SlideShare una empresa de Scribd logo
Folio EST 02-02
Materia:
Folio:
Fecha:
Autores:
VIGAS HIPERESTATICAS
Estructura II
EST 2-02
Noviembre/2000
Arqto. Verónica Veas B.
Arqto. Jing Chang Lou
2
MATERIAL EXCLUSIVO DE USO DOCENTE 3
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
I.- INTRODUCCION
El análisis de las deformaciones en vigas nos permite
limitar los descensos de las mismas, entregando secciones
adecuadas y por otra parte incorporar nuevas expresiones
para resolver vigas hiperestáticas.
Una forma de enfocar la resolución de las vigas
hiperestáticas consiste en descomponer la viga inicial en
varias vigas cuyo efecto sumado equivalga a la situación
original.
Las solicitaciones externas, cargas y reacciones, generan
cortante, momento y deformación, siendo válido el
principio de descomposición de las vigas en vigas cuyas
acciones sumen el mismo efecto.
Este principio puede ser aplicado a vigas hiperestáticas,
tales como
Vigas bi-empotradas
Vigas empotrada-apoyada
Vigas continuas
4
VIGA EMPOTRADA EN AMBOS EXTREMOS CON CARGA
UNIFORMEMENTE REPARTIDA
En el caso de viga empotrada en sus dos extremos, la
cantidad de reacciones desconocidas supera a la de
ecuaciones que la estática dispone para el sistema. Para
resolver las incógnitas es necesario disponer de otras
ecuaciones basadas en las deformaciones.
Considerando que las pendientes de las tangentes trazadas
en los dos extremos es nula, se plantean las siguientes
ecuaciones
ΣφA= 0 ΣφB = 0
Para establecer las ecuaciones se descompone la viga dada
en tres vigas supuestas que en conjunto equivalgan a la
viga inicial.
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo izquierdo (Ma).
c.- Viga simplemente apoyada con momento aplicado en el
extremo derecho (Mb).
.
Si las pendientes de las tangentes trazadas en los dos
extremos son nulas, se igualan los valores de ángulo en los
extremos de las tres vigas supuestas a cero.
ΣφA= 0
MATERIAL EXCLUSIVO DE USO DOCENTE 5
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
EI
3
MeL
EI
6
MeL
24
qL
0
3
−
−
=
Como la viga es simétrica los momentos aplicados en
ambos extremos son iguales
Ma = Mb = Me
EI
24
qL
EI
6
MeL
2
MeL 3
=
+
Una vez determinados los momentos de empotramiento, la
viga puede ser analizada como un elemento isostático. Se
despeja el momento de tramo, considerando la viga
simplemente apoyada con carga repartida uniformemente y
un momento Me aplicado en cada extremo de la viga
2
qL
Rb
Ra =
=
Me
2
qx
2
qLx
Mx
2
−
−
=
El momento máximo en una viga simétrica se encuentra en
X=L/2
Me
2
L
2
q
2
L
2
qL
M
2
)
2
/
L
( −






−
=
12
qL
8
qL
4
qL
M
2
2
2
)
2
/
L
( −
−
=
24
qL
M
2
)
2
/
L
( =
Como la viga es simétrica la flecha máxima se encuentra en
el punto medio de la viga, es decir, Ymax cuando X= L/2..
Una forma de resolver es sumar las flechas en X= L/2 de las
tres vigas supuestas en la descomposición anterior.
La flecha cuando X= L/2 de una viga con carga
uniformemente repartida, ya calculada anteriormente, es:
24
qL
M
2
MAX =
12
qL
Me
2
=
6
EI
384
qL
5
Y
4
MAX =
Se determina la flecha en X= L/2 de una viga con momento
aplicado en un extremo, en este ejemplo se plica el
método de viga conjugada.
2
L
3
1
2
1
2
L
EI
2
MeL
2
L
EI
6
MeL
'
M 2
/
L −
=
EI
16
MeL
'
M
2
2
/
L =
Reemplazando el valor de Me se obtiene
EI
16
L
12
qL
'
M
2
2
2
/
L =
EI
192
qL
'
M
Y
4
2
/
L
2
/
L =
=
Si sumamos las tres deformaciones obtendremos la
deformación máxima de la viga
EI
192
qL
EI
192
qL
EI
384
qL
5
Y
4
4
4
MAX −
−
=
EI
384
qL
Y
4
MAX =
MATERIAL EXCLUSIVO DE USO DOCENTE 7
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
VIGA EMPOTRADA EN UN EXTREMO Y SIMPLEMENTE
APOYADA EN EL OTRO, CON CARGA UNIFORMEMENTE
DISTRIBUIDA.
En este caso de viga empotrada en uno de sus extremos, la
cantidad d
e reacciones desconocidas también supera a la
de ecuaciones de estática. Para resolver las incógnitas es
necesario disponer de las ecuaciones basadas en las
deformaciones.
Considerando que la pendiente de la tangente trazada en el
extremo empotrado es nula, se plantea la ecuación:
φA= 0
Se descompone la viga inicial en dos vigas supuestas que en
conjunto equivalen a la viga inicial.
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo izquierdo.
Se iguala los valores de ángulo en el apoyo izquierdo de las
dos vigas supuestas a cero.
ΣφA= 0
EI
3
MeL
EI
24
qL
0
3
−
=
EI
24
qL
EI
3
MeL
3
=
8
qL
Me
2
=
8
Para determinar el momento de tramo, se considera la viga
simplemente apoyada con carga repartida uniformemente y
un momento Me aplicado en el extremo reemplazando el
empotramiento inicial.
Las reacciones se pueden determinar sumando las
reacciones de las vigas supuestas.
8
qL
5
8
qL
2
qL
L
Me
2
qL
Ra =
+
=
+
=
8
qL
3
8
qL
2
qL
L
Me
2
qL
Rb =
−
=
−
=
El momento es máximo cuando el cortante es nulo.
Qx=0
0
x
.
q
8
qL
5
=
−
8
L
5
X =
Me
2
qx
8
qLx
5
Mx
2
−
−
=
8
qL
8
L
5
2
q
8
L
5
8
qL
5
M
2
2
MAX −






−
=
8
qL
128
qL
25
64
qL
25
M
2
2
2
MAX −
−
=
Deformación de la viga,:
Para determinar los valores máximos de pendiente y
flecha, en este ejemplo, se aplica el método de doble
integración. Para lo cual se establece la ecuación general
de momento y a su vez la ecuación diferencial de la
elástica.
2
qx
8
qL
8
qLx
5
Mx
2
2
−
−
=
2
qx
8
qL
8
qLx
5
dx
y
d
EI
2
2
2
2
−
−
=
128
qL
9
M
2
MAX =
MATERIAL EXCLUSIVO DE USO DOCENTE 9
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
Integrando dos veces la ecuación se obtiene:
1
3
2
2
C
6
qx
8
x
qL
16
qLx
5
dx
dy
EI +
−
−
=
2
1
4
2
2
3
C
x
C
24
qx
16
x
qL
48
qLx
5
y
.
EI +
+
−
−
=
Según la deformación de la viga, la pendiente es nula en el
extremo empotrado.
Si X=0 C1=0
Según las condiciones de apoyo, la flecha es nula en los
apoyos.
Si X=0 o X=L C2=0
Para determinar la flecha máxima de la viga es necesario
primero ubicar el punto en donde la tangente trazada por
dicho punto sea de pendiente nula, por lo tanto se iguala la
ecuación de pendiente a cero
0
6
qx
8
x
qL
16
qLx
5 3
2
2
=
−
− / se factoriza por qx/2
0
6
qx
8
L
8
Lx
5
2
qx 2
2
=








