SlideShare uma empresa Scribd logo
Escola municipal são José
• Prof:Zaqueu Oliveira

• Revisão geral
Equações do 2º Grau
2
ax

+ bx + c = 0, a ≠ 0
Definição:
Denomina-se equação do 2º grau, na incógnita x, toda
equação da forma: ax2 + bx + c = 0, a ≠ 0.
Observe que:

a representa o coeficiente de x²;
b representa o coeficiente de x;
c representa o termo independente.
Exemplos:

x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6.
	 2 - x = 0, onde a = 7, b = -1 e c = 0.
7x
x2 - 36 = 0, onde a = 1, b = 0 e c = -36.
Equações Completas do 2º Grau

Uma equação do 2º grau é completa quando b e c são
diferentes de zero.
Exemplos:
x² - 9x + 20 = 0, onde a = 1, b = -9 e c = 20.
-x² + 10x - 16 = 0, onde a = -1, b = 10 e c = -16.
Equações Incompletas do 2º Grau

Uma equação do 2º grau é incompleta quando b ou c é
igual a zero, ou ainda, quando ambos são iguais a zero.
Equações da forma ax² +bx = 0, (c = 0)

x² - 3x = 0, onde a = 1, b = -3.
-2x² + 4x = 0, onde a = -2, b = 4.
Equações da forma ax² +c = 0, (b = 0)

3x² - 2 = 0, onde a = 3, c = -2.
x² + 5 = 0, onde a = 1, c = 5.
ATIVIDADE-1
1. Obtenha os coeficientes
equações do 2 grau:
a) 5x²-7x-3=0
a:5 b:-7
b) x²-4x +2=0
a:1
b:-4
c) x²-x-1=0
a:1 b:-1
d) 2x²+7x+8=0 a:2 b:7
e) x²-7x=0
a:1 b:-7
f) x²-25=0
a:1
b:0

das

c:-3
c:2
c:-1
c:8
c:0
c:-25
2. Forme as equações do 2° grau em x:
•

a=1;
x²-6x+5=0

b=-6 ;

c= 5

b) a=3;
b=7 ;
3x²+7x+8=0

c= 8

c) a=8;
8x²=0

c=0

b=0 ;

d) a=1;
b=-3 ;
x²-3x+4=0

c= 4
Resolução de Equações Incompletas
Equações da forma:
ax² +bx = 0, (c = 0)

Equações da forma:
ax² +c = 0, (b = 0)

De modo geral, a equação
do tipo ax² +bx = 0 tem
para soluções:

De modo geral, a equação
do tipo ax² +c = 0:

x=0
e

x=-b
a

possui duas raízes reais se:
- c for um nº positivo
a
não possui raiz real se:
- c for um nº negativo
a
ATIVIDADE-2

1.Determine o conjunto verdade das equações:
x²-7x = 0 Δ=b²-4.a.c x=7+7=14/2=7
Δ=7²-4.1.0
Δ=49

x=7-7=0/2=0

b) 3x²-6x = 0
Δ=b²-4.a.c
Δ=-6²-4.3.0
Δ=36

x=6+6=12/6=2
x=6-6=0/2=0

Δ=b²-4.a.c
Δ=5²-4.1.0
Δ=25

x=-5+5=0/2=0
x=-5-5=-10/2=-5

c) x² +5x = 0
2.Determine o conjunto verdade das equações:

X² - 49 = 0 a=1 Δ=0²-4.1.49 x=14/2=7
Δ=196

2x² -32 = 0 Δ=0²-4.2.32

x=16/4 =4

Δ= 0+256
Δ=256

5x² - 20 = 0

Δ=0²-4.5.-20
Δ=400

x= 0+20=20/10=2
Composição de uma Equação do
2º Grau, Conhecidas as Raízes
Considere a equação do 2º grau ax2 + bx + c = 0.
Dividindo todos os termos por a, a ≠ 0, obtemos:

ax2 + bx + c = 0
a
a
a

x2 + bx + c = 0
a
a

Como: S = x’+ x” = -b e P = x’. x” = c
a
a
Podemos escrever a equação desta maneira:
x2 - Sx + P = 0
Exercício sobre Composição
Componha a equação do 2º grau cujas raízes são -2 e 7.
Solução:
A soma das raízes corresponde a:

