SlideShare una empresa de Scribd logo
1.-¿Cómo utilizar la tabla de la distribución Binomial?
Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de
obtener cara es del 30%. La probabilidad que salga cruz será, pues, del 70%. Lanzamos la
moneda 10 veces de manera consecutiva. Si queremos calcular la probabilidad de que
observemos 6 caras o menos nos fijamos en la tabla: localizamos n=10, x=6, p=0.3 y
buscamos la intersección: 0.9894
P
N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
6 1,0000 1,0000 1,0000 0,9997 0,9987 0,9957 0,9888 0,9750 0,9502 0,9102
7 1,0000 1,0000 1,0000 1,0000 0,9999 0,9996 0,9986 0,9962 0,9909 0,9805
8 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9992 0,9980
10 0 0,5987 0,3487 0,1969 0,1074 0,0563 0,0282 0,0135 0,0060 0,0025 0,0010
1 0,9139 0,7361 0,5443 0,3758 0,2440 0,1493 0,0860 0,0464 0,0233 0,0107
2 0,9885 0,9298 0,8202 0,6778 0,5256 0,3828 0,2616 0,1673 0,0996 0,0547
3 0,9990 0,9872 0,9500 0,8791 0,7759 0,6496 0,5138 0,3823 0,2660 0,1719
4 0,9999 0,9984 0,9901 0,9672 0,9219 0,8497 0,7515 0,6331 0,5044 0,3770
5 1,0000 0,9999 0,9986 0,9936 0,9803 0,9527 0,9051 0,8338 0,7384 0,6230
6 1,0000 1,0000 0,9999 0,9991 0,9965 0,9894 0,9740 0,9452 0,8980 0,8281
7 1,0000 1,0000 1,0000 0,9999 0,9996 0,9984 0,9952 0,9877 0,9726 0,9453
8 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9995 0,9983 0,9955 0,9893
9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9990
11 0 0,5688 0,3138 0,1673 0,0859 0,0422 0,0198 0,0088 0,0036 0,0014 0,0005
1 0,8981 0,6974 0,4922 0,3221 0,1971 0,1130 0,0606 0,0302 0,0139 0,0059
2 0,9848 0,9104 0,7788 0,6174 0,4552 0,3127 0,2001 0,1189 0,0652 0,0327
3 0,9984 0,9815 0,9306 0,8389 0,7133 0,5696 0,4256 0,2963 0,1911 0,1133
4 0,9999 0,9972 0,9841 0,9496 0,8854 0,7897 0,6683 0,5328 0,3971 0,2744
5 1,0000 0,9997 0,9973 0,9883 0,9657 0,9218 0,8513 0,7535 0,6331 0,5000
6 1,0000 1,0000 0,9997 0,9980 0,9924 0,9784 0,9499 0,9006 0,8262 0,7256
7 1,0000 1,0000 1,0000 0,9998 0,9988 0,9957 0,9878 0,9707 0,9390 0,8867
8 1,0000 1,0000 1,0000 1,0000 0,9999 0,9994 0,9980 0,9941 0,9852 0,9673
2.-¿Y si nos pidieran la probabilidad de que salieran 7 caras o más?
Entonces utilizaríamos el hecho de que el suceso descrito es el complementario del anterior
para afirmar que la probabilidad buscada es 1-0.9894=0.0106
3.-¿Y si nos pidieran la probabilidad de que salieran exactamente 6 caras?
Tendríamos que calcular la probabilidad de obtener 6 caras o menos (0.9894) y la de
obtener 5 caras o menos (0.9527), las restamos y obtenemos 0.0367. No obstante, mejor es
calcular 036756909.07.03.0
6
10 46
=⋅⋅





.
4.-¿ Qué pasa si el suceso sobre el que queremos calcular tiene una probabilidad
mayor que 0.5?
Este caso se daría, por ejemplo, si la probabilidad de que saliera cara fuera del 70%.
Entonces, si nos piden la probabilidad de obtener 4 caras o menos tirando 10 veces la
moneda, haríamos lo siguiente. Notemos que la probabilidad de obtener 4 caras o menos
será la misma de obtener 6 cruces o más. Este suceso es el complementario de obtener 5
cruces o menos. Así pues localizamos n=10, x=5, p=0.3 (ya que la probabilidad de obtener
cruz es del 30%) y tomamos la intersección, que es 0.9527. La probabilidad que nos pedían
será de 1-0.9527=0.0473
P
N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
6 1,0000 1,0000 1,0000 0,9997 0,9987 0,9957 0,9888 0,9750 0,9502 0,9102
7 1,0000 1,0000 1,0000 1,0000 0,9999 0,9996 0,9986 0,9962 0,9909 0,9805
8 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9992 0,9980
10 0 0,5987 0,3487 0,1969 0,1074 0,0563 0,0282 0,0135 0,0060 0,0025 0,0010
1 0,9139 0,7361 0,5443 0,3758 0,2440 0,1493 0,0860 0,0464 0,0233 0,0107
2 0,9885 0,9298 0,8202 0,6778 0,5256 0,3828 0,2616 0,1673 0,0996 0,0547
3 0,9990 0,9872 0,9500 0,8791 0,7759 0,6496 0,5138 0,3823 0,2660 0,1719
4 0,9999 0,9984 0,9901 0,9672 0,9219 0,8497 0,7515 0,6331 0,5044 0,3770
5 1,0000 0,9999 0,9986 0,9936 0,9803 0,9527 0,9051 0,8338 0,7384 0,6230
6 1,0000 1,0000 0,9999 0,9991 0,9965 0,9894 0,9740 0,9452 0,8980 0,8281
7 1,0000 1,0000 1,0000 0,9999 0,9996 0,9984 0,9952 0,9877 0,9726 0,9453
8 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9995 0,9983 0,9955 0,9893
9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9990
11 0 0,5688 0,3138 0,1673 0,0859 0,0422 0,0198 0,0088 0,0036 0,0014 0,0005
1 0,8981 0,6974 0,4922 0,3221 0,1971 0,1130 0,0606 0,0302 0,0139 0,0059
2 0,9848 0,9104 0,7788 0,6174 0,4552 0,3127 0,2001 0,1189 0,0652 0,0327
3 0,9984 0,9815 0,9306 0,8389 0,7133 0,5696 0,4256 0,2963 0,1911 0,1133
4 0,9999 0,9972 0,9841 0,9496 0,8854 0,7897 0,6683 0,5328 0,3971 0,2744
5 1,0000 0,9997 0,9973 0,9883 0,9657 0,9218 0,8513 0,7535 0,6331 0,5000
6 1,0000 1,0000 0,9997 0,9980 0,9924 0,9784 0,9499 0,9006 0,8262 0,7256
7 1,0000 1,0000 1,0000 0,9998 0,9988 0,9957 0,9878 0,9707 0,9390 0,8867
8 1,0000 1,0000 1,0000 1,0000 0,9999 0,9994 0,9980 0,9941 0,9852 0,9673
9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 0,9993 0,9978 0,9941
5.-¿Y si la probabilidad P no aparece en la tabla?
