10 + b.1
Descomposición polinómica de numerales representados en otros sistemas de numeración Ejemplo: 4357 = (9)  1  9  9 2    9 3   4.9  + 3  3.9  + 2  5.9 + 7.1
Mas ejemplos: 2143 = 2.5  + 1.5  + 4.5 + 3 (5) 3 2  124 = 1.6  + 2.6 + 4 (6) 2 54 = 5.8 + 4 (8) 346 = 3.8  + 4.8 + 6 (8) 2 23A5 = 2.11  + 3.11  +  10 .11 + 5 (11) 3 2
Ejemplos: Podemos emplear la Descomposición Polinómica para hallar el equivalente de un numeral en el Sistema Decimal 4521 = 4.7  + 5.7  + 2.7 + 1 (7) 3 2  = 4.343 + 5.49 + 14 + 1 =  1632 124 = 1.5  + 2.5 + 4 (5) 2 = 1.25 + 10 + 4 =  39 64 = 6.8 + 4 = (8) 52
Ejemplos: En algunos casos tendremos que descomponer numerales con valores incognitos 2x3y = 2.5  + x.5  + 3.5 + y (5) 3 2  = 2.125 + x.25 + 15 + y = 265 + 25x + y 352 = 3.n  + 5.n + 2 (n) 2  xyz = x.a  + y.a + z (a) 2  2abc = 2.x  + a.x  + b.x + c (x) 3 2
Se llama así a aquel numeral que leído de derecha a izquierda, se lee igual que de izquierda a derecha. Ejemplos: Algunos Conceptos Finales 44 ; 373 ; 4224 ; 56765 ; 876678 ; 1234321 Numeral Capicúa Literalmente los representamos: aa ; aba ; abba ; abcba ; abccba ; ……. Cifra Significativa Se llama así a toda  cifra que es diferente de cero , en el sistema decimal las cifras significativas son: 1; 2; 3; 4; 5; 6; 7; 8 y 9
Practiquemos
Ejercicio 1: Si: ab + ba = 132 , hallar (a+b). Descomponemos polinomicamente: (10a + b) + (10b + a) = 132 11a + 11b = 132 a + b  = 12 Agrupamos los términos semejantes: Simplificamos: ……  Rpta.
Ejercicio 2: ¿Cuántos numerales de dos cifras son iguales a 4 veces la suma de sus cifras?. Si es numeral de dos cifras, entonces sera: ab 10a + b = 2a = b Por dato: ab = 4 ( a+b ) Descomponemos polinomicamente y multiplicamos: 6a = 1 2 2 4 ab = ab = 4a + 4b 3b  12 24 3 6 4 8 ab = ab = 36 48 Rpta:  Hay 4 numerales de dos cifras
Ejercicio 3: Hallar un numeral de tres cifras que empieza en 6, y que sea igual a 55 veces la suma de sus cifras. Si el numeral empieza en 6, entonces sera: 6ab 600 + 10a + b = 30 = 5a + 6b Por dato: …  2 Rptas. 6ab = 55 ( 6+a+b ) Descomponemos polinomicamente y multiplicamos: Agrupamos términos semejantes y simplificamos: 270 = 0 5 6 0 6ab = 6ab = 330 + 55a + 55b 45a + 54b 605 660
Ejercicio 4: Si a un numeral de dos cifras se le agrega dos ceros a la derecha, el numeral aumenta en 2871. Hallar el numeral. Si es un numeral de dos cifras: ab 100 ab – ab = Al agregarle dos ceros a la derecha, obtenemos: ab00 Pero: Por lo tanto aumentó: 99. ab = 2871 ab00  = Entonces: ab = 29 ……  Rpta. ab. 100 = 100.ab 99.ab
Ejercicio 5: Si:  abcd = 37.ab + 62.cd , hallar (a+b+c+d) abcd = ab00 + cd Reemplazando, tenemos: = 100.ab + cd 100.ab + cd  = 37.ab + 62.cd 63.ab = 61.cd ab  61 cd  63 = Entonces: ab = 61 cd = 63 y ……  Rpta. Luego: a+b+c+d = 6+1+6+3 = 16
Hallar el valor de “a”, en: 13a0 = 120 (4) Convertimos 120 al sistema cuaternario …  Rpta. 120 4 30 0 4 7 2 4 1 3 120 = 1320 (4) Reemplazando tenemos: 13a0  = (4) 1320 (4) a = 2 Ejercicio 6:
Hallar el valor de “a”, en: 2a2a = 1000 (7) Aplicamos descomposición polinómica 2.7  + a.7  + 2.7 + a 3 2  = 1000 686 + 49a + 14 + a  = 1000 700 + 50a  = 1000 50a  = 300 a  = 6 …  Rpta. Ejercicio 7: 2.343 + a.49 + 14 + a  = 1000
Si los numerales: n23  ; (m) Aplicamos:  BASE > CIFRA …  Rptas. p21  ; (n) n3m  y (6) 1211 (p) están correctamente escritos, hallar m, n y p. n23  (m) m > n   m > 3   y   p21  (n) n > p   n > 2   y   n3m  (6) 6 > n   6 > m   y   1211  (p) p > 2   Ordenando, tenemos: 6 > m > n > p > 2 5 3 4 Ejercicio 8:
Expresar en el sistema octal, el mayor número de tres cifras de base 6, dar la cifra de menor orden. 555 (6) El mayor numero de tres cifras de base 6 es: 215 8 26 7 8 3 2 = 215 = 327 (8) La cifra de menor orden es 7   …. Rpta. Ejercicio 9: Pasándolo a base 10: 555 = 5.6 + 5.6 + 5 (6) 2   = 180 + 30 + 5 = 215 Ahora al sistema octal (base 8): 555 (6)