S = x1 + x2 = -2 + 7 = 5
O produto das raízes corresponde a:
P = x1 . x2 = ( -2) . 7 = -14
A equação é dada por x2 - Sx + P = 0, onde S = 5 e P = -14.
Logo, x2 - 5x - 14 = 0 é a equação procurada.
ATIVIDADE – 4

Componha a equação do 2º grau cujas raízes são:
•
•
•
•
•

•
•
•
•

•
•
•

5 e2
R=x²-sx+p=0
x²-7x+10=0
-2 e -3
R= x²-sx+p=0
x²+5x-6=0
4 e -5
R=x²-sx+p=0
x²+1x - 20=0 => x² + x – 20 = 0
-5 e 5
R= x² -sx+p=0
x²-25=0
Representação gráfica de função
1º grau
Função de 1º grau é toda função do tipo

y = f(x) = ax + b
Em que a e b são constantes reais, com a ≠ 0.

Se b = 0, temos a função y = f(x) = ax, chamada, também, função linear.
Características da função de 1º grau y = f(x) = ax + b.
• A fórmula que a define é um polinômio de 1º grau; seu termo
independente pode ser nulo ou não.
• Se b = 0, temos a função f(x) = ax, chamada de função linear.
• A constante real a, não-nula, é o coeficiente angular. Ela é a mesma,
qualquer que seja o intervalo considerado.
Características da função de 1º grau y = f(x) = ax + b.
• A constante real b é o coeficiente linear.

• Seu gráfico cartesiano é uma linha reta, não paralela aos eixos. Ela
pode conter a origem (caso b = 0) ou não conter origem (caso b ≠
0).
• O crescimento ou o decrescimento da função estão relacionados
com o sinal de a. A reta é ascendente para a > 0 e descendente
para a < 0.
Crescimento e decrescimento.

a > 0 ⇒ função crescente
⇒ reta ascendente (sobe da esquerda p/ direita)
a < 0 ⇒ função decrescente
⇒

reta descendente (desce da esquerda p/ direita)
•

Exemplos
Veja o gráficos das funções y = x; y = 2x e y = x/2.
y

a>0

y = 2x
5

y=x

4
3

y = x/2

2
1

x
–5 –4

–3

–2

–1

0
–1
–2
–3

–4
–5

1

2

3

4

5
Exemplos
•

Veja o gráficos das funções y = –x; y = –2x e y = –x/2 em que
y

a<0
5

4
3
2
1

x
–5 –4

–3

–2

–1

0

1

2

3

4

5

–1
–2

y = –x/2

–3

–4

y = –x

–5

y = –2x
A temperatura de uma substância é 30 ºC. Sua temperatura varia
com o tempo de maneira uniforme, aumentando 10 ºC por
minuto.

Veja as temperaturas da substância, medidas minuto a minuto.

t(min)

0

1

2

3

4

5

T(oC)

30

40

50

60

70

80

A taxa de variação da temperatura é positiva (10 oC/min).
Após t minutos, a temperatura T da substância em oC é,
T = 30 + 10.t
Veja o gráfico cartesiano da função

T(oC)
t(min)

T(oC)

0

30

1

40

2

50

3

60

4

70

5

80

80
60
40
20
t(min)

T = 30 + 10.t

0

1

2

3

4

5
A temperatura de uma substância é 30 ºC Sua temperatura varia
com o tempo de maneira uniforme, diminuindo 10 ºC por
minuto.
Veja as temperaturas da substância, medidas minuto a minuto.

t(min)

0

1

2

3

4

5

T(oC)

30

20

10

0

–10

– 20

A taxa de variação da temperatura é negativa (10 oC/min).
Após t minutos, a temperatura T da substância em oC é,
T = 30 – 10.t
Veja o gráfico cartesiano da função
T(oC)
t(min)

T(oC)

0

30

1

20

2

10

3

0

4

–10

5

60

–20

40
20
t(min)