Entonces haríamos interpolación. Supongamos que X se distribuye como una binomial con
P=0.17; entonces, si queremos calcular la probabilidad que X sea menor o igual que 3
después de 6 tiradas (n=6), tomamos la tabla y localizamos las probabilidades más cercanas
a 0.17, que son 0.15 y 0.2.
P
N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5
2 0 0,9025 0,8100 0,7225 0,6400 0,5625 0,4900 0,4225 0,3600 0,3025 0,2500
1 0,9975 0,9900 0,9775 0,9600 0,9375 0,9100 0,8775 0,8400 0,7975 0,7500
3 0 0,8574 0,7290 0,6141 0,5120 0,4219 0,3430 0,2746 0,2160 0,1664 0,1250
1 0,9928 0,9720 0,9393 0,8960 0,8438 0,7840 0,7183 0,6480 0,5748 0,5000
2 0,9999 0,9990 0,9966 0,9920 0,9844 0,9730 0,9571 0,9360 0,9089 0,8750
4 0 0,8145 0,6561 0,5220 0,4096 0,3164 0,2401 0,1785 0,1296 0,0915 0,0625
1 0,9860 0,9477 0,8905 0,8192 0,7383 0,6517 0,5630 0,4752 0,3910 0,3125
2 0,9995 0,9963 0,9880 0,9728 0,9492 0,9163 0,8735 0,8208 0,7585 0,6875
3 1,0000 0,9999 0,9995 0,9984 0,9961 0,9919 0,9850 0,9744 0,9590 0,9375
5 0 0,7738 0,5905 0,4437 0,3277 0,2373 0,1681 0,1160 0,0778 0,0503 0,0313
1 0,9774 0,9185 0,8352 0,7373 0,6328 0,5282 0,4284 0,3370 0,2562 0,1875
2 0,9988 0,9914 0,9734 0,9421 0,8965 0,8369 0,7648 0,6826 0,5931 0,5000
3 1,0000 0,9995 0,9978 0,9933 0,9844 0,9692 0,9460 0,9130 0,8688 0,8125
4 1,0000 1,0000 0,9999 0,9997 0,9990 0,9976 0,9947 0,9898 0,9815 0,9688
6 0 0,7351 0,5314 0,3771 0,2621 0,1780 0,1176 0,0754 0,0467 0,0277 0,0156
1 0,9672 0,8857 0,7765 0,6554 0,5339 0,4202 0,3191 0,2333 0,1636 0,1094
2 0,9978 0,9842 0,9527 0,9011 0,8306 0,7443 0,6471 0,5443 0,4415 0,3438
3 0,9999 0,9987 0,9941 0,9830 0,9624 0,9295 0,8826 0,8208 0,7447 0,6563
4 1,0000 0,9999 0,9996 0,9984 0,9954 0,9891 0,9777 0,9590 0,9308 0,8906
5 1,0000 1,0000 1,0000 0,9999 0,9998 0,9993 0,9982 0,9959 0,9917 0,9844
La interpolación la realizaremos como sigue:
98966.0)9941.09830.0(
15.02.0
15.017.0
9941.0 =−⋅
−
−
+
6.-¿Qué pasa si n>20?
En estos casos hay dos posibilidades: grosso modo, si el valor de P es muy pequeño,
intentaremos aproximar la variable aleatoria binomial con la distribución de Poisson, que
explicamos en el siguiente apartado. Si no se puede considerar pequeño, buscaremos la
aproximación adoptando la distribución normal (tercer apartado). En general, el valor de n
que se requiere para que la aproximación sea satisfactoria suele ser bastante superior a 20.
Una tercera posibilidad, evidentemente, es recurrir al cálculo por ordenador.
1.-¿Cómo utilizar la tabla de la distribución de Poisson?
Supongamos que X es una variable aleatoria que sigue la ley de Poisson con parámetro 0.9.