−
−
X1=0 punto de empotramiento
0
3
x
4
L
8
Lx
5 2
2
=
−
− /*24
0
x
8
L
6
Lx
15 2
2
=
−
−
Ordenando la ecuación se tiene
0
L
6
Lx
15
x
8 2
2
=
−
+
−
( ) ( )( )
( )
8
.
2
L
6
.
8
.
4
L
15
L
15
X
2
−
−
−
−
±
−
=
16
L
192
L
225
L
15
X
2
2
−
−
±
−
=
L
58
,
0
16
L
33
L
15
X
2
2 =
−
+
−
= punto de flecha máxima.
L
3
,
1
16
L
33
L
15
X
2
3 =
−
−
−
= punto fuera de la viga.
10
Se determina la flecha cuando X = 0.58L para obtener la
deformación máxima de la viga.
( ) ( ) ( )4
2
2
3
L
58
,
0
EI
24
q
L
58
,
0
EI
16
qL
L
58
,
0
EI
48
qL
5
Y −
−
=
EI
qL
005
,
0
EI
185
qL
Y
4
4
MAX =
=
MATERIAL EXCLUSIVO DE USO DOCENTE 11
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
VIGA CONTINUA DE DOS TRAMOS CON CARGA
UNIFORMEMENTE REPARTIDA.
En este caso de viga continua, la cantidad de reacciones
desconocidas también supera a la de ecuaciones de
estática. Se establece entonces ecuaciones basada en las
deformaciones.
El ángulo que genera la tangente trazada en un punto de la
curva de la línea elástica, medido hacia la izquierda es de
igual valor, pero de signo contrario que si se mide hacia la
derecha.
φBi z q u i e r d o =-φBderecho por ángulos opuestos por el vértice
El momento de continuidad que se genera es en este caso
nuestra primera incógnita. Para resolverla se separa la viga
continua en dos tramos y éstos a su vez, se descomponen
en dos vigas supuestas que en conjunto equivalen a la viga
inicial.
TRAMO 1
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo derecho.
12
TRAMO 2
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo izquierdo.
Se iguala los valores de ángulos a ambos lados del apoyo B
para determinar el momento de continuidad entre ambos
tramos.
ΣφBizquierdo=-ΣφBderecho
EI
3
MbL
EI
24
qL
EI
3
MbL
EI
24
qL 3
3
+
−
=
−
EI
12
qL
EI
3
MbL
2 3
= /*EI/L
12
qL
3
Mb
2
2
=
Una vez determinado el momento de continuidad, se pude
analizar cada tramo de viga como elemento isostático. El
momento máximo del primer tramo, se determina
considerando a ese tramo por separado como una viga
simplemente apoyada con carga uniformemente repartida y
un momento Mb aplicado en el extremo derecho de la viga.
8
qL
Mb
2
=
MATERIAL EXCLUSIVO DE USO DOCENTE 13
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
Para determinar las reacciones en los apoyos se pueden
sumar las reacciones de las vigas supuestas en el tramo.
8
qL
2
qL
L
Mb
2
qL
Ra −
=
−
=
8
qL
3
Ra =






+
=
L
Mb
2
qL
Rbizquierdo






+
=
8
qL
2
qL
Rbizquierdo
8
qL
5
Rbizquierdo =
Con las reacciones despejadas se establece la ecuación
general de momento para el primer tramo de la viga
2
qx
8
qLx
3
Mx
2
−
=
El momento es máximo cuando la cortante es nula.
Qx= 0
0
qx
8
qL
3
Qx =
−
=
8
L
3
x =
Reemplazando el valor de x en la ecuación de momento se
obtiene
8
L
3
8
L
3
2
q
8
L
3
8
qL
3
MMAX −
=
128
qL
9
64
qL
9
M
2
2
MAX −
=
Por simetría se deduce que este valor de momento máximo
también es válido para el segundo tramo: Mt1 = Mt2
128
qL
9
Mt
2
1 =
.
14
VIGA CONTINUA DE TRES TRAMOS CON CARGA
UNIFORMEMENTE REPARTIDA.
Considerando que las tangentes trazadas en los apoyos
centrales generan ángulos iguales en el lado izquierdo y en
el lado derecho pero de signo contrario, por lo tanto se
deduce que
φBizquierdo =-φBderecho por ángulos opuestos por el vértice
φCizquierdo =-φCderecho por ángulos opuestos por el vértice
Se descompone la viga en sus tres tramos y éstas a su vez
se descomponen en vigas que en conjunto equivalen a la
viga inicial.
TRAMO 1
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo derecho (Mb).
MATERIAL EXCLUSIVO DE USO DOCENTE 15
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
TRAMO 2
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo izquierdo (Mb).
c.- Viga simplemente apoyada con momento aplicado en el
extremo derecho (Mc).
TRAMO 3
a.- Viga simplemente apoyada con carga uniformemente
repartida.
b.- Viga simplemente apoyada con momento aplicado en el
extremo izquierdo (Mc).
16
Se igualan los ángulos a ambos lados del apoyo B, por ser
opuestos por el vértice; y del mismo modo se procede en el
apoyo C
ΣφBizquierdo=-ΣφBderecho
EI
6
McL
EI
3
MbL
EI
24
qL
EI
3
MbL
EI
24
qL 3
3
+
+
−
=
− *EI/L
EI
24
qL
2
6
Mc
3
Mb
2 3
−
=
+
ΣφCizquierdo=-ΣφCderecho
EI
3
McL
EI
24
qL
EI
3
McL
EI
6
MbL
EI
24
qL 3
3
+
−
=
−
− *EI/L
24
qL
2
3
M c
2
6
Mb
2
=
+
Por simetría: Mb = Mc = M
24
qL
2
6
M
3
M
2 2
=
+
12
qL
6
M
5 2
=
Una vez determinados los momentos de continuidad Mb y
Mc se puede analizar cada tramo por separado como
elemento isostático.
El momento máximo del primer tramo se determina
considerando a ese tramo como una viga simplemente
apoyada con carga repartida uniformemente y un momento
Mb aplicado en el extremo derecho de la viga.
10
qL
2
qL
L
Mb
2
qL
Ra −
=
−
=
5
qL
2
10
qL
4
Ra =
=
10
qL
2
qL
L
Mb
2
qL
Rb +
=
+
=
10
ql
M
Mc
Mb
2
=
=
=
MATERIAL EXCLUSIVO DE USO DOCENTE 17
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
5
qL
3
10
qL
6
Rb =
=
Con las reacciones despejadas se establece la ecuación
general de momento para el tramo
2
qx
10
qLx
4
M x
2
−
=
El momento es máximo cuando el cortante es nulo.
0
qx
10
qL
4
Qx =
−
=
5
L
2
x =
Reemplazando el valor de x en la ecuación general de
momento se obtiene
5
L
2
5
L
2
2
q
5
L
2
10
qL
4
MMAX −
=
50
qL
4
25
qL
4
M
2
2
MAX −
=
Por simetría se deduce que este valor de momento máximo
también es válido para el tercer tramo es decir, Mt1 = Mt3.
Para determinar el momento máximo del segundo tramo,
se analiza este tramo como una viga simplemente apoyada
con carga repartida uniformemente y un momento aplicado
en cada extremo.
L
Mc
L
Mb
2
qL
Rbderecho −
+
=
2
qL
Rbderecho =
2
qL
Rc
Rb izquierdo
derecho =
=
Nuevamente se establece la ecuación general de momento,
pero correspondiente al segundo tramo.
2
qx
2
qLx
10
qL
Mx
2
2
−
+
−
=
25
qL
2
Mt
2
1 =
18
Por simetría el momento es máximo cuando X=L/2
2
L
2
L
2
q
2
L
2
qL
10
qL
Mx
2
−
+
−
=
8
qL
4
qL
10
qL
Mx
2
2
2
−
+
−
=
40
qL
Mt
2
2 =
MATERIAL EXCLUSIVO DE USO DOCENTE 19
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
TEOREMA DE LOS TRES MOMENTOS.
Para deducir el teorema de los tres momentos es necesario
considerar que al existir continuidad del elemento
estructural se producen momentos flectores en los apoyos
intermedios. Cada tramo de viga es afectado por su carga y
por los momentos de continuidad que se producen en sus
extremos.
Para analizar el punto B se consideran dos tramos continuos
de la viga y los potenciales momentos de continuidad en los
extremos.
En el apoyo B se plantea entonces que
ΣφBizquierdo= -ΣφBderecho