0
–20

T = 30 – 10.t

–40

1

2

3

4

5
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc.
Definição
Chama-se função quadrática, ou função
polinomial do 2º grau, qualquer função f de IR em
IR dada por uma lei da forma f(x) = ax2 + bx + c,
onde a, b e c são números reais e a 0.
Vejamos alguns exemplos de função quadráticas:
f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1
f(x) = x2 -1, onde a = 1, b = 0 e c = -1
f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5
f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0
f(x) = -4x2, onde a = - 4, b = 0 e c = 0
Pontos notáveis da parábola
Os pontos de interseção com o eixo Ox (se
existirem)
Para resolvê-la, utilizamos a fórmula de
Bhaskara :
 x=
em que,
2
Se > 0 , temos duas reízes reais
distintas.
Se < 0 , não temos raízes reais.
Se = 0 , temos duas raízes reais e iguais.
> 0
a>0

a<0

= 0
a>0

a<0

< 0
a>0

a<0
Raízes ou zeros da função
• Denominam-se zeros ou raízes de uma função
de 2° grau os valores de x que anulam a
função, ou seja, que tornam f(x)=0
• As raízes da função nada mais é onde a
parábola corta no eixo do x.
Vértice da parábola
Vértice da parábola
V (Xv, Yv)

Xv =

Yv =
Raízes ou zeros da função
• Denominam-se zeros ou raízes de uma função
de 2° grau os valores de x que anulam a
função, ou seja, que tornam f(x)=0
• As raízes da função nada mais é onde a
parábola corta no eixo do x.
Valor mínimo da função
• Mínimo :
• Se a > 0, yv =
é o valor mínimo da função
Im= {y Є IR / y ≥
}
Valor máximo da função
• Máximo:
• Se a < 0, yv =
é o valor máximo da função
Im= {y Є IR / y ≤
}
EXEMPLO:
Estudar o sinal da função f(x)= x2 - 5x + 6.
x2 - 5x + 6 = 0 (determina-se a raiz da função)
(marcam-se as raízes em uma reta e analisa-se
a concavidade da parábola)
(faz-se o estudo do sinal)
f(x) > 0, para x<2 ou x>3
f(x)=0, para x=2 ou x=3
f(x) < 0, para 2 < x < 3
Gráficos
• O gráfico das Funções Quadráticas:
• O gráfico de uma função quadrática, f(x)=ax2+bx+c, com a diferente de
0, é uma curva chamada parábola. Ao construir um gráfico de uma
função quadrática f(x)=ax2+bx+c, notaremos sempre que:
• a>0, a parábola tem a concavidade voltada para cima (U)
• a<0, a parábola tem a concavidade voltada para baixo
Y = X2 + X
x
-3
-2
-1

y
6
2
0

0
1
2

0
2
6
1.RAZÃO
Arazão de dois números a e b, com b 0, é o quociente
do primeiro pelo segundo:

OBSERVAÇÃO:

Apalavra razão vem do latim ratio, que
significa divisão.
Exemplos
2.RAZÃO DE DOIS SEGMENTOS
Chamamos razão de dois segmentos a razão ou quociente
entre os números que exprimem as medidas desses
segmentos, tomados na mesma unidade.
Exemplos:
Determinar a razão entre os segmentos AB e CD, sendo
AB = 6 cm e CD = 12 cm.(Lembre-se :AB representa a
medida do segmento AB.)
Exemplos:
1) Verifique se os segmentosAB =4 cm, CD = 6 cm, EF =
8 cm e GH = 12 cm formam, nessa ordem, uma proporção.

Podemos afirmar que os segmentos, nessa ordem, são
proporcionais.
3.SEGMENTOS PROPORCIONAIS
Dizemos que quatro segmentos, AB, CD, EF e GH, nessa
ordem, são proporcionais, quando a razão entre os dois
primeiros for igual à razão entre os dois últimos, ou
seja:AB, CD, EF e GH são, nessa ordem, proporcionais
se, e somente se:
2) Verifique se os segmentos AB = 7 cm, CD = 10cm, EF =
12 cm e GH = 5 cm formam, nessa ordem, uma proporção.

Podemos afirmar que os segmentos, nessa ordem, não são
proporcionais.
3) Quatro segmentos AB, MN, PQ e RS, nesta ordem, são
proporcionais. SeAB=5 cm, MN= 15 cm e PQ= 4 cm, qual
a medida de RS?

5x = 60

x= 12
Que tal você tentar resolver o
Problema abaixo usando a relação
Entre as alturas propostas por Tales
1) (Saresp) Um prédio projeta uma sombra de 40 m ao mesmo
tempo que um poste de 2 m projeta uma sombra de 5 m.
Então, a altura do prédio é
A)
B)
C)
D)

10 m.
12 m.
14 m.
16 m.

