GASES IDEALES
• Son capaces de adquirir cualquier forma, ocupan todo el volumen
de sus recipientes.
• Son compresibles y también se expanden.
• Pueden mezclarse con todo tipo de elementos con mucha facilidad
• Tienen una densidad mucho menor que los sólidos y los líquidos.
CARACTERÍSTICAS FÍSICAS DE LOS GASES
ESTADO GASEOSO
Los gases se pueden considerar como el más fascinante entre los tres
estados de agregación de la materia.
Si la temperatura aumenta entonces...
el volumen aumenta
Temperatura
baja
Temperatura
alta
Gas
Mercurio
Expansión de un gas
Tubo de
ensayo
CLASIFICACIÓN DE LOS GASES
GASES IDEALES
. Se dan a presiones bajas y
temperaturas elevadas,
condiciones que
corresponden a grandes
volúmenes molares.
. Se desprecia el volumen de
la molécula gaseosa.
. No sufren atracciones ni
repulsiones entre sus
moléculas.
. No se condensan.
. Tienden a un volumen cero.
GASES REALES
.Se dan a presiones altas y
temperaturas bajas, condiciones
que corresponden a pequeños
volúmenes molares.
.Se considera el volumen de la
molécula gaseosa.
.Sufren atracciones y repulsiones
entre sus moléculas.
. Se condensan.
. No alcanzan un volumen igual a
cero, por que se licuefactan, es
decir pasan de gas a líquido.
TEORÍA CINÉTICO MOLECULAR DE LOS GASES
IDEALES
1. Un gas se compone de moléculas separadas una de la otra por
distancias más grandes que sus propias dimensiones. Dichas
moléculas pueden ser consideradas gráficamente como puntos; es
decir, su volumen puede ser despreciable.
2. Las moléculas de los gases siempre están en un continuo
movimiento desordenado y chocando en todas direcciones unas con
otras. Los choques entre las moléculas del gas son perfectamente
elásticos.
3. Las moléculas de los gases no ejercen fuerzas de atracción o
repulsión entre ellas.
4. La energía cinética promedio de las moléculas del gas es
directamente proporcional a su temperatura absoluta. Cualquier gas
a la misma temperatura tiene la misma energía cinética.
Unidades de presión
1 Pascal (Pa) = 1 N/m2
1 atm = 760 mmHg = 760 torr
1 atm = 101,325 Pa
Barómetro
Presión =
Fuerza
Área
(Fuerza = masa × aceleración)
Estas afirmaciones introducen conceptos como: presión,
temperatura, movimiento molecular y energía cinética.
Pab = Patm ± Pman
Manómetros usados para medir la presión
Mercurio
Vacío
Los siguientes son elementos que pueden existir
como gases a una temperatura de 25°C y 1 atm de
presión
5.1
Elementos que existen como gases a una temperatura de 25°C y 1 atm de presión
LEYES DE LOS PROCESOS RESTRINGIDOS
LEY DE BOYLE
Enunciado: “A temperatura constante el volumen de una masa
dada de un gas varía inversamente con la presión”. Se trata de
un proceso ISOTÉRMICO.
Cdo: T= Cte y n = Cte, entonces: P α 1/ V
P V = K Ec. De Boyle
Gráfico : P vs V y P vs 1/V
T1
T2
Isotermas
(1)
(2)
En el punto (1) : P1 x V1 = K
En el punto (2) : P2 x V2 = K
Igualando ambas ecuaciones:
P1 x V1 = P2 x V2
Ordenando:
1
2
2
1
V
V
P
P








m
m
V
P
V
P
1
2
2
1

















1
2
2
1
V
m
P
V
m
P
A menor P mayor V
A mayor P menor V
En función de la densidad (ρ):
Si: ρ = m / V
Entonces: P1 x ρ2 = P2 x ρ1
2
1
2
1



