SlideShare a Scribd company logo
Principal Component Analysis
(Dimensionality Reduction)
By:
Tarun Bhatia
Y7475
Overview:
• What is Principal Component Analysis
• Computing the compnents in PCA
• Dimensionality Reduction using PCA
• A 2D example in PCA
• Applications of PCA in computer vision
• Importance of PCA in analysing data in higher dimensions
• Questions
Principal Component Analysis
• Most common form of factor analysis
• The new variables/dimensions
– Are linear combinations of the original ones
– Are uncorrelated with one another
• Orthogonal in original dimension space
– Capture as much of the original variance in the
data as possible
– Are called Principal Components
What are the new axes?
• Orthogonal directions of greatest variance in data
• Projections along PC1 discriminate the data most along any one axis
Principal Components
•First principal component is the direction of greatest
variability (covariance) in the data
• Second is the next orthogonal (uncorrelated) direction of greatest variability
– So first remove all the variability along the first
component, and then find the next direction of
greatest variability
• And so on …
Principal Components Analysis (PCA)
• Principle
– Linear projection method to reduce the number of parameters
– Transfer a set of correlated variables into a new set of uncorrelated
variables
– Map the data into a space of lower dimensionality
– Form of unsupervised learning
• Properties
–It can be viewed as a rotation of the existing axes to new positions in the
space defined by original variables
–New axes are orthogonal and represent the directions with maximum
variability
Computing the Components
• Data points are vectors in a multidimensional space
• Projection of vector x onto an axis (dimension) u is u.x
•Direction of greatest variability is that in which the average square of the
projection is greatest
– I.e. u such that E((u.x)2) over all x is maximized
–(we subtract the mean along each dimension, and center the original axis
system at the centroid of all data points, for simplicity)
– This direction of u is the direction of the first Principal Component
Computing the Components
• E((u.x)2) = E ((u.x) (u.x)T) = E (u.x.x T.uT)
•The matrix S = x.xT contains the correlations (similarities) of the original axes based
on how the data values project onto them
• So we are looking for w that maximizes uSuT, subject to u being unit-length
• It is maximized when w is the principal eigenvector of the matrix S, in which case
–uCuT = uλuT = λ if u is unit-length, where λ is the principal eigenvalue of the
correlation matrix C
– The eigenvalue denotes the amount of variability captured along that dimension
Why the Eigenvectors?
Maximise uTxxTu s.t uTu = 1
Construct Langrangian uTxxTu – λuTu
Vector of partial derivatives set to zero
xxTu – λu = (xxT – λI) u = 0
As u ≠ 0 then u must be an eigenvector of xxT with eigenvalue λ
Computing the Components
• Similarly for the next axis, etc.
•So, the new axes are the eigenvectors of the matrix of correlations of the
original variables, which captures the similarities of the original variables
based on how data samples project to them
• Geometrically: centering followed by rotation
• – Linear transformation
PCs, Variance and Least-Squares
• The first PC retains the greatest amount of variation in the sample
• The kth PC retains the kth greatest fraction of the variation in the sample
•The kth largest eigenvalue of the correlation matrix C is the variance in the
sample along the kth PC
•The least-squares view: PCs are a series of linear least
squares fits to a sample, each orthogonal to all previous ones
How Many PCs?
•For n original dimensions, correlation matrix is
nxn, and has up to n eigenvectors. So n PCs.
•Where does dimensionality reduction come
from?
Dimensionality Reduction
Can ignore the components of lesser significance.
You do lose some information, but if the eigenvalues are small, you don’t lose
much
– n dimensions in original data
– calculate n eigenvectors and eigenvalues
– choose only the first p eigenvectors, based on their eigenvalues
– final data set has only p dimensions
Eigenvectors of a Correlation Matrix
PCA Example –STEP 1
• Subtract the mean
from each of the data dimensions. All the x values
have x subtracted and y values have y subtracted
from them. This produces a data set whose mean is
zero.