Mais conteúdo relacionado

PPT
Equações Do 2º Grau - Profº P.Cesar
PPT
Expressão analítica de uma função quadrática
PPT
Expressoes algebricas
PDF
Exercício 01 PA - Resolvido
PPT
Resolver problemas conducentes à equação quadrática
DOCX
Exercícios resolvidos de problemas de equações do 2º grau
PPT
16 aula conjuntos numericos
PPS
Numeros racionais
Equações Do 2º Grau - Profº P.Cesar
Expressão analítica de uma função quadrática
Expressoes algebricas
Exercício 01 PA - Resolvido
Resolver problemas conducentes à equação quadrática
Exercícios resolvidos de problemas de equações do 2º grau
16 aula conjuntos numericos
Numeros racionais

Mais procurados (20)

PDF
Polinomios
PPTX
Ponto crítico de uma função derivável
PPT
1 ano função afim
PDF
Lista de exercícios de função afim
PPT
Função.quadratica
PDF
Mat razao e proporcao resolvidos
PPT
Equação do primeiro grau para 7º ano
PPTX
Sistema de equações
PDF
Propriedades Da MultiplicaçãO
DOCX
Questões média mediana e moda
DOCX
Gabarito atividade-diagnóstica-3°ano
PPTX
O conjunto-dos-números-reais
PPT
Equações do 2.º grau
PPTX
OPERAÇÕES COM NÚMEROS INTEIROS - MATEMÁTICA
PDF
Lista de Exercicios Sistemas Lineares do 1 grau.
PDF
Lista de Exercícios – Equação do 1° grau
DOCX
Exercícios de fatorial
PPSX
Matemática - PA e PG
PDF
Área do prisma
PDF
Lista de exercícios 1º em - áreas
Polinomios
Ponto crítico de uma função derivável
1 ano função afim
Lista de exercícios de função afim
Função.quadratica
Mat razao e proporcao resolvidos
Equação do primeiro grau para 7º ano
Sistema de equações
Propriedades Da MultiplicaçãO
Questões média mediana e moda
Gabarito atividade-diagnóstica-3°ano
O conjunto-dos-números-reais
Equações do 2.º grau
OPERAÇÕES COM NÚMEROS INTEIROS - MATEMÁTICA
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercícios – Equação do 1° grau
Exercícios de fatorial
Matemática - PA e PG
Área do prisma
Lista de exercícios 1º em - áreas
Anúncio

Semelhante a Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc. (20)

PPT
Funções
PDF
Função do 1º Grau 27-04-2023.pdf
PPT
Funções.saa
PPT
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
PDF
Mat funcao polinomial 2 grau
PDF
Função do 2°grau
PPTX
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
PDF
Apostila pré cálculo
PPT
1ano-funoafim-1105141aa85848-phpapp01.ppt
PPT
Funcao do-primeiro-grau
DOC
Funçao quadratica-revisao 2
PPT
Matemática 6 9 apresent
PPT
Função quadrática
DOC
resumo Função do 2 grau
PPTX
Função Quadrática
PPT
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
PPT
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
DOC
Função do 2º Grau
PPT
Função do 2º Grau.
Funções
Função do 1º Grau 27-04-2023.pdf
Funções.saa
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
Mat funcao polinomial 2 grau
Função do 2°grau
FUNÇÃO POLINOMIAL DO 2º GRAU.pptx
Apostila pré cálculo
1ano-funoafim-1105141aa85848-phpapp01.ppt
Funcao do-primeiro-grau
Funçao quadratica-revisao 2
Matemática 6 9 apresent
Função quadrática
resumo Função do 2 grau
Função Quadrática
www.AulasDeMatematicanoRJ.Com.Br -Matemática - Função Afim
www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim
Função do 2º Grau
Função do 2º Grau.
Anúncio

Mais de Zaqueu Oliveira (9)

