Showing posts with label aggregators. Show all posts
Showing posts with label aggregators. Show all posts

Thursday, August 18, 2016

Three Highly Technical Reference Pages: Reinforcement Learning, Deep Vision, Recurrent Neural Networks and state of the art page in object classification

 
 
Obviously, they have been added to The List.
 

 Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
 
 
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

Thursday, June 23, 2016

Highly Technical Reference Page: Laplacian Linear Equations, Graph Sparsification, Local Clustering, Low-Stretch Trees, etc. + implementation

Here is a new Highly Technical Reference Page entitled Laplacian Linear Equations, Graph Sparsification, Local Clustering, Low-Stretch Trees, etc. by Dan Spielman. Thanks to Rich Seymour"s tweet, here is a release of  Laplacians.jl a package built by Dan and collaborators. From the page:
Laplacians is a package containing graph algorithms, with an emphasis on tasks related to spectral and algebraic graph theory. It contains (and will contain more) code for solving systems of linear equations in graph Laplacians, low stretch spanning trees, sparsifiation, clustering, local clustering, and optimization on graphs.
All graphs are represented by sparse adjacency matrices. This is both for speed, and because our main concerns are algebraic tasks. It does not handle dynamic graphs. It would be very slow to implement dynamic graphs this way.
The documentation may be found in http://danspielman.github.io/Laplacians.jl/about/index.html.
This includes instructions for installing Julia, and some tips for how to start using it. It also includes guidelines for Dan Spielman's collaborators.
For some examples of some of the things you can do with Laplacians, look at




Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

Sunday, November 02, 2014

Saturday, January 04, 2014

Highly Technical Aggregators - request -

Following up on an earlier mention by Muthu Muthukrishnan of the need to find aggregators, I went ahead and created a list of reference pages on advanced subjects curated by specialists in fast evolving areas. This list can be bookmarked as it is here: http://nuit-blanche.blogspot.com/p/reference-page.html

So far, here is the listing I have. If you know of any similar reference pages, please let me know and I'll add it here:


Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

Printfriendly