P
P
Una muestra de cloro en estado gaseoso ocupa un
volumen de 946 mL y se encuentra a una presión de
726 mmHg. ¿Cuál es la presión que se necesita para
que el volumen disminuya a 154 mL si la temperatura
de la muestra es constante?
P1 x V1 = P2 x V2
P1 = 726 mmHg
V1 = 946 mL
P2 = ?
V2 = 154 mL
P2 =
P1 x V1
V2
726 mmHg x 946 mL
154 mL
= = 4460 mmHg
P x V = constante
LEY DE CHARLES
Enunciado: “A presión constante, el volumen de una masa dada de
gas varía directamente con la temperatura absoluta”. Se trata de
un proceso ISOBÁRICO.
Cdo: P = Cte y n = Cte; entonces: V α T
K
T
V
 Ec. de Charles
Gráfico: V vs T
(1)
(2)
Isóbaras
En el punto (1) : V1 / T1 = K
En el punto (2) : V2 / T2 = K
Igualando:
2
2
1
1
T
V
T
V

2
1
2
1
T
T
V
V








m
m
V
T
V
T
2
2
1
1
Ordenando: A menor T menor V
A mayor T mayor V
En función de la densidad: ρ

















2
2
1
1
V
m
T
V
m
T Si: ρ = m/V
Entonces: T1x ρ1 = T2 x ρ2
1
2
2
1



T
T
Una muestra de monóxido de carbono en estado
gaseoso se encuentra a una temperatura de 125°C. Si el
volumen inicial de la muestra es de 3,2 litros, ¿Qué
temperatura debe tener el sistema si se quiere reducir el
volumen a 1,54 litros, si la presión es constante?
V1 = 3,20 L
T1 = 398,15 K
V2 = 1,54 L
T2 = ?
T2 =
V2 x T1
V1
1,54 L x 398,15 K
3,20 L
= = 192 K
V1 /T1 = V2 /T2
T1 = 125 (0C) + 273,15 (K) = 398,15 K
LEY DE GAY-LUSSAC
Enunciado: “A volumen constante la presión ejercida por una masa
dada de gas varía directamente con la temperatura absoluta”. Se
trata de un proceso ISOCÖRICO o ISOMËTRICO.
Cdo: V = Cte y n = Cte, entonces: P α T
Luego: P = K x T
K
T
P
 Ec. De Gay-Lussac
Gráfico: P vs T
P
T
(1)
(2)
Isócoras
V1
V2
V3
T
T1 T2
P1
P2
En el punto (1) : P1 / T1 = K
En el punto (2) : P2 / T2 = K
Igualando:
2
2
1
1
T
P
T
P

A menor T menor P
A mayor T mayor P
Ordenando:
2
1
2
1
T
T
P
P

El aire en un tanque se encontraba a una presión de 620 mm Hg y 23 ºC. S
e expuso al sol con lo que su temperatura aumentó a 50 ºC. ¿Cuál fue la
presión que presentó entonces el tanque?.
SOLUCIÓN
Datos
Condición (1)
P1 = 620 mm Hg
T1 = 23 ºC + 273 = 296 ºK
Condición (2)
T2 = 50 ºC + 273 = 323 ºK
P2 = ?
1
2
1
2
2
1
2
1
T
T
P
P
T
T
P
P 



Como el V = Cte y n = Cte
La fórmula a usar es:
(1)
Reemplazando valores en (1):
K
K
mmHg
P
º
296
º
323
630
2


P2 = 676,55 mm Hg
El argón es un gas inerte que se usa en algunas
bombillas para retrasar la vaporización del filamento.
Cierto foco contiene argón a 1,2 atm de presión y
cambia de temperatura desde 18°C hasta 85°C. ¿Cuál
es la presión final del argón en atm si el volumen del
sistema es constante?
P1
T1
P2
T2
=
P2 = P1 x
T2
T1
= 1,20 atm x 358 K
291 K
= 1,48 atm
SOLUCIÓN
Condición inicial(1)
P1 = 1,2 atm
T1 = 18ºC + 273 = 291 K
Condición final (2)
P2 = ?
T2 = 85ºC + 273 = 358 K
(Ley de Gay-Lussac)
LEY DE AVOGADRO
Enunciado: “A presión y temperatura constante el volumen de un gas
es directamente proporcional al número de moles del gas”.
Cdo: P = Cte y T = Cte, entonces: V α n
Luego: V = K x n
Entonces:
K
n
V
 Ec. De Avogadro
Gráfico: V vs n
V
n
(1)
(2)
n1 n2
V2
V1
En el punto (1) : V1 / n1 = K
En el punto (2) : V2 / n2 = K
Igualando:
2
2
1
1
n
V
n
V