−
−
−
=
−
−
EI
6
McL
EI
3
MbL
EI
24
qL
EI
3
MbL
EI
6
MaL
EI
24
qL 2
2
3
2
1
1
3
1
EI
24
qL
EI
24
qL
EI
6
McL
EI
3
MbL
EI
3
MbL
EI
6
MaL 3
2
3
1
2
2
1
1
+
=
+
+
+
20
Reemplazando L/EI por λ (módulo de flexibilidad)
24
qL
24
qL
6
Mc
3
Mb
3
Mb
6
Ma 2
2
2
1
2
1
2
2
1
1 λ
+
λ
=
λ
+
λ
+
λ
+
λ
/*6
Al amplificar la expresión 6 veces se tiene







 λ
+
λ
=
λ
+
λ
+
λ
+
λ
24
qL
24
qL
*
6
Mc
Mb
2
Mb
2
Ma 2
2
2
1
2
1
2
2
1
1
( )







 λ
+
λ
=
λ
+
λ
+
λ
+
λ
24
qL
24
qL
*
6
Mc
.
Mb
2
Ma 2
2
2
1
2
1
2
2
1
1
Por lo general en una viga continua el material y la sección
de la viga es el mismo a lo largo de ella, entonces la
elasticidad y la inercia son constantes, por lo que el
módulo de flexibilidad está en función de la luz, en otras
palabras
Si EI= constante λ =L
Reemplazando ? =L en la ecuación se tiene
( )








+
=
+
+
+
24
qL
24
qL
*
6
McL
L
L
.
Mb
2
MaL
3
2
3
1
2
2
1
1
Reemplazando
24
qL3
1
por Tc1 y
24
qL3
2
por Tc2 se obtiene la
ecuación de los tres momentos, conocido también como el
teorema de Clapeyrón.:
Siendo Tc1 y Tc2 ángulos que generan las cargas aplicadas a
la viga en el tramo izquierdo y derecho con respecto al
apoyo central multiplicado por 6EI
El teorema de los tres momentos, también conocido como
teorema de Clapeyrón, se aplica sobre dos tramos de la
viga, en donde se analizan las cargas aplicadas en ella y los
momentos flectores en los apoyos, es decir, el teorema
relaciona tres momentos y dos regímenes de carga de una
viga continua.
( ) [ ]
2
1
2
2
1
1 Tc
Tc
*
6
McL
L
L
.
Mb
2
MaL +
=
+
+
+
MATERIAL EXCLUSIVO DE USO DOCENTE 21
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
APLICACIÓN DEL TEOREMA DE CLAPEYRON.
VIGA CONTINUA DE DOS TRAMOS CON CARGA
UNIFORMEMENTE REPARTIDA.
Como la viga es de dos tramos se aplica directamente el
teorema de Clapeyrón, reemplazando los valores en la
expresión se determina el momento en el apoyo central.
( ) [ ]
2
1
2
2
1
1 Tc
Tc
*
6
McL
L
L
.
Mb
2
MaL +
=
+
+
+
En este caso el Tc1 al igual que Tc2 corresponde al ángulo
en el apoyo central de la viga, producto la carga
uniformemente repartida, y multiplicado por EI.
24
qL
EI
.
EI
24
qL
Tc
Tc
3
3
2
1 =
=
=
Reemplazando Tc1 y Tc2 en la ecuación se tiene
( )








+
=
+
+
+
24
qL
24
qL
*
6
L
.
0
L
L
.
Mb
2
L
.
0
3
2
3
1
2
2
1
1
( ) 4
qL
4
qL
L
L
.
Mb
2
3
2
3
1
2
1 +
=
+ si L1 = L2
2
qL
L
2
Mb
2
3
=
Para determinar los momentos de tramo se deberá analizar
cada tramo como elemento isostático, es decir, como una
viga simplemente apoyada con una carga uniformemente
repartida y con el momento de continuidad Mb en el
extremo, (Ejemplo analizado en las páginas 13-14)
8
qL
Mb
2
=
22
APLICACIÓN DEL TEOREMA DE CLAPEYRON.
VIGA EMPOTRADO EN UN EXTREMO Y APOYADO EN EL
OTRO CON CARGA UNIFORMEMENTE REPARTIDA.
Esta viga anteriormente analizada, se puede resolver
también por el teorema de Clapeyrón. Para su aplicación,
es importante considerar que este teorema relaciona tres
momentos y dos regímenes de carga. Esta viga es de un
solo tramo y el momento en el empotramiento es la
incógnita a resolver; para lo cual es necesario generar un
tramo ficticio en el extremo izquierdo, quedando así una
viga continua de dos tramos y el momento de
empotramiento como incógnita en la ecuación.
( ) 2
2
1
1
2
2
1
1 L
Tc
L
Tc
McL
L
L
.
Mb
2
MaL +
=
+
+
+
Como Tc1 corresponde al tramo ficticio, es nulo. Mientras
que Tc2 corresponde al ángulo que produce la carga
uniformemente repartida en el tramo real, y multiplicado
por EI
( )