PDF
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
PDF
Media,moda,mediana
PPTX
Inequações do 1º e 2º grau
PPTX
Funções do 1º e 2º grau
PPTX
Equação do 1º e 2º grau
PDF
PPTX
Teorema do valor intermediário - Análise Real
PDF
Cap1 Guidorizzi vol1.exercicio 1.2
PDF
Neurodidatica versus
A matemática do Egito e Mesopotâmia .Artigo baseados em pesquisas bibliográfi...
Media,moda,mediana
Inequações do 1º e 2º grau
Funções do 1º e 2º grau
Equação do 1º e 2º grau
Teorema do valor intermediário - Análise Real
Cap1 Guidorizzi vol1.exercicio 1.2
Neurodidatica versus

Último (20)

PPTX
AULA 01 - INTRODUÇÃO AO ATENDIMENTO HUMANIZADO.pptx
PPTX
INTRODUÇÃO AO ESTUDO DA ANATOMIA HUMANA [Salvo automaticamente].pptx
PDF
historia-e-geografia-do-amapa.pdf slides
PDF
HORÁRIO GERAL SIGAA 2025_PRÉVIA_SIGAA-1.pdf
PPTX
125511 - Aula 1 - América portuguesa antes da conquista patrimônio e preserva...
PPTX
Ocupação e transformação dos territórios.pptx
PDF
Pecados desdenhados por muita gente (islamismo)
PPT
Aula de Sociologia 22022022154507AULA 2.ppt
PPTX
Slides Lição 8, CPAD, Uma Igreja que Enfrenta os seus Problemas, 3Tr25.pptx
PDF
Fiqh da adoração (islamismo)
PPT
Caderno de Boas Práticas dos Professores Alfabetizadores.ppt
PDF
01-slide-especialidade-mensageira-de-deus.pdf
PPTX
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
PDF
morfologia5.pdfllllllllllllllllllllllllllll
PPTX
PERÍODO SIMPLES - TERMOS ESSENCIAIS DA ORAÇÃO - Valdeci.pptx
PPT
Elementos constituintes do esquema argumentativo (tese, argumento, tema, pont...
PDF
DESCCARTE DE MATERIAIS BIOLOGICO ESTUDO DA ODONTOLOGIA
PDF
EXPRESSÕES IDIOMÁTICAS - LÍNGUA PORTUGUESA
PDF
[Slides] A Literatura no ENEM 2017 (1).pdf
PPSX
4. A Cultura da Catedral - HistóriaCArtes .ppsx
AULA 01 - INTRODUÇÃO AO ATENDIMENTO HUMANIZADO.pptx
INTRODUÇÃO AO ESTUDO DA ANATOMIA HUMANA [Salvo automaticamente].pptx
historia-e-geografia-do-amapa.pdf slides
HORÁRIO GERAL SIGAA 2025_PRÉVIA_SIGAA-1.pdf
125511 - Aula 1 - América portuguesa antes da conquista patrimônio e preserva...
Ocupação e transformação dos territórios.pptx
Pecados desdenhados por muita gente (islamismo)
Aula de Sociologia 22022022154507AULA 2.ppt
Slides Lição 8, CPAD, Uma Igreja que Enfrenta os seus Problemas, 3Tr25.pptx
Fiqh da adoração (islamismo)
Caderno de Boas Práticas dos Professores Alfabetizadores.ppt
01-slide-especialidade-mensageira-de-deus.pdf
QuestõesENEMVESTIBULARPARAESTUDOSEAPRENDIZADO.pptx
morfologia5.pdfllllllllllllllllllllllllllll
PERÍODO SIMPLES - TERMOS ESSENCIAIS DA ORAÇÃO - Valdeci.pptx
Elementos constituintes do esquema argumentativo (tese, argumento, tema, pont...
DESCCARTE DE MATERIAIS BIOLOGICO ESTUDO DA ODONTOLOGIA
EXPRESSÕES IDIOMÁTICAS - LÍNGUA PORTUGUESA
[Slides] A Literatura no ENEM 2017 (1).pdf
4. A Cultura da Catedral - HistóriaCArtes .ppsx

Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos Proporcionais etc.