Subtracting the mean makes variance and covariance
calculation easier by simplifying their equations. The
variance and co-variance values are not affected by
the mean value.
PCA Example –STEP 1
DATA:
x y
2.5 2.4
0.5 0.7
2.2 2.9
1.9 2.2
3.1 3.0
2.3 2.7
2 1.6
1 1.1
1.5 1.6
1.1 0.9
ZERO MEAN DATA:
x y
.69 .49
-1.31 -1.21
.39 .99
.09 .29
1.29 1.09
.49 .79
.19 -.31
-.81 -.81
-.31 -.31
-.71 -1.01
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
PCA Example –STEP 1
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
PCA Example –STEP 2
• Calculate the covariance matrix
cov = .616555556 .615444444
.615444444 .716555556
• since the non-diagonal elements in this covariance
matrix are positive, we should expect that both the x
and y variable increase together.
PCA Example –STEP 3
• Calculate the eigenvectors and eigenvalues of
the covariance matrix
eigenvalues = .0490833989
1.28402771
eigenvectors = -.735178656 -.677873399
.677873399 -.735178656
PCA Example –STEP 3
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
•eigenvectors are plotted as
diagonal dotted lines on the
plot.
•Note they are
perpendicular to each other.
•Note one of the
eigenvectors goes through
the middle of the points, like
drawing a line of best fit.
•The second eigenvector
gives us the other, less
important, pattern in the
data, that all the points
follow the main line, but are
off to the side of the main
line by some amount.
PCA Example –STEP 4
• Reduce dimensionality and form feature vector
the eigenvector with the highest eigenvalue is the principle
component of the data set.
In our example, the eigenvector with the larges eigenvalue
was the one that pointed down the middle of the data.
Once eigenvectors are found from the covariance matrix, the
next step is to order them by eigenvalue, highest to lowest.
This gives you the components in order of significance.
PCA Example –STEP 4
Now, if you like, you can decide to ignore the components of
lesser significance.
You do lose some information, but if the eigenvalues are
small, you don’t lose much
• n dimensions in your data
• calculate n eigenvectors and eigenvalues
• choose only the first p eigenvectors
• final data set has only p dimensions.
PCA Example –STEP 4
• Feature Vector
FeatureVector = (eig1 eig2 eig3 … eign)
We can either form a feature vector with both of the
eigenvectors:
-.677873399
-.735178656
-.735178656
.677873399
or, we can choose to leave out the smaller, less
significant component and only have a single
column:
- .677873399
- .735178656
PCA Example –STEP 5
• Deriving the new data
FinalData = RowFeatureVector x RowZeroMeanData
RowFeatureVector is the matrix with the eigenvectors in the
columns transposed so that the eigenvectors are now in the
rows, with the most significant eigenvector at the top
RowZeroMeanData is the mean-adjusted data
transposed, ie. the data items are in each column,
with each row holding a separate dimension.
PCA Example –STEP 5
FinalData transpose: dimensions
along columns
x y
-.827970186 -.175115307
1.77758033 .142857227
-.992197494 .384374989
-.274210416 .130417207
-1.67580142 -.209498461
-.912949103 .175282444
.0991094375 -.349824698
1.14457216 .0464172582
.438046137 .0177646297
1.22382056 -.162675287
PCA Example –STEP 5
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
Reconstruction of original Data
• If we reduced the dimensionality, obviously, when
reconstructing the data we would lose those
dimensions we chose to discard. In our example let
us assume that we considered only the x dimension…
Reconstruction of original Data
http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
x
-.827970186
1.77758033
-.992197494
-.274210416
-1.67580142
-.912949103
.0991094375
1.14457216
.438046137
1.22382056
Applications in computer vision-
PCA to find patterns-
• 20 face images: NxN size
• One image represented as follows-
• Putting all 20 images in 1 big matrix as follows-
• Performing PCA to find patterns in the face images
• Idenifying faces by measuring differences along the new axes (PCs)
PCA for image compression:
• Compile a dataset of 20 images
• Build the covariance matrix of 20 dimensions
• Compute the eigenvectors and eigenvalues
• Based on the eigenvalues, 5 dimensions can be left out, those with the least
eigenvalues.