Nos piden calcular la probabilidad de que X sea menor o igual que 3. Localizamos en la
tabla λ=0.9, x=3 y tomamos la intersección:0.987.
x
λ 0 1 2 3 4 5 6 7 8 9
0,02 0,980 1,000
0,04 0,961 0,999 1,000
0,06 0,942 0,998 1,000
0,08 0,923 0,997 1,000
0,1 0,905 0,995 1,000
0,15 0,861 0,990 0,999 1,000
0,2 0,819 0,982 0,999 1,000
0,25 0,779 0,974 0,998 1,000
0,3 0,741 0,963 0,996 1,000
0,35 0,705 0,951 0,994 1,000
0,4 0,670 0,938 0,992 0,999 1,000
0,45 0,638 0,925 0,989 0,999 1,000
0,5 0,607 0,910 0,986 0,998 1,000
0,55 0,577 0,894 0,982 0,998 1,000
0,6 0,549 0,878 0,977 0,997 1,000
0,65 0,522 0,861 0,972 0,996 0,999 1,000
0,7 0,497 0,844 0,966 0,994 0,999 1,000
0,75 0,472 0,827 0,959 0,993 0,999 1,000
0,8 0,449 0,809 0,953 0,991 0,999 1,000
0,85 0,427 0,791 0,945 0,989 0,998 1,000
0,9 0,407 0,772 0,937 0,987 0,998 1,000
0,95 0,387 0,754 0,929 0,984 0,997 1,000
2.-¿Y si nos pidieran la probabilidad de que X fuera mayor que 3?
En este caso nos tendríamos que fijar en que este suceso es el complementario del anterior
y que por lo tanto la probabilidad buscada es de 1-0.987=0.013
3.-¿Y si nos pidieran la probabilidad de que X fuera exactamente 3?
Una posibilidad seria calcular la probabilidad que X fuera menor o igual que 3 (0.987), la
probabilidad que X fuera menor o igual que 2 (0.937) y restarlas, dando 0.05. Pero la
fórmula de la función de probabilidad nos dará un resultado exacto
...0493982.0
!3
9.0 39.0
=
⋅−
e
4.-¿Qué pasa si el parámetro λ no aparece de forma exacta en la tabla?
Supongamos que tenemos una variable aleatoria X que se distribuye según una ley de
Poisson con parámetro 4.65. Queremos calcular la probabilidad que X sea menor o igual
que 7. Tomaremos los dos parámetros más cercanos a 4.65 que aparecen en la tabla, que
son 4.6 y 4.8. Localizaremos las respectivas probabilidades
x
λ 0 1 2 3 4 5 6 7 8 9
3,8 0,022 0,107 0,269 0,473 0,668 0,816 0,909 0,960 0,984 0,994
4 0,018 0,092 0,238 0,433 0,629 0,785 0,889 0,949 0,979 0,992
4,2 0,015 0,078 0,210 0,395 0,590 0,753 0,867 0,936 0,972 0,989
4,4 0,012 0,066 0,185 0,359 0,551 0,720 0,844 0,921 0,964 0,985
4,6 0,010 0,056 0,163 0,326 0,513 0,686 0,818 0,905 0,955 0,980
4,8 0,008 0,048 0,143 0,294 0,476 0,651 0,791 0,887 0,944 0,975
5 0,007 0,040 0,125 0,265 0,440 0,616 0,762 0,867 0,932 0,968
5,2 0,006 0,034 0,109 0,238 0,406 0,581 0,732 0,845 0,918 0,960
5,4 0,005 0,029 0,095 0,213 0,373 0,546 0,702 0,822 0,903 0,951
5,6 0,004 0,024 0,082 0,191 0,342 0,512 0,670 0,797 0,886 0,941
La interpolación a realizar es la siguiente:
9005.0)905.0887.0(
6.48.4
6.465.4
905.0 =−⋅
−
−
+
5.-Comentarios acerca de la distribución binomial
Siempre que se utilice una variable aleatoria binomial con los parámetros p muy grande y n
muy pequeño, podemos aproximarla por una variable aleatoria Poisson con parámetro:
λ = n·p.
Un posible ejemplo es éste: un fabricante produce artículos de los cuales alrededor de 1
cada 1000 son defectuosos. O sea, p=0.001. Si consideramos la distribución binomial
encontramos que en un lote de 500 artículos la probabilidad de que ninguno sea defectuoso
es (0.999)500
=0.609. Si utilizamos la aproximación de Poisson obtenemos e-0.5
=0.607 (se
puede mirar en la tabla). La probabilidad de encontrar dos o más articulos defectuosos
sería, según la aproximación de Poisson y mirando a la tabla, 1-0.91=0.09.
En el caso que tanto p como n sean muy grandes, sería necesario aproximarla mediante la
distribución normal.
6.-¿Cómo se hace para, dado p, calcular el valor x tal que P(X ≤ x)=p, siendo X
una variable aleatoria Poisson?
Supongamos que X se distribuye como una Poisson con parámetro λ=12, y nos dan
p=0.772. Para calcular la x correspondiente tomamos la tabla y localizamos λ=12.
X
λ 0 1 2 3 4 5 6 7 8 9
13 0,000 0,000 0,000 0,001 0,004 0,011 0,026 0,054 0,100 0,166
13,5 0,000 0,000 0,000 0,001 0,003 0,008 0,019 0,041 0,079 0,135
14 0,000 0,000 0,000 0,000 0,002 0,006 0,014 0,032 0,062 0,109
14,5 0,000 0,000 0,000 0,000 0,001 0,004 0,010 0,024 0,048 0,088
15 0,000 0,000 0,000 0,000 0,001 0,003 0,008 0,018 0,037 0,070
10 11 12 13 14 15 16 17 18 19
10,5 0,521 0,639 0,742 0,825 0,888 0,932 0,960 0,978 0,988 0,994
11 0,460 0,579 0,689 0,781 0,854 0,907 0,944 0,968 0,982 0,991
11,5 0,402 0,520 0,633 0,733 0,815 0,878 0,924 0,954 0,974 0,986
12 0,347 0,462 0,576 0,682 0,772 0,844 0,899 0,937 0,963 0,979
12,5 0,297 0,406 0,519 0,628 0,725 0,806 0,869 0,916 0,948 0,969
13 0,252 0,353 0,463 0,573 0,675 0,764 0,835 0,890 0,930 0,957
13,5 0,211 0,304 0,409 0,518 0,623 0,718 0,798 0,861 0,908 0,942
14 0,176 0,260 0,358 0,464 0,570 0,669 0,756 0,827 0,883 0,923
14,5 0,145 0,220 0,311 0,413 0,518 0,619 0,711 0,790 0,853 0,901
15 0,118 0,185 0,268 0,363 0,466 0,568 0,664 0,749 0,819 0,875
Nos fijamos entonces que la x correspondiente es 14.
