SlideShare a Scribd company logo
Building Streaming Applications with
Apache Apex
Chinmay Kolhatkar, Committer @ApacheApex, Engineer @DataTorrent
Thomas Weise, PMC Chair @ApacheApex, Architect @DataTorrent
Nov 15th
2016
Agenda
2
• Application Development Model
• Creating Apex Application - Project Structure
• Apex APIs
• Configuration Example
• Operator APIs
• Overview of Operator Library
• Frequently used Connectors
• Stateful Transformation & Windowing
• Scalability - Partitioning
• End-to-end Exactly Once
Application Development Model
3
▪Stream is a sequence of data tuples
▪Operator takes one or more input streams, performs computations & emits one or more output streams
• Each Operator is YOUR custom business logic in java, or built-in operator from our open source library
• Operator has many instances that run in parallel and each instance is single-threaded
▪Directed Acyclic Graph (DAG) is made up of operators and streams
Directed Acyclic Graph (DAG)
Filtered
Stream
Output
Stream
Tuple Tuple
FilteredStream
Enriched
Stream
Enriched
Stream
er
Operator
er
Operator
er
Operator
er
Operator
er
Operator
er
Operator
Creating Apex Application Project
4
chinmay@chinmay-VirtualBox:~/src$ mvn archetype:generate -DarchetypeGroupId=org.apache.apex
-DarchetypeArtifactId=apex-app-archetype -DarchetypeVersion=LATEST -DgroupId=com.example
-Dpackage=com.example.myapexapp -DartifactId=myapexapp -Dversion=1.0-SNAPSHOT
…
…
...
Confirm properties configuration:
groupId: com.example
artifactId: myapexapp
version: 1.0-SNAPSHOT
package: com.example.myapexapp
archetypeVersion: LATEST
Y: : Y
…
…
...
[INFO] project created from Archetype in dir: /media/sf_workspace/src/myapexapp
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 13.141 s
[INFO] Finished at: 2016-11-15T14:06:56+05:30
[INFO] Final Memory: 18M/216M
[INFO] ------------------------------------------------------------------------
chinmay@chinmay-VirtualBox:~/src$
https://www.youtube.com/watch?v=z-eeh-tjQrc
Apex Application Project Structure
5
• pom.xml
• Defines project structure and
dependencies
• Application.java
• Defines the DAG
• RandomNumberGenerator.java
• Sample Operator
• properties.xml
• Contains operator and application
properties and attributes
• ApplicationTest.java
• Sample test to test application in local
mode
Apex APIs: Compositional (Low level)
6
Input Parser Counter Output
CountsWordsLines
Kafka Database
Filter
Filtered
Apex APIs: Declarative (High Level)
7
File
Input
Parser
Word
Counter
Console
Output
CountsWordsLines
Folder StdOut
StreamFactory.fromFolder("/tmp")
.flatMap(input -> Arrays.asList(input.split(" ")), name("Words"))
.window(new WindowOption.GlobalWindow(),
new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1))
.countByKey(input -> new Tuple.PlainTuple<>(new KeyValPair<>(input, 1L)), name("countByKey"))
.map(input -> input.getValue(), name("Counts"))
.print(name("Console"))
.populateDag(dag);
Apex APIs: SQL
8
Kafka
Input
CSV
Parser
Filter CSV
Formattter
FilteredWordsLines
Kafka File
Project
Projected
Line
Writer
Formatted
SQLExecEnvironment.getEnvironment()
.registerTable("ORDERS",
new KafkaEndpoint(conf.get("broker"), conf.get("topic"),
new CSVMessageFormat(conf.get("schemaInDef"))))
.registerTable("SALES",
new FileEndpoint(conf.get("destFolder"), conf.get("destFileName"),
new CSVMessageFormat(conf.get("schemaOutDef"))))
.registerFunction("APEXCONCAT", this.getClass(), "apex_concat_str")
.executeSQL(dag,
"INSERT INTO SALES " +
"SELECT STREAM ROWTIME, FLOOR(ROWTIME TO DAY), APEXCONCAT('OILPAINT', SUBSTRING(PRODUCT, 6, 7) " +
"FROM ORDERS WHERE ID > 3 AND PRODUCT LIKE 'paint%'");
Apex APIs: Beam
9
• Apex Runner of Beam is available!!