+
=
+
+
+
24
qL
0
*
6
L
.
0
L
L
.
Mb
2
L
.
0
3
1
1
1
0
0
4
qL
L
.
Mb
2
3
1
1 =
Despejada la incógnita (Momento de Empotramiento) se
puede determinar el momento de tramo de la viga si se
analiza la viga como elemento isostático: viga simplemente
apoyada con carga uniformemente repartida con un
momento aplicado en el extremo generando el mismo
efecto del empotramiento. (Ejemplo analizado en las
páginas 9-10-11)
8
qL
Mb
2
=
MATERIAL EXCLUSIVO DE USO DOCENTE 23
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
APLICACIÓN DEL TEOREMA DE CLAPEYRON.
VIGA DE DOS TRAMOS EMPOTRADO EN UN EXTREMO CON
CARGA PUNTUAL EN EL CENTRO DEL SEGUNDO TRAMO.
Esta viga a pesar de tener carga solamente en el segundo
tramo, la deformación se produce en toda la viga por la
condición de continuidad. Las dos incógnitas a resolver son
los momentos de empotramiento y de continuidad, para lo
cual es imprescindible plantear dos ecuaciones:
La primera ecuación relaciona el tramo ficticio y el primer
tramo; y la segunda relaciona el primer tramo con el
segundo, quedando así los momentos de empotramiento y
de continuidad como incógnitas en las dos ecuaciones.
TRAMOS 0-1
( ) [ ]
1
0
1
1
0
0 Tc
Tc
*
6
MbL
L
L
.
Ma
2
MoL +
=
+
+
+
En este caso los términos de carga Tc0 y Tc1 son nulos, ya
que el Tc0 corresponde al tramo ficticio y Tc1 al primer
tramo que no tiene carga alguna.
( ) [ ]
0
0
*
6
MbL
L
L
.
Ma
2
L
.
0 1
1
0
0 +
=
+
+
+
0
MbL
L
.
Ma
2 1
1 =
+
2
Mb
Ma −
=
24
TRAMO 1-2
( ) [ ]
2
1
2
2
1
1 Tc
Tc
2
McL
L
L
.
Mb
2
MaL +
=
+
+
+
En este caso el término de carga Tc2 corresponde al ángulo
producido por una carga puntual, y multiplicado EI.
16
PL
EI
.
EI
16
PL
Tc
2
2
2 =
=
( )








+
=
+
+
+
16
PL
0
*
6
L
.
0
L
L
2
.
Mb
2
L
2
Ma
2
8
PL
3
MbL
6
MaL
2
2
=
+
Se reemplaza el valor de Ma obtenida en la ecuación del
tramo 0-1
8
PL
3
MbL
6
L
.
2
Mb
2
2
=
+






−
8
PL
3
MbL
6
MbL
2
=
+
−
8
PL
3
MbL
5
2
=
Si Ma = -Mb/2 entonces
Ya despejadas los momentos de empotramiento (Ma) y de
continuidad (Mb), se puede determinar el momento del
segundo tramo, analizando el tramo como una viga
isostática con carga puntual (P) en el centro y el momento
de continuidad (Mb) aplicado en el extremo.
80
PL
3
Ma
2
−
=
40
PL
3
Mb =
MATERIAL EXCLUSIVO DE USO DOCENTE 25
MORFOLOGÍA ESTRUCTURAL
Folio EST 2-02
Al igual que en los casos anteriores, para determinar la
reacción en el apoyo B se suma las reacciones de las dos
vigas supuestas que se puede descomponer este tramo.
40
P
23
40
P
20
P
3
2
P
40
P
3
Rb =
+
=
+
=
40
P
17
40
P
20
P
3
2
P
40
P
3
Rc =
+
−
=
+
−
=
El momento máximo se encuentra en el centro donde se
encuentra la carga puntual.
2
L
40
P
23
40
PL
3
MMAX +
−
=
80
PL
23
40
PL
3
MMAX +
−
=
80
PL
23
PL
6
MMAX
+
−
=
80
PL
17
MMAX =

Más contenido relacionado

PDF
Defroomacion de vigas empotradsa
PDF
Tarea vigas hiperestaticas
PDF
Vigas hiperestaticas
PDF
Vigas hiperestaticas
PDF
Deformacion en vigas isostatizadas
PDF
Deformaci n en_vigas (1)
PDF
Defenvigas 101206072916-phpapp01
PDF
Deformacion en vigas
Defroomacion de vigas empotradsa
Tarea vigas hiperestaticas
Vigas hiperestaticas
Vigas hiperestaticas
Deformacion en vigas isostatizadas
Deformaci n en_vigas (1)
Defenvigas 101206072916-phpapp01
Deformacion en vigas

Similar a Vigas_hiperestaticas.pdf (20)

PDF
Deformacion en vigas (2)
PDF
Deformacion en vigas
DOC
Resistencia de materiale vigas indeterminadas
PDF
Ejercicios de deformación en vigas
PDF
SESIÓN 8 Isostatica Hiperestática Henostroza Rover.pdf
DOC
Resistencia de materiales
PDF
SESIÓN 8 Vigas Isostática Hiperestática
PDF
Ideas Principales
DOCX
Informe resistencia
PDF
0153 b01 p04_d_estructuras_hiperestaticas
PPTX
Cap 3 Deflexión en Vigas estructuras.pptx
PDF
teoria de flexion simple en vigas_resistencia de materiales
PDF
Apuntes resistencia de materiales iii
PDF
Apuntes resistencia de materiales iii
PDF
Apuntes resistencia de materiales iii
PDF
Apuntes resistencia de materiales iii
PDF
Apuntes resistencia de materiales
PDF
Apuntes resistencia de materiales iii
PDF
Bajar
Deformacion en vigas (2)
Deformacion en vigas
Resistencia de materiale vigas indeterminadas
Ejercicios de deformación en vigas
SESIÓN 8 Isostatica Hiperestática Henostroza Rover.pdf
Resistencia de materiales
SESIÓN 8 Vigas Isostática Hiperestática
Ideas Principales
Informe resistencia
0153 b01 p04_d_estructuras_hiperestaticas
Cap 3 Deflexión en Vigas estructuras.pptx
teoria de flexion simple en vigas_resistencia de materiales
Apuntes resistencia de materiales iii
Apuntes resistencia de materiales iii
Apuntes resistencia de materiales iii
Apuntes resistencia de materiales iii
Apuntes resistencia de materiales
Apuntes resistencia de materiales iii
Bajar
Publicidad

Más de ricardo patiño rendon (16)