  • 1. Escola municipal são José • Prof:Zaqueu Oliveira • Revisão geral
  • 2. Equações do 2º Grau 2 ax + bx + c = 0, a ≠ 0
  • 3. Definição: Denomina-se equação do 2º grau, na incógnita x, toda equação da forma: ax2 + bx + c = 0, a ≠ 0. Observe que: a representa o coeficiente de x²; b representa o coeficiente de x; c representa o termo independente. Exemplos: x2 - 5x + 6 = 0, onde a = 1, b = -5 e c = 6. 2 - x = 0, onde a = 7, b = -1 e c = 0. 7x x2 - 36 = 0, onde a = 1, b = 0 e c = -36.
  • 4. Equações Completas do 2º Grau Uma equação do 2º grau é completa quando b e c são diferentes de zero. Exemplos: x² - 9x + 20 = 0, onde a = 1, b = -9 e c = 20. -x² + 10x - 16 = 0, onde a = -1, b = 10 e c = -16.
  • 5. Equações Incompletas do 2º Grau Uma equação do 2º grau é incompleta quando b ou c é igual a zero, ou ainda, quando ambos são iguais a zero. Equações da forma ax² +bx = 0, (c = 0) x² - 3x = 0, onde a = 1, b = -3. -2x² + 4x = 0, onde a = -2, b = 4. Equações da forma ax² +c = 0, (b = 0) 3x² - 2 = 0, onde a = 3, c = -2. x² + 5 = 0, onde a = 1, c = 5.
  • 6. ATIVIDADE-1 1. Obtenha os coeficientes equações do 2 grau: a) 5x²-7x-3=0 a:5 b:-7 b) x²-4x +2=0 a:1 b:-4 c) x²-x-1=0 a:1 b:-1 d) 2x²+7x+8=0 a:2 b:7 e) x²-7x=0 a:1 b:-7 f) x²-25=0 a:1 b:0 das c:-3 c:2 c:-1 c:8 c:0 c:-25
  • 7. 2. Forme as equações do 2° grau em x: • a=1; x²-6x+5=0 b=-6 ; c= 5 b) a=3; b=7 ; 3x²+7x+8=0 c= 8 c) a=8; 8x²=0 c=0 b=0 ; d) a=1; b=-3 ; x²-3x+4=0 c= 4
  • 8. Resolução de Equações Incompletas Equações da forma: ax² +bx = 0, (c = 0) Equações da forma: ax² +c = 0, (b = 0) De modo geral, a equação do tipo ax² +bx = 0 tem para soluções: De modo geral, a equação do tipo ax² +c = 0: x=0 e x=-b a possui duas raízes reais se: - c for um nº positivo a não possui raiz real se: - c for um nº negativo a
  • 9. ATIVIDADE-2 1.Determine o conjunto verdade das equações: x²-7x = 0 Δ=b²-4.a.c x=7+7=14/2=7 Δ=7²-4.1.0 Δ=49 x=7-7=0/2=0 b) 3x²-6x = 0 Δ=b²-4.a.c Δ=-6²-4.3.0 Δ=36 x=6+6=12/6=2 x=6-6=0/2=0 Δ=b²-4.a.c Δ=5²-4.1.0 Δ=25 x=-5+5=0/2=0 x=-5-5=-10/2=-5 c) x² +5x = 0
  • 10. 2.Determine o conjunto verdade das equações: X² - 49 = 0 a=1 Δ=0²-4.1.49 x=14/2=7 Δ=196 2x² -32 = 0 Δ=0²-4.2.32 x=16/4 =4 Δ= 0+256 Δ=256 5x² - 20 = 0 Δ=0²-4.5.-20 Δ=400 x= 0+20=20/10=2
  • 11. Composição de uma Equação do 2º Grau, Conhecidas as Raízes Considere a equação do 2º grau ax2 + bx + c = 0. Dividindo todos os termos por a, a ≠ 0, obtemos: ax2 + bx + c = 0 a a a x2 + bx + c = 0 a a Como: S = x’+ x” = -b e P = x’. x” = c a a Podemos escrever a equação desta maneira: x2 - Sx + P = 0
  • 12. Exercício sobre Composição Componha a equação do 2º grau cujas raízes são -2 e 7. Solução: A soma das raízes corresponde a: S = x1 + x2 = -2 + 7 = 5 O produto das raízes corresponde a: P = x1 . x2 = ( -2) . 7 = -14 A equação é dada por x2 - Sx + P = 0, onde S = 5 e P = -14. Logo, x2 - 5x - 14 = 0 é a equação procurada.
  • 13. ATIVIDADE – 4 Componha a equação do 2º grau cujas raízes são: • • • • • • • • • • • • 5 e2 R=x²-sx+p=0 x²-7x+10=0 -2 e -3 R= x²-sx+p=0 x²+5x-6=0 4 e -5 R=x²-sx+p=0 x²+1x - 20=0 => x² + x – 20 = 0 -5 e 5 R= x² -sx+p=0 x²-25=0