Más contenido relacionado

PPT
Sistemas de numeracion
PPT
Sistemas de numeracion
PPT
Sistemas De Numeracion Eduann
PPT
Sistemas de numeracion
PPT
Sistemasdenumeracion
PPT
Sistema De Numeración
DOCX
Clases de artimetica de 1er grado
PPTX
Tema: Numeración por Carlos Ku Chau
Sistemas de numeracion
Sistemas de numeracion
Sistemas De Numeracion Eduann
Sistemas de numeracion
Sistemasdenumeracion
Sistema De Numeración
Clases de artimetica de 1er grado
Tema: Numeración por Carlos Ku Chau

La actualidad más candente (14)

PPT
Sistemas de numeracion diapositivas
PPTX
2. sistemas de numeracion
PPT
9. sistemas de numeracion
PPTX
Sistema de numeracion
PDF
6 sistemas numeración
PPTX
Sistema de numeración
PDF
Sistemas de numeracion
PDF
Sistemas de numeración
PPT
Sistemas De Numeracion
PPT
Sistemas De Numeracion
PPT
Sistemas de numeracion
PPT
5 Operaciones En Otras Bases
PPS
Unidad 3 sistemas numeracion
Sistemas de numeracion diapositivas
2. sistemas de numeracion
9. sistemas de numeracion
Sistema de numeracion
6 sistemas numeración
Sistema de numeración
Sistemas de numeracion
Sistemas de numeración
Sistemas De Numeracion
Sistemas De Numeracion
Sistemas de numeracion
5 Operaciones En Otras Bases
Unidad 3 sistemas numeracion
Publicidad

Similar a Sistemas de numeracion (18)

PPT
Sistemas de numeracion
PPT
SEMANA 2 aRITMETICA Sistemas-de-Numeracion.ppt
PPT
sistemas de numeracion
PPT
Sistemas de numeracion
PPT
Sistemas de numeracion
PPTX
Sistemas de numeración.ppt
PPT
9. sistemas de numeracion
PPT
9. sistemas de numeracion
PPT
9. sistemas de numeracion
PPTX
SISTEMAS DE NUMERACIÓN
PPT
Club de matematica
PPTX
2sistemas-de-numeracion-160215172306.pptx
PPT
Sistemas de numeracion
PPT
Sistemas de numeracion(1)
PPSX
3°Sec - I Bim - Numeración
PPTX
Sistemas de numeracion no decimal 5to PRIM.pptx
DOC
Aritmetica iii bim
PPTX
C2 mate sistema de numeración - 5º
Sistemas de numeracion
SEMANA 2 aRITMETICA Sistemas-de-Numeracion.ppt
sistemas de numeracion
Sistemas de numeracion
Sistemas de numeracion
Sistemas de numeración.ppt
9. sistemas de numeracion
9. sistemas de numeracion
9. sistemas de numeracion
SISTEMAS DE NUMERACIÓN
Club de matematica
2sistemas-de-numeracion-160215172306.pptx
Sistemas de numeracion
Sistemas de numeracion(1)
3°Sec - I Bim - Numeración
Sistemas de numeracion no decimal 5to PRIM.pptx
Aritmetica iii bim
C2 mate sistema de numeración - 5º
Publicidad