Si nos dan por ejemplo p=0.72, λ=14.5, entonces tomamos el valor inmediatamente inferior
a 0.72 que aparece en la tabla para λ=14.5. En nuestro caso es 0.711, que corresponde a
x=16.
Notemos que en este caso no hacemos interpolación lineal ya que la ley Poisson es discreta
y por lo tanto no tiene sentido dar un valor no entero, como 16.2.
1. ¿Cómo se usa la tabla de la distribución normal para averiguar p=FZ(z), dado
z>0?
Supongamos z=1.66. ¿Cuál es la probabilidad de que Z<1.66? Se descompone el número en
1.6+0.06, y se busca en la intersección: el resultado es 0.9515.
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 … … … … … …
2. ¿Y si z<0?
En ese caso, P(Z<z) = P(Z>-z) = 1-P(Z<-z) = 1- FZ(-z); por ejemplo, ¿cuál es la
probabilidad de que Z sea menor que –1.38? Según la tabla, a 1.38 le corresponde 0.9162,
luego el valor que buscamos es 0.0838.
3. ¿Cómo se hace para, dado p>0.5, encontrar el valor z tal que P(Z<z)=p?
Supongamos p=0.71. Buscamos en la tabla la o las celdas que más se parezcan a este valor.
z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 … … … … …
Sabemos que el valor z está entre 0.55 y 0.56, mirando la fila y columnas implicadas. Por
regla de 3 simple nos podemos aproximar bastante:
z = 0.55+(0.56-0.55)(0.71-0.7088)/(0.7123-0.7088) = 0.5534
4. ¿Y si p<0.5?
Se trata de aplicar otra vez la inversión de antes: tomamos 1-p (que ya será mayor que 0.5)
y buscamos en la tabla; luego cambiamos el signo al valor hallado.
Ejemplo: tenemos p=0.09. Buscamos el correspondiente a 0.91, el cual será un valor muy
próximo a 1.34. Luego, el valor z será aproximadamente –1.34.
Ejercicios para practicar el uso de las tablas
1. Binomial.
1.1. Calcule el valor de la función de distribución en los siguientes puntos x, con los
parámetros n y p que se indican:
n=5, p=0.25, x=2 n=10, p=0.35, x=2 n=8, p=0.05, x=1
n=7, p=0.5, x=5 n=4, p=0.4, x=3 n=8, p=0.75, x=3
n=14, p=0.75, x=2 n=10, p=0.8, x=7 n=13, p=0.95, x=6
2. Poisson
2.1. Calcule el valor de la función de distribución en los siguientes puntos x, con el
parámetro λ que se indica:
λ=2, x=3 λ=3.5, x=3 λ=4, x=6 λ=1.2, x=3
λ=0.4, x=0 λ=7, x=5 λ=8, x=12 λ=4, x=12
2.2. Calcule aproximadamente la inversa de la función de distribución, para los
siguientes valores de probabilidad p, con el parámetro λ que se indica:
λ=9, p=0.5 λ=7, p=0.95 λ=15, p=0.95 λ=15, p=0.1
3. Normal
3.1. Calcule el valor de la función de distribución en los siguientes puntos z:
z=0.28 z=0.69 z=1.25 z=1.64
z=1.81 z=2.02 z=2.17 z=2.77
3.2. Calcule el valor de la función de distribución en los siguientes puntos z:
z=-0.08 z=-0.42 z=-1.0 z=-1.50
z=-1.79 z=-2.02 z=-2.35 z=-3.14
3.3. Calcule aproximadamente la inversa de la función de distribución, para los
siguientes valores de probabilidad p:
p=0.6846 p=0.8364 p=0.4248 p=0.2336
p=0.1745 p=0.7355 p=0.0367 p=0.9500

Más contenido relacionado

PPTX
Intervalos de confianza
PDF
Densidad probabilistica
PPTX
Introduccion a la Estadística y tablas de frecuencia
PPTX
2.distribucion de frecuencia
PPTX
Cuales son los elementos fundamentales de la estadística
PDF
Ensayo de Ingenieria Economica. Por Omar Rodriguez
DOC
Distribucion 2 beta
PDF
Solucion ejercicios bloque 1 tema 1 propiedades de los materiales
Intervalos de confianza
Densidad probabilistica
Introduccion a la Estadística y tablas de frecuencia
2.distribucion de frecuencia
Cuales son los elementos fundamentales de la estadística
Ensayo de Ingenieria Economica. Por Omar Rodriguez
Distribucion 2 beta
Solucion ejercicios bloque 1 tema 1 propiedades de los materiales

La actualidad más candente (7)

PPT
Variables aleatorias continuas1
PDF
Diseño de experimentos
PPTX
Cálculo de probabilidades
PDF
Practica dirigida 1 estimación de proporciones_ingeniería
PDF
Distribucion de la diferencia de medias
PDF
Programacion lineal investigacion operaciones
PDF
Variables aleatorias continuas1
Diseño de experimentos