  • 14. Representação gráfica de função 1º grau
  • 15. Função de 1º grau é toda função do tipo y = f(x) = ax + b Em que a e b são constantes reais, com a ≠ 0. Se b = 0, temos a função y = f(x) = ax, chamada, também, função linear.
  • 16. Características da função de 1º grau y = f(x) = ax + b. • A fórmula que a define é um polinômio de 1º grau; seu termo independente pode ser nulo ou não. • Se b = 0, temos a função f(x) = ax, chamada de função linear. • A constante real a, não-nula, é o coeficiente angular. Ela é a mesma, qualquer que seja o intervalo considerado.
  • 17. Características da função de 1º grau y = f(x) = ax + b. • A constante real b é o coeficiente linear. • Seu gráfico cartesiano é uma linha reta, não paralela aos eixos. Ela pode conter a origem (caso b = 0) ou não conter origem (caso b ≠ 0). • O crescimento ou o decrescimento da função estão relacionados com o sinal de a. A reta é ascendente para a > 0 e descendente para a < 0.
  • 18. Crescimento e decrescimento. a > 0 ⇒ função crescente ⇒ reta ascendente (sobe da esquerda p/ direita) a < 0 ⇒ função decrescente ⇒ reta descendente (desce da esquerda p/ direita)
  • 19. • Exemplos Veja o gráficos das funções y = x; y = 2x e y = x/2. y a>0 y = 2x 5 y=x 4 3 y = x/2 2 1 x –5 –4 –3 –2 –1 0 –1 –2 –3 –4 –5 1 2 3 4 5
  • 20. Exemplos • Veja o gráficos das funções y = –x; y = –2x e y = –x/2 em que y a<0 5 4 3 2 1 x –5 –4 –3 –2 –1 0 1 2 3 4 5 –1 –2 y = –x/2 –3 –4 y = –x –5 y = –2x
  • 21. A temperatura de uma substância é 30 ºC. Sua temperatura varia com o tempo de maneira uniforme, aumentando 10 ºC por minuto. Veja as temperaturas da substância, medidas minuto a minuto. t(min) 0 1 2 3 4 5 T(oC) 30 40 50 60 70 80 A taxa de variação da temperatura é positiva (10 oC/min). Após t minutos, a temperatura T da substância em oC é, T = 30 + 10.t
  • 22. Veja o gráfico cartesiano da função T(oC) t(min) T(oC) 0 30 1 40 2 50 3 60 4 70 5 80 80 60 40 20 t(min) T = 30 + 10.t 0 1 2 3 4 5
  • 23. A temperatura de uma substância é 30 ºC Sua temperatura varia com o tempo de maneira uniforme, diminuindo 10 ºC por minuto. Veja as temperaturas da substância, medidas minuto a minuto. t(min) 0 1 2 3 4 5 T(oC) 30 20 10 0 –10 – 20 A taxa de variação da temperatura é negativa (10 oC/min). Após t minutos, a temperatura T da substância em oC é, T = 30 – 10.t
  • 24. Veja o gráfico cartesiano da função T(oC) t(min) T(oC) 0 30 1 20 2 10 3 0 4 –10 5 60 –20 40 20 t(min) 0 –20 T = 30 – 10.t –40 1 2 3 4 5
  • 26. Definição Chama-se função quadrática, ou função polinomial do 2º grau, qualquer função f de IR em IR dada por uma lei da forma f(x) = ax2 + bx + c, onde a, b e c são números reais e a 0. Vejamos alguns exemplos de função quadráticas: f(x) = 3x2 - 4x + 1, onde a = 3, b = - 4 e c = 1 f(x) = x2 -1, onde a = 1, b = 0 e c = -1 f(x) = 2x2 + 3x + 5, onde a = 2, b = 3 e c = 5 f(x) = - x2 + 8x, onde a = -1, b = 8 e c = 0 f(x) = -4x2, onde a = - 4, b = 0 e c = 0
  • 27. Pontos notáveis da parábola Os pontos de interseção com o eixo Ox (se existirem) Para resolvê-la, utilizamos a fórmula de Bhaskara :  x= em que, 2 Se > 0 , temos duas reízes reais distintas. Se < 0 , não temos raízes reais. Se = 0 , temos duas raízes reais e iguais.