2
1
2
1
n
n
V
V


























2
2
1
1
2
2
1
1
V
m
n
V
m
n
m
m
V
n
V
n
Ordenando
A mayor n mayor V
A menor n menor V
En función de la densidad: ρ
Si: ρ = m / V
1
2
2
1
2
2
1
1



 




n
n
n
n
Finalmente:
ECUACIÓN DE ESTADO DE LOS GASES
IDEALES
Una ecuación que relaciona la temperatura, presión, volumen moles o masa
de una sustancia gaseosa, recibe el nombre de ecuación de estado.
Relacionando las siguientes leyes:
Ley de Boyle: V α 1 / P (T y n constantes)
Ley de Charles: V α T (P y n constantes)
Ley de Avogadro : V α n (T y P constantes)
Entonces:
P
T
n
R
V
P
T
n
V






Donde: PV = nRT (1)
Si: n = m / M, entonces: PVM = mRT (2)
Si: ρ = m / V, entonces: PM = ρRT (3)
Cuando en una muestra la temperatura es 0°C y la
presión es 1 atm, se dice que ésta se encuentra en
condiciones normales de presión y temperatura.
Se ha demostrado que en condiciones normales
de presión y temperatura, 1 mol de un gas ideal
ocupa 22,414 litros de volumen.
CONDICIONES NORMALES (CN O PTN)
Cuando:
P = 1 atm
T = 0 ºC = 273 ºK
Entonces:
1 mol-g gas a CN = 22,414 L
1 mol-kg gas a CN = 22,414 m3
1 mol-lb gas a CN = 359 pies3
VALORES DE LA CONSTANTE
UNIVERSAL DE LOS GASES: R
Los valores de “R”, se obtienen de la ecuación (1): PV = nRT, a
condiciones normales.
K
mol
atm
L
K
mol
L
atm
T
n
V
P
R
º
082056
,
0
º
15
,
273
1
414
,
22
1









Otros valores de “R”:
K
mol
mmHg
L
R
º
36
,
62



K
mol
dm
KPa
R
º
314
,
8
3



R
lb
mol
pie
pu
lb
R
º
lg
/
73
,
10
3
2




¿Cuál es el volumen en litros que ocupan 49,8 gramos
de ácido clorhídrico (HCL) a presión y temperatura
normales?
PV = nRT
V =
nRT
P
T = 0 0C = 273,15 K
P = 1 atm
n = 49,8 g x
1 mol HCl
36,45 g HCl
= 1,37 mol
V =
1 atm
1,37 mol x 0,0821 x 273,15 K
L•atm
mol•K
V = 30,6 L
Un contenedor de 2,1 litros contiene 4,65 gramos de
un gas a 1 atm de presión a 27°C. ¿Cuál es la
molaridad del gas?
dRT
P
M =
d = m
V
4,65 g
2,10 L
= = 2,21
g
L
M =
2,21
g
L
1 atm
x 0,0821 x 300,15 K
L•atm
mol•K
M = 54,6 g/mol
LEY GENERAL O COMBINADA DE LOS
GASES
En una ley general de los gases intervienen las tres variables: temperatura,
presión y volumen, para un sistema cerrado a condición inicial (1) y
final (2):
Estado inicial (1) : P1V1 = nRT1
Estado final (2) : P2V2 = nRT2
Dividiendo (1) entre (2): si, n = Cte y R = Cte.
2
1
2
2
1
1
2
1
2
2
1
1
T
T
V
P
V
P
T
R
n
T
R
n
V
P
V
P











Finalmente:
2
2
2
1
1
1
T
V
P
T
V
P 


En función de las densidades: ρ (1) y (2):
1
2
2
1
2
1
T
P
T
P





Un litro de oxígeno tiene una masa de 1,43 g a 0ºC y a 760 mm Hg.
Calcular la densidad del oxígeno a 25ºC y 725 mm Hg.
SOLUCIÓN
Condiciones iniciales (1)
ρ1 = 1,43 g/L
T1 = 0ºC + 273= 273 ºK
P1 = 760 mm Hg
Condiciones finales (2)
ρ2 = ?
T2 = 25ºC + 273 = 298 ºK
P2 = 725 mm Hg
1
2
2
1
2
1
T
P
T
P





La fórmula es:
(1)
Reemplazando valores en (1):
K
mmHg
K
mmHg
L
g
T
P
T
P
º
298
760
º
273
725
/
43
,
1
2
2
1
1
2
1
2








 