• 1/4th of the space is saved.
Importance of PCA
• In data of high dimensions, where graphical representation is difficult, PCA is a
powerful tool for analysing data and finding patterns in it.
• Data compression is possible using PCA
• The most efficient expression of data is by the use of perpendicular components,
as done in PCA.
Questions:
• What do the eigenvectors of the covariance matrix while computing the principal
components give us?
• At what point in the PCA process can we decide to compress the data?
• Why are the principal components orthogonal?
• How many different covariance values can you calculate for an n-dimensional data
set?
THANK YOU

More Related Content

PPTX
PPTX
PCA Final.pptx
PPTX
Feature selection using PCA.pptx
PDF
pca.pdf polymer nanoparticles and sensors
PPTX
Dimensionality Reduction and feature extraction.pptx
PDF
Mathematical Introduction to Principal Components Analysis
PPTX
ML-Lec-18-NEW Dimensionality Reduction-PCA (1).pptx
PPTX
Principal Component Analysis in Machine learning.pptx
PCA Final.pptx
Feature selection using PCA.pptx
pca.pdf polymer nanoparticles and sensors
Dimensionality Reduction and feature extraction.pptx
Mathematical Introduction to Principal Components Analysis
ML-Lec-18-NEW Dimensionality Reduction-PCA (1).pptx
Principal Component Analysis in Machine learning.pptx

Similar to pcappt-140121072949-phpapp01.pptx (20)

PDF
Covariance.pdf
PPT
Lecture 12 Principal Component Analysis in Machine Learning.ppt
PPT
pca in machine learning pca in machine learning pca in machine learning pca i...
PPT
Principal Component Analysis (PCA):How to conduct PCA
PPT
PPT
The following ppt is about principal component analysis
PPTX
DimensionalityReduction.pptx
PDF
5 DimensionalityReduction.pdf
PPT
Lecture1 dosen mengabdi untuk negeri _jps.ppt
PPTX
Principal Component Analysis PCA
PPTX
Principal component analysis in machine L
PPTX
Unit3_1.pptx
PPTX
11 Principal Component Analysis Computer Graphics.pptx
PPT
Lecture1_jps.ppt
PPT
Lecture1_jps (1).ppt
PPTX
Lect5 principal component analysis
PPTX
PCA and SVD in brief
PPTX
Principal Component Analysis (PCA) machine Learning.
PDF
Principal Component Analysis in Machine Learning.pdf
Covariance.pdf
Lecture 12 Principal Component Analysis in Machine Learning.ppt
pca in machine learning pca in machine learning pca in machine learning pca i...
Principal Component Analysis (PCA):How to conduct PCA
The following ppt is about principal component analysis
DimensionalityReduction.pptx
5 DimensionalityReduction.pdf
Lecture1 dosen mengabdi untuk negeri _jps.ppt
Principal Component Analysis PCA
Principal component analysis in machine L
Unit3_1.pptx
11 Principal Component Analysis Computer Graphics.pptx
Lecture1_jps.ppt
Lecture1_jps (1).ppt
Lect5 principal component analysis
PCA and SVD in brief
Principal Component Analysis (PCA) machine Learning.