Cálculo de probabilidades
Practica dirigida 1 estimación de proporciones_ingeniería
Distribucion de la diferencia de medias
Programacion lineal investigacion operaciones
Publicidad

Similar a Uso de tablas (20)

DOC
Ejemplos de distribuciones de probabilidad
DOC
Probabilidades binomiales viviana andreina alvarez rodriguez
DOC
Bernoulli ejemplos
DOC
Ejemplos de distribuciones de probabilidad
DOC
Distribuciones probabilidad
PPTX
Distribuciones
PPTX
Distribucion
PPTX
Distribucion
DOC
Ejemplos de distribuciones de probabilidad
PPTX
PPTX
Clase02 distribuciones de probabilidad
DOCX
Distrubución binomial
DOCX
Ejemplos de distribuciones
DOC
Bernoulli ejemplos
DOC
Ejebn
DOC
Ejebn
PPT
Distribucionesdiscretas]
PPT
Distribucionesdiscretas]
DOC
Disreibuciones
DOC
Binomial (real)
Ejemplos de distribuciones de probabilidad
Probabilidades binomiales viviana andreina alvarez rodriguez
Bernoulli ejemplos
Ejemplos de distribuciones de probabilidad
Distribuciones probabilidad
Distribuciones
Distribucion
Distribucion
Ejemplos de distribuciones de probabilidad
Clase02 distribuciones de probabilidad
Distrubución binomial
Ejemplos de distribuciones
Bernoulli ejemplos
Ejebn
Ejebn
Distribucionesdiscretas]
Distribucionesdiscretas]
Disreibuciones
Binomial (real)
Publicidad

Uso de tablas

  • 1. 1.-¿Cómo utilizar la tabla de la distribución Binomial? Supongamos que lanzamos al aire una moneda trucada. Con esta moneda la probabilidad de obtener cara es del 30%. La probabilidad que salga cruz será, pues, del 70%. Lanzamos la moneda 10 veces de manera consecutiva. Si queremos calcular la probabilidad de que observemos 6 caras o menos nos fijamos en la tabla: localizamos n=10, x=6, p=0.3 y buscamos la intersección: 0.9894 P N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 6 1,0000 1,0000 1,0000 0,9997 0,9987 0,9957 0,9888 0,9750 0,9502 0,9102 7 1,0000 1,0000 1,0000 1,0000 0,9999 0,9996 0,9986 0,9962 0,9909 0,9805 8 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9992 0,9980 10 0 0,5987 0,3487 0,1969 0,1074 0,0563 0,0282 0,0135 0,0060 0,0025 0,0010 1 0,9139 0,7361 0,5443 0,3758 0,2440 0,1493 0,0860 0,0464 0,0233 0,0107 2 0,9885 0,9298 0,8202 0,6778 0,5256 0,3828 0,2616 0,1673 0,0996 0,0547 3 0,9990 0,9872 0,9500 0,8791 0,7759 0,6496 0,5138 0,3823 0,2660 0,1719 4 0,9999 0,9984 0,9901 0,9672 0,9219 0,8497 0,7515 0,6331 0,5044 0,3770 5 1,0000 0,9999 0,9986 0,9936 0,9803 0,9527 0,9051 0,8338 0,7384 0,6230 6 1,0000 1,0000 0,9999 0,9991 0,9965 0,9894 0,9740 0,9452 0,8980 0,8281 7 1,0000 1,0000 1,0000 0,9999 0,9996 0,9984 0,9952 0,9877 0,9726 0,9453 8 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9995 0,9983 0,9955 0,9893 9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9990 11 0 0,5688 0,3138 0,1673 0,0859 0,0422 0,0198 0,0088 0,0036 0,0014 0,0005 1 0,8981 0,6974 0,4922 0,3221 0,1971 0,1130 0,0606 0,0302 0,0139 0,0059 2 0,9848 0,9104 0,7788 0,6174 0,4552 0,3127 0,2001 0,1189 0,0652 0,0327 3 0,9984 0,9815 0,9306 0,8389 0,7133 0,5696 0,4256 0,2963 0,1911 0,1133 4 0,9999 0,9972 0,9841 0,9496 0,8854 0,7897 0,6683 0,5328 0,3971 0,2744 5 1,0000 0,9997 0,9973 0,9883 0,9657 0,9218 0,8513 0,7535 0,6331 0,5000 6 1,0000 1,0000 0,9997 0,9980 0,9924 0,9784 0,9499 0,9006 0,8262 0,7256 7 1,0000 1,0000 1,0000 0,9998 0,9988 0,9957 0,9878 0,9707 0,9390 0,8867 8 1,0000 1,0000 1,0000 1,0000 0,9999 0,9994 0,9980 0,9941 0,9852 0,9673 2.-¿Y si nos pidieran la probabilidad de que salieran 7 caras o más? Entonces utilizaríamos el hecho de que el suceso descrito es el complementario del anterior para afirmar que la probabilidad buscada es 1-0.9894=0.0106 3.-¿Y si nos pidieran la probabilidad de que salieran exactamente 6 caras? Tendríamos que calcular la probabilidad de obtener 6 caras o menos (0.9894) y la de obtener 5 caras o menos (0.9527), las restamos y obtenemos 0.0367. No obstante, mejor es calcular 036756909.07.03.0 6 10 46 =⋅⋅      .