ρ2 = 1,25 g/L
LEY DE DALTON DE LAS PRESIONES PARCIALES
PA PB
PT = PA + PB + …
LEYES RELACIONADAS CON MEZCLAS
GASEOSAS
“A temperatura y volumen constante, la presión total ejercida por
una mezcla de gases, es igual a la suma de las presiones parciales
de cada uno de los gases que constituyen la mezcla”
Presión parcial: es la presión que cada gas ejercería, si se encontrara
solo ocupando todo el volumen que ocupa la mezcla gaseosa.
Cdo: T = Cte y V = Cte, entonces:
Ptotal
(1)
LA QUÍMICA EN ACCIÓN:
El buceo y las leyes de los gases
P V
Profundidad
(ft)
Presión
(atm)
0 1
33 2
66 3
5.6

Más contenido relacionado

PPTX
15 ENTROPIA.pptx
PPTX
Concentraciones de disoluciones
PPTX
Leydedalton 091227142219-phpapp02
PPTX
Porcentaje masa volumen
PPT
Enlace covalente 2011
PPTX
Ley general de los gases
PDF
Resumen tema 9
PPTX
Leyes de los gases
15 ENTROPIA.pptx
Concentraciones de disoluciones
Leydedalton 091227142219-phpapp02
Porcentaje masa volumen
Enlace covalente 2011
Ley general de los gases
Resumen tema 9
Leyes de los gases

La actualidad más candente (20)

PPT
Ejercicios de moles con glucosa
PPTX
Reacciones de óxido-reducción (redox)
PPTX
Tipos de-calor
DOCX
Ejerciciosderepaso
PPTX
ley de DALTON....pptx
PPTX
3.3 leyes de los gases
PPT
Tema 2. reacciones químicas. estequiometria y disoluciones
PPTX
Geometria Molecular y Estructura de Lewis
PPT
Tema 1. estructura y propiedades
PPTX
Problema de propiedad coligativa presión osmótica
PPTX
Problema de determinación de la presión osmótica de un suero
PPT
Reacciones Quimicas
PPTX
Ley general del estado gaseoso
PPT
Masas AtóMicas Y Masas Moleculares
PPT
UNIDADES QUÍMICAS DE MASA
PPT
Gases ideales.
PDF
Leyes de Faraday de la electrolisis
PDF
Ejercicos para estudiar parte ii
PPTX
Configuración electrónica
Ejercicios de moles con glucosa
Reacciones de óxido-reducción (redox)
Tipos de-calor
Ejerciciosderepaso
ley de DALTON....pptx
3.3 leyes de los gases
Tema 2. reacciones químicas. estequiometria y disoluciones
Geometria Molecular y Estructura de Lewis
Tema 1. estructura y propiedades
Problema de propiedad coligativa presión osmótica
Problema de determinación de la presión osmótica de un suero
Reacciones Quimicas
Ley general del estado gaseoso
Masas AtóMicas Y Masas Moleculares
UNIDADES QUÍMICAS DE MASA
Gases ideales.
Leyes de Faraday de la electrolisis
Ejercicos para estudiar parte ii
Configuración electrónica
Publicidad

Similar a Teoria de los gases ideales comportamiento (20)

PPT
LOS gases ideales termodinamica I BIOFISICA
PPT
gases ideales universidad de los andes la paz
PPT
PDF
Gases, introducción y leyes de los gases ideales - presentacion de power point
PPT
PPT
Jg 201001-qg-clase10-gases
PPT
PDF
Leyesdelosgases
PDF
PPTX
GASES, sus aplicaciones, propiedades, formulas , problemas
PDF
Las leyes de los gases y la teoría cinética
DOCX
Laboratorio 7
PPTX
Estado Gaseoso Final 02 2024.pptx, explicación de la materia
PDF
Leyes de los gases
PPT
ESTADOGASPPT
PPS
04 Gases 21 03 05
PPT
TEORÍA CINÉTICA, LEYES Y PROBLEMAS DE GASES. Lic Javier Cucaita
PPTX
S2 EYES - BOYLE - LUSSAC- ECUACION DE ESTADO - DISRTRIBUCION BAROMETRICA - EJ...
PPT
Leyes De Los Gases
DOCX
Laboratorio de gases ideales
LOS gases ideales termodinamica I BIOFISICA
gases ideales universidad de los andes la paz
Gases, introducción y leyes de los gases ideales - presentacion de power point
Jg 201001-qg-clase10-gases
Leyesdelosgases
GASES, sus aplicaciones, propiedades, formulas , problemas
Las leyes de los gases y la teoría cinética
Laboratorio 7
Estado Gaseoso Final 02 2024.pptx, explicación de la materia
Leyes de los gases
ESTADOGASPPT
04 Gases 21 03 05
TEORÍA CINÉTICA, LEYES Y PROBLEMAS DE GASES. Lic Javier Cucaita
S2 EYES - BOYLE - LUSSAC- ECUACION DE ESTADO - DISRTRIBUCION BAROMETRICA - EJ...
Leyes De Los Gases
Laboratorio de gases ideales
Publicidad