Último (20)

PDF
CONTABILIDAD Y TRIBUTACION, EJERCICIO PRACTICO
PPTX
la-historia-de-la-medicina Edna Silva.pptx
PDF
Distribucion de frecuencia exel (1).pdf
PDF
Guía_de_implementación_Marco_de_gobierno_y_gestión_de_TI_Universidades.pdf
PPTX
Sistema de Gestión Integral TCA Ingenieros.pptx
PDF
TRABAJO DE TECNOLOGIA.pdf...........................
PDF
NREN - red nacional de investigacion y educacion en LATAM y Europa: Caracteri...
PDF
Final Tecno .pdfjdhdjsjdhsjshshhshshshhshhhhhhh
PPTX
Diapositivas Borrador Rocha Jauregui David Paolo (3).pptx
PPT
Protocolos de seguridad y mecanismos encriptación
PPTX
CLAASIFICACIÓN DE LOS ROBOTS POR UTILIDAD
PDF
capacitación de aire acondicionado Bgh r 410
DOCX
Trabajo informatica joel torres 10-.....................
DOCX
TRABAJO GRUPAL (5) (1).docxsjjsjsksksksksk
PPTX
Curso de generación de energía mediante sistemas solares
DOCX
TRABAJO GRUPAL (5) (1).docxjsjsjskskksksk
PDF
Teoría de estadística descriptiva y aplicaciones .pdf
PDF
Taller tecnológico Michelle lobo Velasquez
PDF
0007_PPT_DefinicionesDeDataMining_201_v1-0.pdf
PPTX
Mecanismos-de-Propagacion de ondas electromagneticas
CONTABILIDAD Y TRIBUTACION, EJERCICIO PRACTICO
la-historia-de-la-medicina Edna Silva.pptx
Distribucion de frecuencia exel (1).pdf
Guía_de_implementación_Marco_de_gobierno_y_gestión_de_TI_Universidades.pdf
Sistema de Gestión Integral TCA Ingenieros.pptx
TRABAJO DE TECNOLOGIA.pdf...........................
NREN - red nacional de investigacion y educacion en LATAM y Europa: Caracteri...
Final Tecno .pdfjdhdjsjdhsjshshhshshshhshhhhhhh
Diapositivas Borrador Rocha Jauregui David Paolo (3).pptx
Protocolos de seguridad y mecanismos encriptación
CLAASIFICACIÓN DE LOS ROBOTS POR UTILIDAD
capacitación de aire acondicionado Bgh r 410
Trabajo informatica joel torres 10-.....................
TRABAJO GRUPAL (5) (1).docxsjjsjsksksksksk
Curso de generación de energía mediante sistemas solares
TRABAJO GRUPAL (5) (1).docxjsjsjskskksksk
Teoría de estadística descriptiva y aplicaciones .pdf
Taller tecnológico Michelle lobo Velasquez
0007_PPT_DefinicionesDeDataMining_201_v1-0.pdf
Mecanismos-de-Propagacion de ondas electromagneticas