• Build once run-anywhere model
• Beam Streaming applications can be run on apex runner:
public static void main(String[] args) {
Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
// Run with Apex runner
options.setRunner(ApexRunner.class);
Pipeline p = Pipeline.create(options);
p.apply("ReadLines", TextIO.Read.from(options.getInput()))
.apply(new CountWords())
.apply(MapElements.via(new FormatAsTextFn()))
.apply("WriteCounts", TextIO.Write.to(options.getOutput()));
.run().waitUntilFinish();
}
Apex APIs: SAMOA
10
• Build once run-anywhere model for online machine learning algorithms
• Any machine learning algorithm present in SAMOA can be run directly on Apex.
• Uses Apex Iteration Support
• Following example does classification of input data from HDFS using VHT algorithm on
Apex:
$ bin/samoa apex ../SAMOA-Apex-0.4.0-incubating-SNAPSHOT.jar "PrequentialEvaluation
-d /tmp/dump.csv
-l (classifiers.trees.VerticalHoeffdingTree -p 1)
-s (org.apache.samoa.streams.ArffFileStream
-s HDFSFileStreamSource
-f /tmp/user/input/covtypeNorm.arff)"
Configuration (properties.xml)
11
Input Parser Counter Output
CountsWordsLines
Kafka Database
Filter
Filtered
Streaming Window
Processing Time Window
12
• Finite time sliced windows based on processing (event arrival) time
• Used for bookkeeping of streaming application
• Derived Windows are: Checkpoint Windows, Committed Windows
Operator APIs
13
Next
streaming
window
Next
streaming
window
Input Adapters - Starting of the pipeline. Interacts with external system to generate stream
Generic Operators - Processing part of pipeline
Output Adapters - Last operator in pipeline. Interacts with external system to finalize the processed stream
OutputPort::emit()
Overview of Operator Library (Malhar)
14
RDBMS
• JDBC
• MySQL
• Oracle
• MemSQL
NoSQL
• Cassandra, HBase
• Aerospike, Accumulo
• Couchbase/ CouchDB
• Redis, MongoDB
• Geode
Messaging
• Kafka
• JMS (ActiveMQ etc.)
• Kinesis, SQS
• Flume, NiFi
File Systems
• HDFS/ Hive
• Local File
• S3
Parsers
• XML
• JSON
• CSV
• Avro
• Parquet
Transformations
• Filters, Expression, Enrich
• Windowing, Aggregation
• Join
• Dedup
Analytics
• Dimensional Aggregations
(with state management for
historical data + query)
Protocols
• HTTP
• FTP
• WebSocket
• MQTT
• SMTP
Other
• Elastic Search
• Script (JavaScript, Python, R)
• Solr
• Twitter
Frequently used Connectors
Kafka Input
15
KafkaSinglePortInputOperator KafkaSinglePortByteArrayInputOperator
Library malhar-contrib malhar-kafka
Kafka Consumer 0.8 0.9
Emit Type byte[] byte[]
Fault-Tolerance At Least Once, Exactly Once At Least Once, Exactly Once
Scalability Static and Dynamic (with Kafka
metadata)
Static and Dynamic (with Kafka metadata)
Multi-Cluster/Topic Yes Yes
Idempotent Yes Yes
Partition Strategy 1:1, 1:M 1:1, 1:M
Frequently used Connectors
Kafka Output
16
KafkaSinglePortOutputOperator KafkaSinglePortExactlyOnceOutputOperator
Library malhar-contrib malhar-kafka
Kafka Producer 0.8 0.9
Fault-Tolerance At Least Once At Least Once, Exactly Once
Scalability Static and Dynamic (with Kafka
metadata)
Static and Dynamic, Automatic Partitioning
based on Kafka metadata
Multi-Cluster/Topic Yes Yes
Idempotent Yes Yes
Partition Strategy 1:1, 1:M 1:1, 1:M
Frequently used Connectors
File Input
17
• AbstractFileInputOperator