Más de IrisNairaRamirez (7)

PPTX
QUÍMICA ORGÁNICA, GRUPOS FUNSIONALES Y REACCIONES
PPTX
6 FORMÚLA EMPIRICA Y FORMULA MOLECULAR.pptx
PPTX
TEORIA ATOMICA Y SU HISTORIA CLASIFICACION
DOC
GAF 01 GUIA DE APRENDIZAJE zoonosis sabado.doc
PPT
SALUD PUBLICA CONCEPTOS.ppt
PPTX
1 PROPIEDADES DE LA MATERIA.pptx
PPTX
SESION 3 BIOLOGIA.pptx
QUÍMICA ORGÁNICA, GRUPOS FUNSIONALES Y REACCIONES
6 FORMÚLA EMPIRICA Y FORMULA MOLECULAR.pptx
TEORIA ATOMICA Y SU HISTORIA CLASIFICACION
GAF 01 GUIA DE APRENDIZAJE zoonosis sabado.doc
SALUD PUBLICA CONCEPTOS.ppt
1 PROPIEDADES DE LA MATERIA.pptx
SESION 3 BIOLOGIA.pptx

Último (20)

DOCX
Fisiopatologia bdjdbd resumen de cierta parte
PDF
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
PDF
E1 Guía_Matemática_5°_grado.pdf paraguay
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
PDF
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
PDF
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
PPTX
4. Qué es un computador PARA GRADO CUARTO.pptx
DOCX
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
PDF
Uso de la Inteligencia Artificial en la IE.pdf
PDF
Ernst Cassirer - Antropologia Filosofica.pdf
PPTX
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
PDF
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
PDF
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
PDF
Ficha de Atencion a Padres de Familia IE Ccesa007.pdf
PDF
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
PDF
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf
PDF
Didáctica de las literaturas infantiles.
PDF
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
PDF
CURRICULAR DE PRIMARIA santa ursula..pdf
PDF
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS
Fisiopatologia bdjdbd resumen de cierta parte
MODULO I ENFERMERIA BASICA.pdf HIstoria en enfermeria
E1 Guía_Matemática_5°_grado.pdf paraguay
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - PRIMER GRADO.docx
NOM-020-SSA-2025.pdf Para establecimientos de salud y el reconocimiento de l...
Texto Digital Los Miserables - Victor Hugo Ccesa007.pdf
4. Qué es un computador PARA GRADO CUARTO.pptx
TEXTO DE TRABAJO DE EDUCACION RELIGIOSA - CUARTO GRADO.docx
Uso de la Inteligencia Artificial en la IE.pdf
Ernst Cassirer - Antropologia Filosofica.pdf
PRESENTACIÓN SOBRE LA RELIGIÓN MUSULMANA Y LA FORMACIÓN DEL IMPERIO MUSULMAN
La lluvia sabe por qué: una historia sobre amistad, resiliencia y esperanza e...
El Genero y Nuestros Cerebros - Gina Ripon Ccesa007.pdf
Ficha de Atencion a Padres de Familia IE Ccesa007.pdf
Cuaderno_Castellano_6°_grado.pdf 000000000000000001
Lo que hacen los Mejores Profesores de la Universidad - Ken Bain Ccesa007.pdf
Didáctica de las literaturas infantiles.
KOF-2022-espanol-mar-27-11-36 coke.pdf tv
CURRICULAR DE PRIMARIA santa ursula..pdf
APUNTES DE SISTEMAS PSICOLOGICOS CONTEMPORANEOS