Principal Component Analysis in Machine Learning.pdf

More from ABINASHPADHY6 (20)

PPTX
Untitled (2).pptxghjfgjfgjfghjghghjghghh
PPTX
Ankit Upadhyadfgdfgdfgy sdgdfgdfghdfgdfgdfg
PPTX
Rapid Guard PVC Doors (Ritul Joshi).pptx
PPTX
wqedfghj,hgfdgthjkjhgfdsdfgthujsdfrtghyu
PPTX
Blue Shark Tech zsxdfghsdfghjsdfghjkdfghjkdfghjk
PPTX
Types-of-Information-System.pptx
PDF
Ferns and Petals.pdf
PDF
Coursera H5B26VDU9GSH.pdf
PPTX
Advertising &.pptx
PPTX
Bagging_and_Boosting.pptx
PPTX
shubhampresentation-180430060134.pptx
PPTX
decisiontree-110906040745-phpapp01.pptx
PPTX
Module 7_ Use Cases_ Blockchain Certification Training Course.pptx
PPTX
collaborativefiltering-150228122057-conversion-gate02.pptx
PPT
Chernick.Michael.ppt
PPTX
videorecommendationsystemfornewseducationandentertainment-170519183703.pptx
PPTX
log6kntt4i4dgwfwbpxw-signature-75c4ed0a4b22d2fef90396cdcdae85b38911f9dce0924a...
PPT
Culbert.ppt
PPT
Bootstrap.ppt
PPT
15303589.ppt
Untitled (2).pptxghjfgjfgjfghjghghjghghh
Ankit Upadhyadfgdfgdfgy sdgdfgdfghdfgdfgdfg
Rapid Guard PVC Doors (Ritul Joshi).pptx
wqedfghj,hgfdgthjkjhgfdsdfgthujsdfrtghyu
Blue Shark Tech zsxdfghsdfghjsdfghjkdfghjkdfghjk
Types-of-Information-System.pptx
Ferns and Petals.pdf
Coursera H5B26VDU9GSH.pdf
Advertising &.pptx
Bagging_and_Boosting.pptx
shubhampresentation-180430060134.pptx
decisiontree-110906040745-phpapp01.pptx
Module 7_ Use Cases_ Blockchain Certification Training Course.pptx
collaborativefiltering-150228122057-conversion-gate02.pptx
Chernick.Michael.ppt
videorecommendationsystemfornewseducationandentertainment-170519183703.pptx
log6kntt4i4dgwfwbpxw-signature-75c4ed0a4b22d2fef90396cdcdae85b38911f9dce0924a...
Culbert.ppt
Bootstrap.ppt
15303589.ppt

Recently uploaded (20)

PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Trump Administration's workforce development strategy
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
PPTX
Introduction to Building Materials
PDF
Hazard Identification & Risk Assessment .pdf
PPTX
Computer Architecture Input Output Memory.pptx
PDF
HVAC Specification 2024 according to central public works department
PPTX
Virtual and Augmented Reality in Current Scenario
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PDF
1_English_Language_Set_2.pdf probationary
PDF
IGGE1 Understanding the Self1234567891011
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
AI-driven educational solutions for real-life interventions in the Philippine...
Trump Administration's workforce development strategy
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
RTP_AR_KS1_Tutor's Guide_English [FOR REPRODUCTION].pdf
Introduction to Building Materials
Hazard Identification & Risk Assessment .pdf
Computer Architecture Input Output Memory.pptx
HVAC Specification 2024 according to central public works department
Virtual and Augmented Reality in Current Scenario
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Chinmaya Tiranga quiz Grand Finale.pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Unit 4 Computer Architecture Multicore Processor.pptx
1_English_Language_Set_2.pdf probationary
IGGE1 Understanding the Self1234567891011
Indian roads congress 037 - 2012 Flexible pavement
Paper A Mock Exam 9_ Attempt review.pdf.