  • 29. Raízes ou zeros da função • Denominam-se zeros ou raízes de uma função de 2° grau os valores de x que anulam a função, ou seja, que tornam f(x)=0 • As raízes da função nada mais é onde a parábola corta no eixo do x.
  • 30. Vértice da parábola Vértice da parábola V (Xv, Yv) Xv = Yv =
  • 31. Raízes ou zeros da função • Denominam-se zeros ou raízes de uma função de 2° grau os valores de x que anulam a função, ou seja, que tornam f(x)=0 • As raízes da função nada mais é onde a parábola corta no eixo do x.
  • 32. Valor mínimo da função • Mínimo : • Se a > 0, yv = é o valor mínimo da função Im= {y Є IR / y ≥ }
  • 33. Valor máximo da função • Máximo: • Se a < 0, yv = é o valor máximo da função Im= {y Є IR / y ≤ }
  • 34. EXEMPLO: Estudar o sinal da função f(x)= x2 - 5x + 6. x2 - 5x + 6 = 0 (determina-se a raiz da função) (marcam-se as raízes em uma reta e analisa-se a concavidade da parábola) (faz-se o estudo do sinal) f(x) > 0, para x<2 ou x>3 f(x)=0, para x=2 ou x=3 f(x) < 0, para 2 < x < 3
  • 35. Gráficos • O gráfico das Funções Quadráticas: • O gráfico de uma função quadrática, f(x)=ax2+bx+c, com a diferente de 0, é uma curva chamada parábola. Ao construir um gráfico de uma função quadrática f(x)=ax2+bx+c, notaremos sempre que: • a>0, a parábola tem a concavidade voltada para cima (U) • a<0, a parábola tem a concavidade voltada para baixo
  • 36. Y = X2 + X x -3 -2 -1 y 6 2 0 0 1 2 0 2 6
  • 37. 1.RAZÃO Arazão de dois números a e b, com b 0, é o quociente do primeiro pelo segundo: OBSERVAÇÃO: Apalavra razão vem do latim ratio, que significa divisão. Exemplos
  • 38. 2.RAZÃO DE DOIS SEGMENTOS Chamamos razão de dois segmentos a razão ou quociente entre os números que exprimem as medidas desses segmentos, tomados na mesma unidade. Exemplos: Determinar a razão entre os segmentos AB e CD, sendo AB = 6 cm e CD = 12 cm.(Lembre-se :AB representa a medida do segmento AB.)
  • 39. Exemplos: 1) Verifique se os segmentosAB =4 cm, CD = 6 cm, EF = 8 cm e GH = 12 cm formam, nessa ordem, uma proporção. Podemos afirmar que os segmentos, nessa ordem, são proporcionais.
  • 40. 3.SEGMENTOS PROPORCIONAIS Dizemos que quatro segmentos, AB, CD, EF e GH, nessa ordem, são proporcionais, quando a razão entre os dois primeiros for igual à razão entre os dois últimos, ou seja:AB, CD, EF e GH são, nessa ordem, proporcionais se, e somente se:
  • 41. 2) Verifique se os segmentos AB = 7 cm, CD = 10cm, EF = 12 cm e GH = 5 cm formam, nessa ordem, uma proporção. Podemos afirmar que os segmentos, nessa ordem, não são proporcionais.
  • 42. 3) Quatro segmentos AB, MN, PQ e RS, nesta ordem, são proporcionais. SeAB=5 cm, MN= 15 cm e PQ= 4 cm, qual a medida de RS? 5x = 60 x= 12
  • 43. Que tal você tentar resolver o Problema abaixo usando a relação Entre as alturas propostas por Tales 1) (Saresp) Um prédio projeta uma sombra de 40 m ao mesmo tempo que um poste de 2 m projeta uma sombra de 5 m. Então, a altura do prédio é A) B) C) D) 10 m. 12 m. 14 m. 16 m.