Teoria de los gases ideales comportamiento

  • 2. • Son capaces de adquirir cualquier forma, ocupan todo el volumen de sus recipientes. • Son compresibles y también se expanden. • Pueden mezclarse con todo tipo de elementos con mucha facilidad • Tienen una densidad mucho menor que los sólidos y los líquidos. CARACTERÍSTICAS FÍSICAS DE LOS GASES ESTADO GASEOSO Los gases se pueden considerar como el más fascinante entre los tres estados de agregación de la materia.
  • 3. Si la temperatura aumenta entonces... el volumen aumenta Temperatura baja Temperatura alta Gas Mercurio Expansión de un gas Tubo de ensayo
  • 4. CLASIFICACIÓN DE LOS GASES GASES IDEALES . Se dan a presiones bajas y temperaturas elevadas, condiciones que corresponden a grandes volúmenes molares. . Se desprecia el volumen de la molécula gaseosa. . No sufren atracciones ni repulsiones entre sus moléculas. . No se condensan. . Tienden a un volumen cero. GASES REALES .Se dan a presiones altas y temperaturas bajas, condiciones que corresponden a pequeños volúmenes molares. .Se considera el volumen de la molécula gaseosa. .Sufren atracciones y repulsiones entre sus moléculas. . Se condensan. . No alcanzan un volumen igual a cero, por que se licuefactan, es decir pasan de gas a líquido.
  • 5. TEORÍA CINÉTICO MOLECULAR DE LOS GASES IDEALES 1. Un gas se compone de moléculas separadas una de la otra por distancias más grandes que sus propias dimensiones. Dichas moléculas pueden ser consideradas gráficamente como puntos; es decir, su volumen puede ser despreciable. 2. Las moléculas de los gases siempre están en un continuo movimiento desordenado y chocando en todas direcciones unas con otras. Los choques entre las moléculas del gas son perfectamente elásticos. 3. Las moléculas de los gases no ejercen fuerzas de atracción o repulsión entre ellas. 4. La energía cinética promedio de las moléculas del gas es directamente proporcional a su temperatura absoluta. Cualquier gas a la misma temperatura tiene la misma energía cinética.
  • 6. Unidades de presión 1 Pascal (Pa) = 1 N/m2 1 atm = 760 mmHg = 760 torr 1 atm = 101,325 Pa Barómetro Presión = Fuerza Área (Fuerza = masa × aceleración) Estas afirmaciones introducen conceptos como: presión, temperatura, movimiento molecular y energía cinética. Pab = Patm ± Pman
  • 7. Manómetros usados para medir la presión Mercurio Vacío
  • 8. Los siguientes son elementos que pueden existir como gases a una temperatura de 25°C y 1 atm de presión
  • 9. 5.1 Elementos que existen como gases a una temperatura de 25°C y 1 atm de presión
  • 10. LEYES DE LOS PROCESOS RESTRINGIDOS LEY DE BOYLE Enunciado: “A temperatura constante el volumen de una masa dada de un gas varía inversamente con la presión”. Se trata de un proceso ISOTÉRMICO. Cdo: T= Cte y n = Cte, entonces: P α 1/ V P V = K Ec. De Boyle Gráfico : P vs V y P vs 1/V T1 T2 Isotermas (1) (2)
  • 11. En el punto (1) : P1 x V1 = K En el punto (2) : P2 x V2 = K Igualando ambas ecuaciones: P1 x V1 = P2 x V2 Ordenando: 1 2 2 1 V V P P         m m V P V P 1 2 2 1                  1 2 2 1 V m P V m P A menor P mayor V A mayor P menor V En función de la densidad (ρ): Si: ρ = m / V Entonces: P1 x ρ2 = P2 x ρ1 2 1 2 1    P P