pcappt-140121072949-phpapp01.pptx

  • 1. Principal Component Analysis (Dimensionality Reduction) By: Tarun Bhatia Y7475
  • 2. Overview: • What is Principal Component Analysis • Computing the compnents in PCA • Dimensionality Reduction using PCA • A 2D example in PCA • Applications of PCA in computer vision • Importance of PCA in analysing data in higher dimensions • Questions
  • 3. Principal Component Analysis • Most common form of factor analysis • The new variables/dimensions – Are linear combinations of the original ones – Are uncorrelated with one another • Orthogonal in original dimension space – Capture as much of the original variance in the data as possible – Are called Principal Components
  • 4. What are the new axes? • Orthogonal directions of greatest variance in data • Projections along PC1 discriminate the data most along any one axis
  • 5. Principal Components •First principal component is the direction of greatest variability (covariance) in the data • Second is the next orthogonal (uncorrelated) direction of greatest variability – So first remove all the variability along the first component, and then find the next direction of greatest variability • And so on …
  • 6. Principal Components Analysis (PCA) • Principle – Linear projection method to reduce the number of parameters – Transfer a set of correlated variables into a new set of uncorrelated variables – Map the data into a space of lower dimensionality – Form of unsupervised learning • Properties –It can be viewed as a rotation of the existing axes to new positions in the space defined by original variables –New axes are orthogonal and represent the directions with maximum variability
  • 7. Computing the Components • Data points are vectors in a multidimensional space • Projection of vector x onto an axis (dimension) u is u.x •Direction of greatest variability is that in which the average square of the projection is greatest – I.e. u such that E((u.x)2) over all x is maximized –(we subtract the mean along each dimension, and center the original axis system at the centroid of all data points, for simplicity) – This direction of u is the direction of the first Principal Component
  • 8. Computing the Components • E((u.x)2) = E ((u.x) (u.x)T) = E (u.x.x T.uT) •The matrix S = x.xT contains the correlations (similarities) of the original axes based on how the data values project onto them • So we are looking for w that maximizes uSuT, subject to u being unit-length • It is maximized when w is the principal eigenvector of the matrix S, in which case –uCuT = uλuT = λ if u is unit-length, where λ is the principal eigenvalue of the correlation matrix C – The eigenvalue denotes the amount of variability captured along that dimension
  • 9. Why the Eigenvectors? Maximise uTxxTu s.t uTu = 1 Construct Langrangian uTxxTu – λuTu Vector of partial derivatives set to zero xxTu – λu = (xxT – λI) u = 0 As u ≠ 0 then u must be an eigenvector of xxT with eigenvalue λ
  • 10. Computing the Components • Similarly for the next axis, etc. •So, the new axes are the eigenvectors of the matrix of correlations of the original variables, which captures the similarities of the original variables based on how data samples project to them • Geometrically: centering followed by rotation • – Linear transformation
  • 11. PCs, Variance and Least-Squares • The first PC retains the greatest amount of variation in the sample • The kth PC retains the kth greatest fraction of the variation in the sample •The kth largest eigenvalue of the correlation matrix C is the variance in the sample along the kth PC •The least-squares view: PCs are a series of linear least squares fits to a sample, each orthogonal to all previous ones
  • 12. How Many PCs? •For n original dimensions, correlation matrix is nxn, and has up to n eigenvectors. So n PCs. •Where does dimensionality reduction come from?
  • 13. Dimensionality Reduction Can ignore the components of lesser significance. You do lose some information, but if the eigenvalues are small, you don’t lose much – n dimensions in original data – calculate n eigenvectors and eigenvalues – choose only the first p eigenvectors, based on their eigenvalues – final data set has only p dimensions
  • 14. Eigenvectors of a Correlation Matrix
  • 15. PCA Example –STEP 1 • Subtract the mean from each of the data dimensions. All the x values have x subtracted and y values have y subtracted from them. This produces a data set whose mean is zero. Subtracting the mean makes variance and covariance calculation easier by simplifying their equations. The variance and co-variance values are not affected by the mean value.
  • 16. PCA Example –STEP 1 DATA: x y 2.5 2.4 0.5 0.7 2.2 2.9 1.9 2.2 3.1 3.0 2.3 2.7 2 1.6 1 1.1 1.5 1.6 1.1 0.9 ZERO MEAN DATA: x y .69 .49 -1.31 -1.21 .39 .99 .09 .29 1.29 1.09 .49 .79 .19 -.31 -.81 -.81 -.31 -.31 -.71 -1.01 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
  • 17. PCA Example –STEP 1 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
  • 18. PCA Example –STEP 2 • Calculate the covariance matrix cov = .616555556 .615444444 .615444444 .716555556 • since the non-diagonal elements in this covariance matrix are positive, we should expect that both the x and y variable increase together.