Sistemas de numeracion

  • 1. Sistemas de Numeración Hernán Flores Velazco
  • 2. 5 Número y Numeral Idea que se tiene de cantidad. Representación de un número por medio de símbolos. Número: Numeral: V
  • 3. Un Sistema de Numeración, es un conjunto de reglas y principios , que se emplean para representar correctamente los números. Entre estos principios tenemos: 1. Principio de Orden 2. Principio de la Base ¿ Qué es un Sistema de Numeración ? 3. Principio posicional
  • 4. Toda cifra en un numeral, tiene un orden, por convención, el orden se cuenta de derecha a izquierda . Ejemplo: 568 1. Principio de Orden 1er. Orden 2do. Orden 3er. Orden No confundir el lugar de una cifra, con el orden de una cifra, el lugar se cuenta de izquierda a derecha . Observación:
  • 5. Todo sistema de numeración, tiene una base, que es un número entero mayor que la unidad , el cual nos indica la forma como debemos agrupar. Ejemplo: 2. Principio de la Base En el Sistema Senario (Base 6), debemos agrupar las unidades de 6 en 6, veamos: 2 3 (6) Grupos Unidades que sobran = 15
  • 6. ¿ Cómo se representa Veinte en el Sistema Quinario ( Base 5 ) ? 4 0 (5) Grupos Unidades que sobran = 20 En el sistema “Quinario”, debemos agrupar de 5 en 5.
  • 7. Para representar un número en un sistema diferente al decimal, se emplea el método de: “ Divisiones Sucesivas” ¿ Cómo representar un número en otra base ? Ejemplo: Representar 243 en el sistema heptal ( Base 7 ) 243 7 34 5 7 4 6 Entonces: 243 = 465 (7)
  • 8. La Base de un sistema de numeración también nos indica cuantas cifras pueden usarse en el sistema, veamos: 2 Binario 0; 1 3 Ternario 0; 1; 2 4 Cuaternario 0; 1; 2; 3 5 Quinario 0; 1; 2; 3; 4 6 Senario 0; 1; 2; 3; 4; 5 7 Heptal 0; 1; 2; 3; 4; 5; 6 8 Octal 0; 1; 2; 3; 4; 5; 6; 7 9 Nonario 0; 1; 2; 3; 4; 5; 6; 7; 8 10 Decimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 11 Undecimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A 12 Duodecimal 0; 1; 2; 3; 4; 5; 6; 7; 8; 9; A ; B A = 10 B = 11 Cifras que emplea Sistema Base
  • 9. En un numeral toda cifra tiene un ”valor posicional” , veamos un ejemplo: 457 3. Principio posicional: Unidades Decenas Centenas La suma de los valores posiciónales, nos da el número. Observación: = 7.1 = 7 = 5.10 = 50 = 4.100 = 400 400 + 50 + 7 = 457
  • 10. Consiste en expresar un numeral como la suma de los valores posiciónales de sus cifras. Ejemplos: Descomposición Polinómica en el Sistema Decimal 4x2x 2ab (x+1)xyx 3ab ab = 4.1000 + x.100 + 2.10 + x.1 = 2.100 + a.10 + b.1 = (x+1).1000 + x.100 + y.10 + x.1 = 3.100 + a.10 + b.1 = a.10 + b.1
  • 11. Descomposición polinómica de numerales representados en otros sistemas de numeración Ejemplo: 4357 = (9)  1  9  9 2  9 3 4.9 + 3 3.9 + 2 5.9 + 7.1
  • 12. Mas ejemplos: 2143 = 2.5 + 1.5 + 4.5 + 3 (5) 3 2 124 = 1.6 + 2.6 + 4 (6) 2 54 = 5.8 + 4 (8) 346 = 3.8 + 4.8 + 6 (8) 2 23A5 = 2.11 + 3.11 + 10 .11 + 5 (11) 3 2
  • 13. Ejemplos: Podemos emplear la Descomposición Polinómica para hallar el equivalente de un numeral en el Sistema Decimal 4521 = 4.7 + 5.7 + 2.7 + 1 (7) 3 2 = 4.343 + 5.49 + 14 + 1 = 1632 124 = 1.5 + 2.5 + 4 (5) 2 = 1.25 + 10 + 4 = 39 64 = 6.8 + 4 = (8) 52