  • 2. 4.-¿ Qué pasa si el suceso sobre el que queremos calcular tiene una probabilidad mayor que 0.5? Este caso se daría, por ejemplo, si la probabilidad de que saliera cara fuera del 70%. Entonces, si nos piden la probabilidad de obtener 4 caras o menos tirando 10 veces la moneda, haríamos lo siguiente. Notemos que la probabilidad de obtener 4 caras o menos será la misma de obtener 6 cruces o más. Este suceso es el complementario de obtener 5 cruces o menos. Así pues localizamos n=10, x=5, p=0.3 (ya que la probabilidad de obtener cruz es del 30%) y tomamos la intersección, que es 0.9527. La probabilidad que nos pedían será de 1-0.9527=0.0473 P N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 6 1,0000 1,0000 1,0000 0,9997 0,9987 0,9957 0,9888 0,9750 0,9502 0,9102 7 1,0000 1,0000 1,0000 1,0000 0,9999 0,9996 0,9986 0,9962 0,9909 0,9805 8 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9992 0,9980 10 0 0,5987 0,3487 0,1969 0,1074 0,0563 0,0282 0,0135 0,0060 0,0025 0,0010 1 0,9139 0,7361 0,5443 0,3758 0,2440 0,1493 0,0860 0,0464 0,0233 0,0107 2 0,9885 0,9298 0,8202 0,6778 0,5256 0,3828 0,2616 0,1673 0,0996 0,0547 3 0,9990 0,9872 0,9500 0,8791 0,7759 0,6496 0,5138 0,3823 0,2660 0,1719 4 0,9999 0,9984 0,9901 0,9672 0,9219 0,8497 0,7515 0,6331 0,5044 0,3770 5 1,0000 0,9999 0,9986 0,9936 0,9803 0,9527 0,9051 0,8338 0,7384 0,6230 6 1,0000 1,0000 0,9999 0,9991 0,9965 0,9894 0,9740 0,9452 0,8980 0,8281 7 1,0000 1,0000 1,0000 0,9999 0,9996 0,9984 0,9952 0,9877 0,9726 0,9453 8 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9995 0,9983 0,9955 0,9893 9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9999 0,9997 0,9990 11 0 0,5688 0,3138 0,1673 0,0859 0,0422 0,0198 0,0088 0,0036 0,0014 0,0005 1 0,8981 0,6974 0,4922 0,3221 0,1971 0,1130 0,0606 0,0302 0,0139 0,0059 2 0,9848 0,9104 0,7788 0,6174 0,4552 0,3127 0,2001 0,1189 0,0652 0,0327 3 0,9984 0,9815 0,9306 0,8389 0,7133 0,5696 0,4256 0,2963 0,1911 0,1133 4 0,9999 0,9972 0,9841 0,9496 0,8854 0,7897 0,6683 0,5328 0,3971 0,2744 5 1,0000 0,9997 0,9973 0,9883 0,9657 0,9218 0,8513 0,7535 0,6331 0,5000 6 1,0000 1,0000 0,9997 0,9980 0,9924 0,9784 0,9499 0,9006 0,8262 0,7256 7 1,0000 1,0000 1,0000 0,9998 0,9988 0,9957 0,9878 0,9707 0,9390 0,8867 8 1,0000 1,0000 1,0000 1,0000 0,9999 0,9994 0,9980 0,9941 0,9852 0,9673 9 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 0,9993 0,9978 0,9941
  • 3. 5.-¿Y si la probabilidad P no aparece en la tabla? Entonces haríamos interpolación. Supongamos que X se distribuye como una binomial con P=0.17; entonces, si queremos calcular la probabilidad que X sea menor o igual que 3 después de 6 tiradas (n=6), tomamos la tabla y localizamos las probabilidades más cercanas a 0.17, que son 0.15 y 0.2. P N X 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 2 0 0,9025 0,8100 0,7225 0,6400 0,5625 0,4900 0,4225 0,3600 0,3025 0,2500 1 0,9975 0,9900 0,9775 0,9600 0,9375 0,9100 0,8775 0,8400 0,7975 0,7500 3 0 0,8574 0,7290 0,6141 0,5120 0,4219 0,3430 0,2746 0,2160 0,1664 0,1250 1 0,9928 0,9720 0,9393 0,8960 0,8438 0,7840 0,7183 0,6480 0,5748 0,5000 2 0,9999 0,9990 0,9966 0,9920 0,9844 0,9730 0,9571 0,9360 0,9089 0,8750 4 0 0,8145 0,6561 0,5220 0,4096 0,3164 0,2401 0,1785 0,1296 0,0915 0,0625 1 0,9860 0,9477 0,8905 0,8192 0,7383 0,6517 0,5630 0,4752 0,3910 0,3125 2 0,9995 0,9963 0,9880 0,9728 0,9492 0,9163 0,8735 0,8208 0,7585 0,6875 3 1,0000 0,9999 0,9995 0,9984 0,9961 0,9919 0,9850 0,9744 0,9590 0,9375 5 0 0,7738 0,5905 0,4437 0,3277 0,2373 0,1681 0,1160 0,0778 0,0503 0,0313 1 0,9774 0,9185 0,8352 0,7373 0,6328 0,5282 0,4284 0,3370 0,2562 0,1875 2 0,9988 0,9914 0,9734 0,9421 0,8965 0,8369 0,7648 0,6826 0,5931 0,5000 3 1,0000 0,9995 0,9978 0,9933 0,9844 0,9692 0,9460 0,9130 0,8688 0,8125 4 1,0000 1,0000 0,9999 0,9997 0,9990 0,9976 0,9947 0,9898 0,9815 0,9688 6 0 0,7351 0,5314 0,3771 0,2621 0,1780 0,1176 0,0754 0,0467 0,0277 0,0156 1 0,9672 0,8857 0,7765 0,6554 0,5339 0,4202 0,3191 0,2333 0,1636 0,1094 2 0,9978 0,9842 0,9527 0,9011 0,8306 0,7443 0,6471 0,5443 0,4415 0,3438 3 0,9999 0,9987 0,9941 0,9830 0,9624 0,9295 0,8826 0,8208 0,7447 0,6563 4 1,0000 0,9999 0,9996 0,9984 0,9954 0,9891 0,9777 0,9590 0,9308 0,8906 5 1,0000 1,0000 1,0000 0,9999 0,9998 0,9993 0,9982 0,9959 0,9917 0,9844 La interpolación la realizaremos como sigue: 98966.0)9941.09830.0( 15.02.0 15.017.0 9941.0 =−⋅ − − + 6.-¿Qué pasa si n>20? En estos casos hay dos posibilidades: grosso modo, si el valor de P es muy pequeño, intentaremos aproximar la variable aleatoria binomial con la distribución de Poisson, que explicamos en el siguiente apartado. Si no se puede considerar pequeño, buscaremos la aproximación adoptando la distribución normal (tercer apartado). En general, el valor de n que se requiere para que la aproximación sea satisfactoria suele ser bastante superior a 20. Una tercera posibilidad, evidentemente, es recurrir al cálculo por ordenador.