PDF
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
PDF
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
PPTX
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
DOCX
TEORIA WIL.docx
PDF
examendegeo-220422203431.pdf
PDF
MECANICA_DE_SUELOS_II.pdf
PDF
MECANICA_DE_SUELOS_II (1).pdf
PDF
388-Texto del artículo-1594-2-10-20161110.pdf
PDF
Evaluación Final_2022-00 Sixto Quispe Fernandez.pdf
PDF
Capitulo19.pdf
PDF
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
DOCX
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
PDF
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
DOCX
PA1_PATIÑO RENDON_RICARDO (1).docx
PDF
PA1_PATIÑO RENDON_RICARDO.pdf
DOCX
PA1_PATIÑO RENDON_RICARDO.docx
Problemas_Resueltos_de_Mecanica_de_Suelo.pdf
385536492-Cuaderno-de-Trabajo-de-Geotecnia-II.pdf
Sem 2-4. UCONTI. EXPLORACIÓN DEL SUBSUELO. SPT-EJERCICIOS..pptx
TEORIA WIL.docx
examendegeo-220422203431.pdf
MECANICA_DE_SUELOS_II.pdf
MECANICA_DE_SUELOS_II (1).pdf
388-Texto del artículo-1594-2-10-20161110.pdf
Evaluación Final_2022-00 Sixto Quispe Fernandez.pdf
Capitulo19.pdf
TALLER DE INVESTIGACION _ PATIÑO _ OXA _ TRABAJO FINAL.pdf
Sharon_Joddai_Tesis_bachiller_2021-convertido.docx
Evaluación Final_2022-00 Sixto Quispe Fernandez (1).pdf
PA1_PATIÑO RENDON_RICARDO (1).docx
PA1_PATIÑO RENDON_RICARDO.pdf
PA1_PATIÑO RENDON_RICARDO.docx
Publicidad

Último (20)

PDF
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
DOCX
Programa_Sintetico_Fase_4.docx 3° Y 4°..
PPTX
Presentación de la Cetoacidosis diabetica.pptx
PDF
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
PDF
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
PDF
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
PDF
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
PPTX
Doctrina 1 Soteriologuia y sus diferente
PDF
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
PDF
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
PDF
TOMO II - LITERATURA.pd plusenmas ultras
DOCX
V UNIDAD - PRIMER GRADO. del mes de agosto
PDF
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
PDF
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
PDF
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
DOCX
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
PDF
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
PDF
Tomo 1 de biologia gratis ultra plusenmas
PDF
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
PDF
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo
Unidad de Aprendizaje 5 de Matematica 2do Secundaria Ccesa007.pdf
Programa_Sintetico_Fase_4.docx 3° Y 4°..
Presentación de la Cetoacidosis diabetica.pptx
PFB-MANUAL-PRUEBA-FUNCIONES-BASICAS-pdf.pdf
Gasista de unidades unifuncionales - pagina 23 en adelante.pdf
Los hombres son de Marte - Las mujeres de Venus Ccesa007.pdf
La Inteligencia Emocional - Fabian Goleman TE4 Ccesa007.pdf
Doctrina 1 Soteriologuia y sus diferente
Unidad de Aprendizaje 5 de Matematica 1ro Secundaria Ccesa007.pdf
Como Potenciar las Emociones Positivas y Afrontar las Negativas Ccesa007.pdf
TOMO II - LITERATURA.pd plusenmas ultras
V UNIDAD - PRIMER GRADO. del mes de agosto
Nadie puede salvarte excepto Tú - Madame Rouge Ccesa007.pdf
el - LIBRO-PACTO-EDUCATIVO-GLOBAL-OIEC.pdf
Aumente su Autoestima - Lair Ribeiro Ccesa007.pdf
PLAN DE AREA DE CIENCIAS SOCIALES TODOS LOS GRUPOS
Introduccion a la Investigacion Cualitativa FLICK Ccesa007.pdf
Tomo 1 de biologia gratis ultra plusenmas
MATERIAL DIDÁCTICO 2023 SELECCIÓN 1_REFORZAMIENTO 1° BIMESTRE_COM.pdf
5°-UNIDAD 5 - 2025.pdf aprendizaje 5tooo