  • 12. Una muestra de cloro en estado gaseoso ocupa un volumen de 946 mL y se encuentra a una presión de 726 mmHg. ¿Cuál es la presión que se necesita para que el volumen disminuya a 154 mL si la temperatura de la muestra es constante? P1 x V1 = P2 x V2 P1 = 726 mmHg V1 = 946 mL P2 = ? V2 = 154 mL P2 = P1 x V1 V2 726 mmHg x 946 mL 154 mL = = 4460 mmHg P x V = constante
  • 13. LEY DE CHARLES Enunciado: “A presión constante, el volumen de una masa dada de gas varía directamente con la temperatura absoluta”. Se trata de un proceso ISOBÁRICO. Cdo: P = Cte y n = Cte; entonces: V α T K T V  Ec. de Charles Gráfico: V vs T (1) (2) Isóbaras
  • 14. En el punto (1) : V1 / T1 = K En el punto (2) : V2 / T2 = K Igualando: 2 2 1 1 T V T V  2 1 2 1 T T V V         m m V T V T 2 2 1 1 Ordenando: A menor T menor V A mayor T mayor V En función de la densidad: ρ                  2 2 1 1 V m T V m T Si: ρ = m/V Entonces: T1x ρ1 = T2 x ρ2 1 2 2 1    T T
  • 15. Una muestra de monóxido de carbono en estado gaseoso se encuentra a una temperatura de 125°C. Si el volumen inicial de la muestra es de 3,2 litros, ¿Qué temperatura debe tener el sistema si se quiere reducir el volumen a 1,54 litros, si la presión es constante? V1 = 3,20 L T1 = 398,15 K V2 = 1,54 L T2 = ? T2 = V2 x T1 V1 1,54 L x 398,15 K 3,20 L = = 192 K V1 /T1 = V2 /T2 T1 = 125 (0C) + 273,15 (K) = 398,15 K
  • 16. LEY DE GAY-LUSSAC Enunciado: “A volumen constante la presión ejercida por una masa dada de gas varía directamente con la temperatura absoluta”. Se trata de un proceso ISOCÖRICO o ISOMËTRICO. Cdo: V = Cte y n = Cte, entonces: P α T Luego: P = K x T K T P  Ec. De Gay-Lussac Gráfico: P vs T P T (1) (2) Isócoras V1 V2 V3 T T1 T2 P1 P2
  • 17. En el punto (1) : P1 / T1 = K En el punto (2) : P2 / T2 = K Igualando: 2 2 1 1 T P T P  A menor T menor P A mayor T mayor P Ordenando: 2 1 2 1 T T P P 
  • 18. El aire en un tanque se encontraba a una presión de 620 mm Hg y 23 ºC. S e expuso al sol con lo que su temperatura aumentó a 50 ºC. ¿Cuál fue la presión que presentó entonces el tanque?. SOLUCIÓN Datos Condición (1) P1 = 620 mm Hg T1 = 23 ºC + 273 = 296 ºK Condición (2) T2 = 50 ºC + 273 = 323 ºK P2 = ? 1 2 1 2 2 1 2 1 T T P P T T P P     Como el V = Cte y n = Cte La fórmula a usar es: (1) Reemplazando valores en (1): K K mmHg P º 296 º 323 630 2   P2 = 676,55 mm Hg
  • 19. El argón es un gas inerte que se usa en algunas bombillas para retrasar la vaporización del filamento. Cierto foco contiene argón a 1,2 atm de presión y cambia de temperatura desde 18°C hasta 85°C. ¿Cuál es la presión final del argón en atm si el volumen del sistema es constante? P1 T1 P2 T2 = P2 = P1 x T2 T1 = 1,20 atm x 358 K 291 K = 1,48 atm SOLUCIÓN Condición inicial(1) P1 = 1,2 atm T1 = 18ºC + 273 = 291 K Condición final (2) P2 = ? T2 = 85ºC + 273 = 358 K (Ley de Gay-Lussac)
  • 20. LEY DE AVOGADRO Enunciado: “A presión y temperatura constante el volumen de un gas es directamente proporcional al número de moles del gas”. Cdo: P = Cte y T = Cte, entonces: V α n Luego: V = K x n Entonces: K n V  Ec. De Avogadro Gráfico: V vs n V n (1) (2) n1 n2 V2 V1
  • 21. En el punto (1) : V1 / n1 = K En el punto (2) : V2 / n2 = K Igualando: 2 2 1 1 n V n V  2 1 2 1 n n V V                           2 2 1 1 2 2 1 1 V m n V m n m m V n V n Ordenando A mayor n mayor V A menor n menor V En función de la densidad: ρ Si: ρ = m / V 1 2 2 1 2 2 1 1          n n n n Finalmente:
  • 22. ECUACIÓN DE ESTADO DE LOS GASES IDEALES Una ecuación que relaciona la temperatura, presión, volumen moles o masa de una sustancia gaseosa, recibe el nombre de ecuación de estado. Relacionando las siguientes leyes: Ley de Boyle: V α 1 / P (T y n constantes) Ley de Charles: V α T (P y n constantes) Ley de Avogadro : V α n (T y P constantes) Entonces: P T n R V P T n V       Donde: PV = nRT (1) Si: n = m / M, entonces: PVM = mRT (2) Si: ρ = m / V, entonces: PM = ρRT (3)
  • 23. Cuando en una muestra la temperatura es 0°C y la presión es 1 atm, se dice que ésta se encuentra en condiciones normales de presión y temperatura. Se ha demostrado que en condiciones normales de presión y temperatura, 1 mol de un gas ideal ocupa 22,414 litros de volumen. CONDICIONES NORMALES (CN O PTN) Cuando: P = 1 atm T = 0 ºC = 273 ºK Entonces: 1 mol-g gas a CN = 22,414 L 1 mol-kg gas a CN = 22,414 m3 1 mol-lb gas a CN = 359 pies3
  • 24. VALORES DE LA CONSTANTE UNIVERSAL DE LOS GASES: R Los valores de “R”, se obtienen de la ecuación (1): PV = nRT, a condiciones normales. K mol atm L K mol L atm T n V P R º 082056 , 0 º 15 , 273 1 414 , 22 1          Otros valores de “R”: K mol mmHg L R º 36 , 62    K mol dm KPa R º 314 , 8 3    R lb mol pie pu lb R º lg / 73 , 10 3 2    
  • 25. ¿Cuál es el volumen en litros que ocupan 49,8 gramos de ácido clorhídrico (HCL) a presión y temperatura normales? PV = nRT V = nRT P T = 0 0C = 273,15 K P = 1 atm n = 49,8 g x 1 mol HCl 36,45 g HCl = 1,37 mol V = 1 atm 1,37 mol x 0,0821 x 273,15 K L•atm mol•K V = 30,6 L
  • 26. Un contenedor de 2,1 litros contiene 4,65 gramos de un gas a 1 atm de presión a 27°C. ¿Cuál es la molaridad del gas? dRT P M = d = m V 4,65 g 2,10 L = = 2,21 g L M = 2,21 g L 1 atm x 0,0821 x 300,15 K L•atm mol•K M = 54,6 g/mol
  • 27. LEY GENERAL O COMBINADA DE LOS GASES En una ley general de los gases intervienen las tres variables: temperatura, presión y volumen, para un sistema cerrado a condición inicial (1) y final (2): Estado inicial (1) : P1V1 = nRT1 Estado final (2) : P2V2 = nRT2 Dividiendo (1) entre (2): si, n = Cte y R = Cte. 2 1 2 2 1 1 2 1 2 2 1 1 T T V P V P T R n T R n V P V P            Finalmente: 2 2 2 1 1 1 T V P T V P    En función de las densidades: ρ (1) y (2): 1 2 2 1 2 1 T P T P     
  • 28. Un litro de oxígeno tiene una masa de 1,43 g a 0ºC y a 760 mm Hg. Calcular la densidad del oxígeno a 25ºC y 725 mm Hg. SOLUCIÓN Condiciones iniciales (1) ρ1 = 1,43 g/L T1 = 0ºC + 273= 273 ºK P1 = 760 mm Hg Condiciones finales (2) ρ2 = ? T2 = 25ºC + 273 = 298 ºK P2 = 725 mm Hg 1 2 2 1 2 1 T P T P      La fórmula es: (1) Reemplazando valores en (1): K mmHg K mmHg L g T P T P º 298 760 º 273 725 / 43 , 1 2 2 1 1 2 1 2             ρ2 = 1,25 g/L
  • 29. LEY DE DALTON DE LAS PRESIONES PARCIALES PA PB PT = PA + PB + … LEYES RELACIONADAS CON MEZCLAS GASEOSAS “A temperatura y volumen constante, la presión total ejercida por una mezcla de gases, es igual a la suma de las presiones parciales de cada uno de los gases que constituyen la mezcla” Presión parcial: es la presión que cada gas ejercería, si se encontrara solo ocupando todo el volumen que ocupa la mezcla gaseosa. Cdo: T = Cte y V = Cte, entonces: Ptotal (1)
  • 30. LA QUÍMICA EN ACCIÓN: El buceo y las leyes de los gases P V Profundidad (ft) Presión (atm) 0 1 33 2 66 3 5.6