  • 4. 1.-¿Cómo utilizar la tabla de la distribución de Poisson? Supongamos que X es una variable aleatoria que sigue la ley de Poisson con parámetro 0.9. Nos piden calcular la probabilidad de que X sea menor o igual que 3. Localizamos en la tabla λ=0.9, x=3 y tomamos la intersección:0.987. x λ 0 1 2 3 4 5 6 7 8 9 0,02 0,980 1,000 0,04 0,961 0,999 1,000 0,06 0,942 0,998 1,000 0,08 0,923 0,997 1,000 0,1 0,905 0,995 1,000 0,15 0,861 0,990 0,999 1,000 0,2 0,819 0,982 0,999 1,000 0,25 0,779 0,974 0,998 1,000 0,3 0,741 0,963 0,996 1,000 0,35 0,705 0,951 0,994 1,000 0,4 0,670 0,938 0,992 0,999 1,000 0,45 0,638 0,925 0,989 0,999 1,000 0,5 0,607 0,910 0,986 0,998 1,000 0,55 0,577 0,894 0,982 0,998 1,000 0,6 0,549 0,878 0,977 0,997 1,000 0,65 0,522 0,861 0,972 0,996 0,999 1,000 0,7 0,497 0,844 0,966 0,994 0,999 1,000 0,75 0,472 0,827 0,959 0,993 0,999 1,000 0,8 0,449 0,809 0,953 0,991 0,999 1,000 0,85 0,427 0,791 0,945 0,989 0,998 1,000 0,9 0,407 0,772 0,937 0,987 0,998 1,000 0,95 0,387 0,754 0,929 0,984 0,997 1,000 2.-¿Y si nos pidieran la probabilidad de que X fuera mayor que 3? En este caso nos tendríamos que fijar en que este suceso es el complementario del anterior y que por lo tanto la probabilidad buscada es de 1-0.987=0.013 3.-¿Y si nos pidieran la probabilidad de que X fuera exactamente 3? Una posibilidad seria calcular la probabilidad que X fuera menor o igual que 3 (0.987), la probabilidad que X fuera menor o igual que 2 (0.937) y restarlas, dando 0.05. Pero la
  • 5. fórmula de la función de probabilidad nos dará un resultado exacto ...0493982.0 !3 9.0 39.0 = ⋅− e 4.-¿Qué pasa si el parámetro λ no aparece de forma exacta en la tabla? Supongamos que tenemos una variable aleatoria X que se distribuye según una ley de Poisson con parámetro 4.65. Queremos calcular la probabilidad que X sea menor o igual que 7. Tomaremos los dos parámetros más cercanos a 4.65 que aparecen en la tabla, que son 4.6 y 4.8. Localizaremos las respectivas probabilidades x λ 0 1 2 3 4 5 6 7 8 9 3,8 0,022 0,107 0,269 0,473 0,668 0,816 0,909 0,960 0,984 0,994 4 0,018 0,092 0,238 0,433 0,629 0,785 0,889 0,949 0,979 0,992 4,2 0,015 0,078 0,210 0,395 0,590 0,753 0,867 0,936 0,972 0,989 4,4 0,012 0,066 0,185 0,359 0,551 0,720 0,844 0,921 0,964 0,985 4,6 0,010 0,056 0,163 0,326 0,513 0,686 0,818 0,905 0,955 0,980 4,8 0,008 0,048 0,143 0,294 0,476 0,651 0,791 0,887 0,944 0,975 5 0,007 0,040 0,125 0,265 0,440 0,616 0,762 0,867 0,932 0,968 5,2 0,006 0,034 0,109 0,238 0,406 0,581 0,732 0,845 0,918 0,960 5,4 0,005 0,029 0,095 0,213 0,373 0,546 0,702 0,822 0,903 0,951 5,6 0,004 0,024 0,082 0,191 0,342 0,512 0,670 0,797 0,886 0,941 La interpolación a realizar es la siguiente: 9005.0)905.0887.0( 6.48.4 6.465.4 905.0 =−⋅ − − + 5.-Comentarios acerca de la distribución binomial Siempre que se utilice una variable aleatoria binomial con los parámetros p muy grande y n muy pequeño, podemos aproximarla por una variable aleatoria Poisson con parámetro: λ = n·p. Un posible ejemplo es éste: un fabricante produce artículos de los cuales alrededor de 1 cada 1000 son defectuosos. O sea, p=0.001. Si consideramos la distribución binomial encontramos que en un lote de 500 artículos la probabilidad de que ninguno sea defectuoso es (0.999)500 =0.609. Si utilizamos la aproximación de Poisson obtenemos e-0.5 =0.607 (se puede mirar en la tabla). La probabilidad de encontrar dos o más articulos defectuosos sería, según la aproximación de Poisson y mirando a la tabla, 1-0.91=0.09. En el caso que tanto p como n sean muy grandes, sería necesario aproximarla mediante la distribución normal.