Vigas_hiperestaticas.pdf

  • 1. Folio EST 02-02 Materia: Folio: Fecha: Autores: VIGAS HIPERESTATICAS Estructura II EST 2-02 Noviembre/2000 Arqto. Verónica Veas B. Arqto. Jing Chang Lou
  • 2. 2
  • 3. MATERIAL EXCLUSIVO DE USO DOCENTE 3 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 I.- INTRODUCCION El análisis de las deformaciones en vigas nos permite limitar los descensos de las mismas, entregando secciones adecuadas y por otra parte incorporar nuevas expresiones para resolver vigas hiperestáticas. Una forma de enfocar la resolución de las vigas hiperestáticas consiste en descomponer la viga inicial en varias vigas cuyo efecto sumado equivalga a la situación original. Las solicitaciones externas, cargas y reacciones, generan cortante, momento y deformación, siendo válido el principio de descomposición de las vigas en vigas cuyas acciones sumen el mismo efecto. Este principio puede ser aplicado a vigas hiperestáticas, tales como Vigas bi-empotradas Vigas empotrada-apoyada Vigas continuas
  • 4. 4 VIGA EMPOTRADA EN AMBOS EXTREMOS CON CARGA UNIFORMEMENTE REPARTIDA En el caso de viga empotrada en sus dos extremos, la cantidad de reacciones desconocidas supera a la de ecuaciones que la estática dispone para el sistema. Para resolver las incógnitas es necesario disponer de otras ecuaciones basadas en las deformaciones. Considerando que las pendientes de las tangentes trazadas en los dos extremos es nula, se plantean las siguientes ecuaciones ΣφA= 0 ΣφB = 0 Para establecer las ecuaciones se descompone la viga dada en tres vigas supuestas que en conjunto equivalgan a la viga inicial. a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo izquierdo (Ma). c.- Viga simplemente apoyada con momento aplicado en el extremo derecho (Mb). . Si las pendientes de las tangentes trazadas en los dos extremos son nulas, se igualan los valores de ángulo en los extremos de las tres vigas supuestas a cero. ΣφA= 0
  • 5. MATERIAL EXCLUSIVO DE USO DOCENTE 5 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 EI 3 MeL EI 6 MeL 24 qL 0 3 − − = Como la viga es simétrica los momentos aplicados en ambos extremos son iguales Ma = Mb = Me EI 24 qL EI 6 MeL 2 MeL 3 = + Una vez determinados los momentos de empotramiento, la viga puede ser analizada como un elemento isostático. Se despeja el momento de tramo, considerando la viga simplemente apoyada con carga repartida uniformemente y un momento Me aplicado en cada extremo de la viga 2 qL Rb Ra = = Me 2 qx 2 qLx Mx 2 − − = El momento máximo en una viga simétrica se encuentra en X=L/2 Me 2 L 2 q 2 L 2 qL M 2 ) 2 / L ( −       − = 12 qL 8 qL 4 qL M 2 2 2 ) 2 / L ( − − = 24 qL M 2 ) 2 / L ( = Como la viga es simétrica la flecha máxima se encuentra en el punto medio de la viga, es decir, Ymax cuando X= L/2.. Una forma de resolver es sumar las flechas en X= L/2 de las tres vigas supuestas en la descomposición anterior. La flecha cuando X= L/2 de una viga con carga uniformemente repartida, ya calculada anteriormente, es: 24 qL M 2 MAX = 12 qL Me 2 =
  • 6. 6 EI 384 qL 5 Y 4 MAX = Se determina la flecha en X= L/2 de una viga con momento aplicado en un extremo, en este ejemplo se plica el método de viga conjugada. 2 L 3 1 2 1 2 L EI 2 MeL 2 L EI 6 MeL ' M 2 / L − = EI 16 MeL ' M 2 2 / L = Reemplazando el valor de Me se obtiene EI 16 L 12 qL ' M 2 2 2 / L = EI 192 qL ' M Y 4 2 / L 2 / L = = Si sumamos las tres deformaciones obtendremos la deformación máxima de la viga EI 192 qL EI 192 qL EI 384 qL 5 Y 4 4 4 MAX − − = EI 384 qL Y 4 MAX =
  • 7. MATERIAL EXCLUSIVO DE USO DOCENTE 7 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 VIGA EMPOTRADA EN UN EXTREMO Y SIMPLEMENTE APOYADA EN EL OTRO, CON CARGA UNIFORMEMENTE DISTRIBUIDA. En este caso de viga empotrada en uno de sus extremos, la cantidad d e reacciones desconocidas también supera a la de ecuaciones de estática. Para resolver las incógnitas es necesario disponer de las ecuaciones basadas en las deformaciones. Considerando que la pendiente de la tangente trazada en el extremo empotrado es nula, se plantea la ecuación: φA= 0 Se descompone la viga inicial en dos vigas supuestas que en conjunto equivalen a la viga inicial. a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo izquierdo. Se iguala los valores de ángulo en el apoyo izquierdo de las dos vigas supuestas a cero. ΣφA= 0 EI 3 MeL EI 24 qL 0 3 − = EI 24 qL EI 3 MeL 3 = 8 qL Me 2 =
  • 8. 8 Para determinar el momento de tramo, se considera la viga simplemente apoyada con carga repartida uniformemente y un momento Me aplicado en el extremo reemplazando el empotramiento inicial. Las reacciones se pueden determinar sumando las reacciones de las vigas supuestas. 8 qL 5 8 qL 2 qL L Me 2 qL Ra = + = + = 8 qL 3 8 qL 2 qL L Me 2 qL Rb = − = − = El momento es máximo cuando el cortante es nulo. Qx=0 0 x . q 8 qL 5 = − 8 L 5 X = Me 2 qx 8 qLx 5 Mx 2 − − = 8 qL 8 L 5 2 q 8 L 5 8 qL 5 M 2 2 MAX −       − = 8 qL 128 qL 25 64 qL 25 M 2 2 2 MAX − − = Deformación de la viga,: Para determinar los valores máximos de pendiente y flecha, en este ejemplo, se aplica el método de doble integración. Para lo cual se establece la ecuación general de momento y a su vez la ecuación diferencial de la elástica. 2 qx 8 qL 8 qLx 5 Mx 2 2 − − = 2 qx 8 qL 8 qLx 5 dx y d EI 2 2 2 2 − − = 128 qL 9 M 2 MAX =
  • 9. MATERIAL EXCLUSIVO DE USO DOCENTE 9 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 Integrando dos veces la ecuación se obtiene: 1 3 2 2 C 6 qx 8 x qL 16 qLx 5 dx dy EI + − − = 2 1 4 2 2 3 C x C 24 qx 16 x qL 48 qLx 5 y . EI + + − − = Según la deformación de la viga, la pendiente es nula en el extremo empotrado. Si X=0 C1=0 Según las condiciones de apoyo, la flecha es nula en los apoyos. Si X=0 o X=L C2=0 Para determinar la flecha máxima de la viga es necesario primero ubicar el punto en donde la tangente trazada por dicho punto sea de pendiente nula, por lo tanto se iguala la ecuación de pendiente a cero 0 6 qx 8 x qL 16 qLx 5 3 2 2 = − − / se factoriza por qx/2 0 6 qx 8 L 8 Lx 5 2 qx 2 2 =         − − X1=0 punto de empotramiento 0 3 x 4 L 8 Lx 5 2 2 = − − /*24 0 x 8 L 6 Lx 15 2 2 = − − Ordenando la ecuación se tiene 0 L 6 Lx 15 x 8 2 2 = − + − ( ) ( )( ) ( ) 8 . 2 L 6 . 8 . 4 L 15 L 15 X 2 − − − − ± − = 16 L 192 L 225 L 15 X 2 2 − − ± − = L 58 , 0 16 L 33 L 15 X 2 2 = − + − = punto de flecha máxima. L 3 , 1 16 L 33 L 15 X 2 3 = − − − = punto fuera de la viga.