  • 19. PCA Example –STEP 3 • Calculate the eigenvectors and eigenvalues of the covariance matrix eigenvalues = .0490833989 1.28402771 eigenvectors = -.735178656 -.677873399 .677873399 -.735178656
  • 20. PCA Example –STEP 3 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf •eigenvectors are plotted as diagonal dotted lines on the plot. •Note they are perpendicular to each other. •Note one of the eigenvectors goes through the middle of the points, like drawing a line of best fit. •The second eigenvector gives us the other, less important, pattern in the data, that all the points follow the main line, but are off to the side of the main line by some amount.
  • 21. PCA Example –STEP 4 • Reduce dimensionality and form feature vector the eigenvector with the highest eigenvalue is the principle component of the data set. In our example, the eigenvector with the larges eigenvalue was the one that pointed down the middle of the data. Once eigenvectors are found from the covariance matrix, the next step is to order them by eigenvalue, highest to lowest. This gives you the components in order of significance.
  • 22. PCA Example –STEP 4 Now, if you like, you can decide to ignore the components of lesser significance. You do lose some information, but if the eigenvalues are small, you don’t lose much • n dimensions in your data • calculate n eigenvectors and eigenvalues • choose only the first p eigenvectors • final data set has only p dimensions.
  • 23. PCA Example –STEP 4 • Feature Vector FeatureVector = (eig1 eig2 eig3 … eign) We can either form a feature vector with both of the eigenvectors: -.677873399 -.735178656 -.735178656 .677873399 or, we can choose to leave out the smaller, less significant component and only have a single column: - .677873399 - .735178656
  • 24. PCA Example –STEP 5 • Deriving the new data FinalData = RowFeatureVector x RowZeroMeanData RowFeatureVector is the matrix with the eigenvectors in the columns transposed so that the eigenvectors are now in the rows, with the most significant eigenvector at the top RowZeroMeanData is the mean-adjusted data transposed, ie. the data items are in each column, with each row holding a separate dimension.
  • 25. PCA Example –STEP 5 FinalData transpose: dimensions along columns x y -.827970186 -.175115307 1.77758033 .142857227 -.992197494 .384374989 -.274210416 .130417207 -1.67580142 -.209498461 -.912949103 .175282444 .0991094375 -.349824698 1.14457216 .0464172582 .438046137 .0177646297 1.22382056 -.162675287
  • 26. PCA Example –STEP 5 http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf
  • 27. Reconstruction of original Data • If we reduced the dimensionality, obviously, when reconstructing the data we would lose those dimensions we chose to discard. In our example let us assume that we considered only the x dimension…
  • 28. Reconstruction of original Data http://kybele.psych.cornell.edu/~edelman/Psych-465-Spring-2003/PCA-tutorial.pdf x -.827970186 1.77758033 -.992197494 -.274210416 -1.67580142 -.912949103 .0991094375 1.14457216 .438046137 1.22382056
  • 29. Applications in computer vision- PCA to find patterns- • 20 face images: NxN size • One image represented as follows- • Putting all 20 images in 1 big matrix as follows- • Performing PCA to find patterns in the face images • Idenifying faces by measuring differences along the new axes (PCs)
  • 30. PCA for image compression: • Compile a dataset of 20 images • Build the covariance matrix of 20 dimensions • Compute the eigenvectors and eigenvalues • Based on the eigenvalues, 5 dimensions can be left out, those with the least eigenvalues. • 1/4th of the space is saved.
  • 31. Importance of PCA • In data of high dimensions, where graphical representation is difficult, PCA is a powerful tool for analysing data and finding patterns in it. • Data compression is possible using PCA • The most efficient expression of data is by the use of perpendicular components, as done in PCA.
  • 32. Questions: • What do the eigenvectors of the covariance matrix while computing the principal components give us? • At what point in the PCA process can we decide to compress the data? • Why are the principal components orthogonal? • How many different covariance values can you calculate for an n-dimensional data set?