  • 6. 6.-¿Cómo se hace para, dado p, calcular el valor x tal que P(X ≤ x)=p, siendo X una variable aleatoria Poisson? Supongamos que X se distribuye como una Poisson con parámetro λ=12, y nos dan p=0.772. Para calcular la x correspondiente tomamos la tabla y localizamos λ=12. X λ 0 1 2 3 4 5 6 7 8 9 13 0,000 0,000 0,000 0,001 0,004 0,011 0,026 0,054 0,100 0,166 13,5 0,000 0,000 0,000 0,001 0,003 0,008 0,019 0,041 0,079 0,135 14 0,000 0,000 0,000 0,000 0,002 0,006 0,014 0,032 0,062 0,109 14,5 0,000 0,000 0,000 0,000 0,001 0,004 0,010 0,024 0,048 0,088 15 0,000 0,000 0,000 0,000 0,001 0,003 0,008 0,018 0,037 0,070 10 11 12 13 14 15 16 17 18 19 10,5 0,521 0,639 0,742 0,825 0,888 0,932 0,960 0,978 0,988 0,994 11 0,460 0,579 0,689 0,781 0,854 0,907 0,944 0,968 0,982 0,991 11,5 0,402 0,520 0,633 0,733 0,815 0,878 0,924 0,954 0,974 0,986 12 0,347 0,462 0,576 0,682 0,772 0,844 0,899 0,937 0,963 0,979 12,5 0,297 0,406 0,519 0,628 0,725 0,806 0,869 0,916 0,948 0,969 13 0,252 0,353 0,463 0,573 0,675 0,764 0,835 0,890 0,930 0,957 13,5 0,211 0,304 0,409 0,518 0,623 0,718 0,798 0,861 0,908 0,942 14 0,176 0,260 0,358 0,464 0,570 0,669 0,756 0,827 0,883 0,923 14,5 0,145 0,220 0,311 0,413 0,518 0,619 0,711 0,790 0,853 0,901 15 0,118 0,185 0,268 0,363 0,466 0,568 0,664 0,749 0,819 0,875 Nos fijamos entonces que la x correspondiente es 14. Si nos dan por ejemplo p=0.72, λ=14.5, entonces tomamos el valor inmediatamente inferior a 0.72 que aparece en la tabla para λ=14.5. En nuestro caso es 0.711, que corresponde a x=16. Notemos que en este caso no hacemos interpolación lineal ya que la ley Poisson es discreta y por lo tanto no tiene sentido dar un valor no entero, como 16.2.
  • 7. 1. ¿Cómo se usa la tabla de la distribución normal para averiguar p=FZ(z), dado z>0? Supongamos z=1.66. ¿Cuál es la probabilidad de que Z<1.66? Se descompone el número en 1.6+0.06, y se busca en la intersección: el resultado es 0.9515. z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767 2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890 2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.5 0.9938 0.9940 0.9941 0.9943 … … … … … … 2. ¿Y si z<0? En ese caso, P(Z<z) = P(Z>-z) = 1-P(Z<-z) = 1- FZ(-z); por ejemplo, ¿cuál es la probabilidad de que Z sea menor que –1.38? Según la tabla, a 1.38 le corresponde 0.9162, luego el valor que buscamos es 0.0838.
  • 8. 3. ¿Cómo se hace para, dado p>0.5, encontrar el valor z tal que P(Z<z)=p? Supongamos p=0.71. Buscamos en la tabla la o las celdas que más se parezcan a este valor. z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517 0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015 1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.8 0.9641 0.9649 0.9656 0.9664 0.9671 … … … … … Sabemos que el valor z está entre 0.55 y 0.56, mirando la fila y columnas implicadas. Por regla de 3 simple nos podemos aproximar bastante: z = 0.55+(0.56-0.55)(0.71-0.7088)/(0.7123-0.7088) = 0.5534 4. ¿Y si p<0.5? Se trata de aplicar otra vez la inversión de antes: tomamos 1-p (que ya será mayor que 0.5) y buscamos en la tabla; luego cambiamos el signo al valor hallado. Ejemplo: tenemos p=0.09. Buscamos el correspondiente a 0.91, el cual será un valor muy próximo a 1.34. Luego, el valor z será aproximadamente –1.34.
  • 9. Ejercicios para practicar el uso de las tablas 1. Binomial. 1.1. Calcule el valor de la función de distribución en los siguientes puntos x, con los parámetros n y p que se indican: n=5, p=0.25, x=2 n=10, p=0.35, x=2 n=8, p=0.05, x=1 n=7, p=0.5, x=5 n=4, p=0.4, x=3 n=8, p=0.75, x=3 n=14, p=0.75, x=2 n=10, p=0.8, x=7 n=13, p=0.95, x=6 2. Poisson 2.1. Calcule el valor de la función de distribución en los siguientes puntos x, con el parámetro λ que se indica: λ=2, x=3 λ=3.5, x=3 λ=4, x=6 λ=1.2, x=3 λ=0.4, x=0 λ=7, x=5 λ=8, x=12 λ=4, x=12 2.2. Calcule aproximadamente la inversa de la función de distribución, para los siguientes valores de probabilidad p, con el parámetro λ que se indica: λ=9, p=0.5 λ=7, p=0.95 λ=15, p=0.95 λ=15, p=0.1 3. Normal 3.1. Calcule el valor de la función de distribución en los siguientes puntos z: z=0.28 z=0.69 z=1.25 z=1.64 z=1.81 z=2.02 z=2.17 z=2.77 3.2. Calcule el valor de la función de distribución en los siguientes puntos z: z=-0.08 z=-0.42 z=-1.0 z=-1.50 z=-1.79 z=-2.02 z=-2.35 z=-3.14 3.3. Calcule aproximadamente la inversa de la función de distribución, para los siguientes valores de probabilidad p: p=0.6846 p=0.8364 p=0.4248 p=0.2336 p=0.1745 p=0.7355 p=0.0367 p=0.9500