  • 14. Ejemplos: En algunos casos tendremos que descomponer numerales con valores incognitos 2x3y = 2.5 + x.5 + 3.5 + y (5) 3 2 = 2.125 + x.25 + 15 + y = 265 + 25x + y 352 = 3.n + 5.n + 2 (n) 2 xyz = x.a + y.a + z (a) 2 2abc = 2.x + a.x + b.x + c (x) 3 2
  • 15. Se llama así a aquel numeral que leído de derecha a izquierda, se lee igual que de izquierda a derecha. Ejemplos: Algunos Conceptos Finales 44 ; 373 ; 4224 ; 56765 ; 876678 ; 1234321 Numeral Capicúa Literalmente los representamos: aa ; aba ; abba ; abcba ; abccba ; ……. Cifra Significativa Se llama así a toda cifra que es diferente de cero , en el sistema decimal las cifras significativas son: 1; 2; 3; 4; 5; 6; 7; 8 y 9
  • 17. Ejercicio 1: Si: ab + ba = 132 , hallar (a+b). Descomponemos polinomicamente: (10a + b) + (10b + a) = 132 11a + 11b = 132 a + b = 12 Agrupamos los términos semejantes: Simplificamos: …… Rpta.
  • 18. Ejercicio 2: ¿Cuántos numerales de dos cifras son iguales a 4 veces la suma de sus cifras?. Si es numeral de dos cifras, entonces sera: ab 10a + b = 2a = b Por dato: ab = 4 ( a+b ) Descomponemos polinomicamente y multiplicamos: 6a = 1 2 2 4 ab = ab = 4a + 4b 3b 12 24 3 6 4 8 ab = ab = 36 48 Rpta: Hay 4 numerales de dos cifras
  • 19. Ejercicio 3: Hallar un numeral de tres cifras que empieza en 6, y que sea igual a 55 veces la suma de sus cifras. Si el numeral empieza en 6, entonces sera: 6ab 600 + 10a + b = 30 = 5a + 6b Por dato: … 2 Rptas. 6ab = 55 ( 6+a+b ) Descomponemos polinomicamente y multiplicamos: Agrupamos términos semejantes y simplificamos: 270 = 0 5 6 0 6ab = 6ab = 330 + 55a + 55b 45a + 54b 605 660
  • 20. Ejercicio 4: Si a un numeral de dos cifras se le agrega dos ceros a la derecha, el numeral aumenta en 2871. Hallar el numeral. Si es un numeral de dos cifras: ab 100 ab – ab = Al agregarle dos ceros a la derecha, obtenemos: ab00 Pero: Por lo tanto aumentó: 99. ab = 2871 ab00 = Entonces: ab = 29 …… Rpta. ab. 100 = 100.ab 99.ab
  • 21. Ejercicio 5: Si: abcd = 37.ab + 62.cd , hallar (a+b+c+d) abcd = ab00 + cd Reemplazando, tenemos: = 100.ab + cd 100.ab + cd = 37.ab + 62.cd 63.ab = 61.cd ab 61 cd 63 = Entonces: ab = 61 cd = 63 y …… Rpta. Luego: a+b+c+d = 6+1+6+3 = 16
  • 22. Hallar el valor de “a”, en: 13a0 = 120 (4) Convertimos 120 al sistema cuaternario … Rpta. 120 4 30 0 4 7 2 4 1 3 120 = 1320 (4) Reemplazando tenemos: 13a0 = (4) 1320 (4) a = 2 Ejercicio 6:
  • 23. Hallar el valor de “a”, en: 2a2a = 1000 (7) Aplicamos descomposición polinómica 2.7 + a.7 + 2.7 + a 3 2 = 1000 686 + 49a + 14 + a = 1000 700 + 50a = 1000 50a = 300 a = 6 … Rpta. Ejercicio 7: 2.343 + a.49 + 14 + a = 1000
  • 24. Si los numerales: n23 ; (m) Aplicamos: BASE > CIFRA … Rptas. p21 ; (n) n3m y (6) 1211 (p) están correctamente escritos, hallar m, n y p. n23 (m) m > n m > 3 y p21 (n) n > p n > 2 y n3m (6) 6 > n 6 > m y 1211 (p) p > 2 Ordenando, tenemos: 6 > m > n > p > 2 5 3 4 Ejercicio 8:
  • 25. Expresar en el sistema octal, el mayor número de tres cifras de base 6, dar la cifra de menor orden. 555 (6) El mayor numero de tres cifras de base 6 es: 215 8 26 7 8 3 2 = 215 = 327 (8) La cifra de menor orden es 7 …. Rpta. Ejercicio 9: Pasándolo a base 10: 555 = 5.6 + 5.6 + 5 (6) 2 = 180 + 30 + 5 = 215 Ahora al sistema octal (base 8): 555 (6)