  • 10. 10 Se determina la flecha cuando X = 0.58L para obtener la deformación máxima de la viga. ( ) ( ) ( )4 2 2 3 L 58 , 0 EI 24 q L 58 , 0 EI 16 qL L 58 , 0 EI 48 qL 5 Y − − = EI qL 005 , 0 EI 185 qL Y 4 4 MAX = =
  • 11. MATERIAL EXCLUSIVO DE USO DOCENTE 11 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 VIGA CONTINUA DE DOS TRAMOS CON CARGA UNIFORMEMENTE REPARTIDA. En este caso de viga continua, la cantidad de reacciones desconocidas también supera a la de ecuaciones de estática. Se establece entonces ecuaciones basada en las deformaciones. El ángulo que genera la tangente trazada en un punto de la curva de la línea elástica, medido hacia la izquierda es de igual valor, pero de signo contrario que si se mide hacia la derecha. φBi z q u i e r d o =-φBderecho por ángulos opuestos por el vértice El momento de continuidad que se genera es en este caso nuestra primera incógnita. Para resolverla se separa la viga continua en dos tramos y éstos a su vez, se descomponen en dos vigas supuestas que en conjunto equivalen a la viga inicial. TRAMO 1 a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo derecho.
  • 12. 12 TRAMO 2 a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo izquierdo. Se iguala los valores de ángulos a ambos lados del apoyo B para determinar el momento de continuidad entre ambos tramos. ΣφBizquierdo=-ΣφBderecho EI 3 MbL EI 24 qL EI 3 MbL EI 24 qL 3 3 + − = − EI 12 qL EI 3 MbL 2 3 = /*EI/L 12 qL 3 Mb 2 2 = Una vez determinado el momento de continuidad, se pude analizar cada tramo de viga como elemento isostático. El momento máximo del primer tramo, se determina considerando a ese tramo por separado como una viga simplemente apoyada con carga uniformemente repartida y un momento Mb aplicado en el extremo derecho de la viga. 8 qL Mb 2 =
  • 13. MATERIAL EXCLUSIVO DE USO DOCENTE 13 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 Para determinar las reacciones en los apoyos se pueden sumar las reacciones de las vigas supuestas en el tramo. 8 qL 2 qL L Mb 2 qL Ra − = − = 8 qL 3 Ra =       + = L Mb 2 qL Rbizquierdo       + = 8 qL 2 qL Rbizquierdo 8 qL 5 Rbizquierdo = Con las reacciones despejadas se establece la ecuación general de momento para el primer tramo de la viga 2 qx 8 qLx 3 Mx 2 − = El momento es máximo cuando la cortante es nula. Qx= 0 0 qx 8 qL 3 Qx = − = 8 L 3 x = Reemplazando el valor de x en la ecuación de momento se obtiene 8 L 3 8 L 3 2 q 8 L 3 8 qL 3 MMAX − = 128 qL 9 64 qL 9 M 2 2 MAX − = Por simetría se deduce que este valor de momento máximo también es válido para el segundo tramo: Mt1 = Mt2 128 qL 9 Mt 2 1 = .
  • 14. 14 VIGA CONTINUA DE TRES TRAMOS CON CARGA UNIFORMEMENTE REPARTIDA. Considerando que las tangentes trazadas en los apoyos centrales generan ángulos iguales en el lado izquierdo y en el lado derecho pero de signo contrario, por lo tanto se deduce que φBizquierdo =-φBderecho por ángulos opuestos por el vértice φCizquierdo =-φCderecho por ángulos opuestos por el vértice Se descompone la viga en sus tres tramos y éstas a su vez se descomponen en vigas que en conjunto equivalen a la viga inicial. TRAMO 1 a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo derecho (Mb).
  • 15. MATERIAL EXCLUSIVO DE USO DOCENTE 15 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 TRAMO 2 a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo izquierdo (Mb). c.- Viga simplemente apoyada con momento aplicado en el extremo derecho (Mc). TRAMO 3 a.- Viga simplemente apoyada con carga uniformemente repartida. b.- Viga simplemente apoyada con momento aplicado en el extremo izquierdo (Mc).
  • 16. 16 Se igualan los ángulos a ambos lados del apoyo B, por ser opuestos por el vértice; y del mismo modo se procede en el apoyo C ΣφBizquierdo=-ΣφBderecho EI 6 McL EI 3 MbL EI 24 qL EI 3 MbL EI 24 qL 3 3 + + − = − *EI/L EI 24 qL 2 6 Mc 3 Mb 2 3 − = + ΣφCizquierdo=-ΣφCderecho EI 3 McL EI 24 qL EI 3 McL EI 6 MbL EI 24 qL 3 3 + − = − − *EI/L 24 qL 2 3 M c 2 6 Mb 2 = + Por simetría: Mb = Mc = M 24 qL 2 6 M 3 M 2 2 = + 12 qL 6 M 5 2 = Una vez determinados los momentos de continuidad Mb y Mc se puede analizar cada tramo por separado como elemento isostático. El momento máximo del primer tramo se determina considerando a ese tramo como una viga simplemente apoyada con carga repartida uniformemente y un momento Mb aplicado en el extremo derecho de la viga. 10 qL 2 qL L Mb 2 qL Ra − = − = 5 qL 2 10 qL 4 Ra = = 10 qL 2 qL L Mb 2 qL Rb + = + = 10 ql M Mc Mb 2 = = =
  • 17. MATERIAL EXCLUSIVO DE USO DOCENTE 17 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 5 qL 3 10 qL 6 Rb = = Con las reacciones despejadas se establece la ecuación general de momento para el tramo 2 qx 10 qLx 4 M x 2 − = El momento es máximo cuando el cortante es nulo. 0 qx 10 qL 4 Qx = − = 5 L 2 x = Reemplazando el valor de x en la ecuación general de momento se obtiene 5 L 2 5 L 2 2 q 5 L 2 10 qL 4 MMAX − = 50 qL 4 25 qL 4 M 2 2 MAX − = Por simetría se deduce que este valor de momento máximo también es válido para el tercer tramo es decir, Mt1 = Mt3. Para determinar el momento máximo del segundo tramo, se analiza este tramo como una viga simplemente apoyada con carga repartida uniformemente y un momento aplicado en cada extremo. L Mc L Mb 2 qL Rbderecho − + = 2 qL Rbderecho = 2 qL Rc Rb izquierdo derecho = = Nuevamente se establece la ecuación general de momento, pero correspondiente al segundo tramo. 2 qx 2 qLx 10 qL Mx 2 2 − + − = 25 qL 2 Mt 2 1 =
  • 18. 18 Por simetría el momento es máximo cuando X=L/2 2 L 2 L 2 q 2 L 2 qL 10 qL Mx 2 − + − = 8 qL 4 qL 10 qL Mx 2 2 2 − + − = 40 qL Mt 2 2 =
  • 19. MATERIAL EXCLUSIVO DE USO DOCENTE 19 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 TEOREMA DE LOS TRES MOMENTOS. Para deducir el teorema de los tres momentos es necesario considerar que al existir continuidad del elemento estructural se producen momentos flectores en los apoyos intermedios. Cada tramo de viga es afectado por su carga y por los momentos de continuidad que se producen en sus extremos. Para analizar el punto B se consideran dos tramos continuos de la viga y los potenciales momentos de continuidad en los extremos. En el apoyo B se plantea entonces que ΣφBizquierdo= -ΣφBderecho         − − − = − − EI 6 McL EI 3 MbL EI 24 qL EI 3 MbL EI 6 MaL EI 24 qL 2 2 3 2 1 1 3 1 EI 24 qL EI 24 qL EI 6 McL EI 3 MbL EI 3 MbL EI 6 MaL 3 2 3 1 2 2 1 1 + = + + +
  • 20. 20 Reemplazando L/EI por λ (módulo de flexibilidad) 24 qL 24 qL 6 Mc 3 Mb 3 Mb 6 Ma 2 2 2 1 2 1 2 2 1 1 λ + λ = λ + λ + λ + λ /*6 Al amplificar la expresión 6 veces se tiene         λ + λ = λ + λ + λ + λ 24 qL 24 qL * 6 Mc Mb 2 Mb 2 Ma 2 2 2 1 2 1 2 2 1 1 ( )         λ + λ = λ + λ + λ + λ 24 qL 24 qL * 6 Mc . Mb 2 Ma 2 2 2 1 2 1 2 2 1 1 Por lo general en una viga continua el material y la sección de la viga es el mismo a lo largo de ella, entonces la elasticidad y la inercia son constantes, por lo que el módulo de flexibilidad está en función de la luz, en otras palabras Si EI= constante λ =L Reemplazando ? =L en la ecuación se tiene ( )         + = + + + 24 qL 24 qL * 6 McL L L . Mb 2 MaL 3 2 3 1 2 2 1 1 Reemplazando 24 qL3 1 por Tc1 y 24 qL3 2 por Tc2 se obtiene la ecuación de los tres momentos, conocido también como el teorema de Clapeyrón.: Siendo Tc1 y Tc2 ángulos que generan las cargas aplicadas a la viga en el tramo izquierdo y derecho con respecto al apoyo central multiplicado por 6EI El teorema de los tres momentos, también conocido como teorema de Clapeyrón, se aplica sobre dos tramos de la viga, en donde se analizan las cargas aplicadas en ella y los momentos flectores en los apoyos, es decir, el teorema relaciona tres momentos y dos regímenes de carga de una viga continua. ( ) [ ] 2 1 2 2 1 1 Tc Tc * 6 McL L L . Mb 2 MaL + = + + +
  • 21. MATERIAL EXCLUSIVO DE USO DOCENTE 21 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 APLICACIÓN DEL TEOREMA DE CLAPEYRON. VIGA CONTINUA DE DOS TRAMOS CON CARGA UNIFORMEMENTE REPARTIDA. Como la viga es de dos tramos se aplica directamente el teorema de Clapeyrón, reemplazando los valores en la expresión se determina el momento en el apoyo central. ( ) [ ] 2 1 2 2 1 1 Tc Tc * 6 McL L L . Mb 2 MaL + = + + + En este caso el Tc1 al igual que Tc2 corresponde al ángulo en el apoyo central de la viga, producto la carga uniformemente repartida, y multiplicado por EI. 24 qL EI . EI 24 qL Tc Tc 3 3 2 1 = = = Reemplazando Tc1 y Tc2 en la ecuación se tiene ( )         + = + + + 24 qL 24 qL * 6 L . 0 L L . Mb 2 L . 0 3 2 3 1 2 2 1 1 ( ) 4 qL 4 qL L L . Mb 2 3 2 3 1 2 1 + = + si L1 = L2 2 qL L 2 Mb 2 3 = Para determinar los momentos de tramo se deberá analizar cada tramo como elemento isostático, es decir, como una viga simplemente apoyada con una carga uniformemente repartida y con el momento de continuidad Mb en el extremo, (Ejemplo analizado en las páginas 13-14) 8 qL Mb 2 =
  • 22. 22 APLICACIÓN DEL TEOREMA DE CLAPEYRON. VIGA EMPOTRADO EN UN EXTREMO Y APOYADO EN EL OTRO CON CARGA UNIFORMEMENTE REPARTIDA. Esta viga anteriormente analizada, se puede resolver también por el teorema de Clapeyrón. Para su aplicación, es importante considerar que este teorema relaciona tres momentos y dos regímenes de carga. Esta viga es de un solo tramo y el momento en el empotramiento es la incógnita a resolver; para lo cual es necesario generar un tramo ficticio en el extremo izquierdo, quedando así una viga continua de dos tramos y el momento de empotramiento como incógnita en la ecuación. ( ) 2 2 1 1 2 2 1 1 L Tc L Tc McL L L . Mb 2 MaL + = + + + Como Tc1 corresponde al tramo ficticio, es nulo. Mientras que Tc2 corresponde al ángulo que produce la carga uniformemente repartida en el tramo real, y multiplicado por EI ( )         + = + + + 24 qL 0 * 6 L . 0 L L . Mb 2 L . 0 3 1 1 1 0 0 4 qL L . Mb 2 3 1 1 = Despejada la incógnita (Momento de Empotramiento) se puede determinar el momento de tramo de la viga si se analiza la viga como elemento isostático: viga simplemente apoyada con carga uniformemente repartida con un momento aplicado en el extremo generando el mismo efecto del empotramiento. (Ejemplo analizado en las páginas 9-10-11) 8 qL Mb 2 =
  • 23. MATERIAL EXCLUSIVO DE USO DOCENTE 23 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 APLICACIÓN DEL TEOREMA DE CLAPEYRON. VIGA DE DOS TRAMOS EMPOTRADO EN UN EXTREMO CON CARGA PUNTUAL EN EL CENTRO DEL SEGUNDO TRAMO. Esta viga a pesar de tener carga solamente en el segundo tramo, la deformación se produce en toda la viga por la condición de continuidad. Las dos incógnitas a resolver son los momentos de empotramiento y de continuidad, para lo cual es imprescindible plantear dos ecuaciones: La primera ecuación relaciona el tramo ficticio y el primer tramo; y la segunda relaciona el primer tramo con el segundo, quedando así los momentos de empotramiento y de continuidad como incógnitas en las dos ecuaciones. TRAMOS 0-1 ( ) [ ] 1 0 1 1 0 0 Tc Tc * 6 MbL L L . Ma 2 MoL + = + + + En este caso los términos de carga Tc0 y Tc1 son nulos, ya que el Tc0 corresponde al tramo ficticio y Tc1 al primer tramo que no tiene carga alguna. ( ) [ ] 0 0 * 6 MbL L L . Ma 2 L . 0 1 1 0 0 + = + + + 0 MbL L . Ma 2 1 1 = + 2 Mb Ma − =
  • 24. 24 TRAMO 1-2 ( ) [ ] 2 1 2 2 1 1 Tc Tc 2 McL L L . Mb 2 MaL + = + + + En este caso el término de carga Tc2 corresponde al ángulo producido por una carga puntual, y multiplicado EI. 16 PL EI . EI 16 PL Tc 2 2 2 = = ( )         + = + + + 16 PL 0 * 6 L . 0 L L 2 . Mb 2 L 2 Ma 2 8 PL 3 MbL 6 MaL 2 2 = + Se reemplaza el valor de Ma obtenida en la ecuación del tramo 0-1 8 PL 3 MbL 6 L . 2 Mb 2 2 = +       − 8 PL 3 MbL 6 MbL 2 = + − 8 PL 3 MbL 5 2 = Si Ma = -Mb/2 entonces Ya despejadas los momentos de empotramiento (Ma) y de continuidad (Mb), se puede determinar el momento del segundo tramo, analizando el tramo como una viga isostática con carga puntual (P) en el centro y el momento de continuidad (Mb) aplicado en el extremo. 80 PL 3 Ma 2 − = 40 PL 3 Mb =
  • 25. MATERIAL EXCLUSIVO DE USO DOCENTE 25 MORFOLOGÍA ESTRUCTURAL Folio EST 2-02 Al igual que en los casos anteriores, para determinar la reacción en el apoyo B se suma las reacciones de las dos vigas supuestas que se puede descomponer este tramo. 40 P 23 40 P 20 P 3 2 P 40 P 3 Rb = + = + = 40 P 17 40 P 20 P 3 2 P 40 P 3 Rc = + − = + − = El momento máximo se encuentra en el centro donde se encuentra la carga puntual. 2 L 40 P 23 40 PL 3 MMAX + − = 80 PL 23 40 PL 3 MMAX + − = 80 PL 23 PL 6 MMAX + − = 80 PL 17 MMAX =