• Used to read a file from source and
emit the content of the file to
downstream operator
• Operator is idempotent
• Supports Partitioning
• Few Concrete Impl
• FileLineInputOperator
• AvroFileInputOperator
• ParquetFilePOJOReader
• https://www.datatorrent.com/blog/f
ault-tolerant-file-processing/
Frequently used Connectors
File Output
18
• AbstractFileOutputOperator
• Writes data to a file
• Supports Partitions
• Exactly-once results
• Upstream operators should be
idempotent
• Few Concrete Impl
• StringFileOutputOperator
• https://www.datatorrent.com/blog/f
ault-tolerant-file-processing/
Windowing Support
19
• Event-time Windows
• Computation based on event-time present in the tuple
• Types of event-time windows supported:
• Global : Single event-time window throughout the lifecycle of application
• Timed : Tuple is assigned to single, non-overlapping, fixed width windows immediately
followed by next window
• Sliding Time : Tuple is can be assigned to multiple, overlapping fixed width windows.
• Session : Tuple is assigned to single, variable width windows with a predefined min gap
Stateful Windowed Processing
20
• WindowedOperator from malhar-library
• Used to process data based on Event time as contrary to ingression time
• Supports windowing semantics of Apache Beam model
• Supported features:
• Watermarks
• Allowed Lateness
• Accumulation
• Accumulation Modes: Accumulating, Discarding, Accumulating & Retracting
• Triggers
• Storage
• In memory based
• Managed State based
Stateful Windowed Processing
Compositional API
21
@Override
public void populateDAG(DAG dag, Configuration configuration)
{
WordGenerator inputOperator = new WordGenerator();
KeyedWindowedOperatorImpl windowedOperator = new KeyedWindowedOperatorImpl();
Accumulation<Long, MutableLong, Long> sum = new SumAccumulation();
windowedOperator.setAccumulation(sum);
windowedOperator.setDataStorage(new InMemoryWindowedKeyedStorage<String, MutableLong>());
windowedOperator.setRetractionStorage(new InMemoryWindowedKeyedStorage<String, Long>());
windowedOperator.setWindowStateStorage(new InMemoryWindowedStorage<WindowState>());
windowedOperator.setWindowOption(new WindowOption.TimeWindows(Duration.standardMinutes(1)));
windowedOperator.setTriggerOption(TriggerOption.AtWatermark()
.withEarlyFiringsAtEvery(Duration.millis(1000))
.accumulatingAndRetractingFiredPanes());
windowedOperator.setAllowedLateness(Duration.millis(14000));
ConsoleOutputOperator outputOperator = new ConsoleOutputOperator();
dag.addOperator( "inputOperator", inputOperator);
dag.addOperator( "windowedOperator", windowedOperator);
dag.addOperator( "outputOperator", outputOperator);
dag.addStream( "input_windowed", inputOperator. output, windowedOperator.input);
dag.addStream( "windowed_output", windowedOperator.output, outputOperator. input);
}
Stateful Windowed Processing
Declarative API
22
StreamFactory.fromFolder("/tmp")
.flatMap(input -> Arrays.asList(input.split( " ")), name("ExtractWords"))
.map(input -> new TimestampedTuple<>(System.currentTimeMillis(), input), name("AddTimestampFn"))
.window(new TimeWindows(Duration.standardMinutes(WINDOW_SIZE)),
new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1))
.countByKey(input -> new TimestampedTuple<>(input.getTimestamp(), new KeyValPair<>(input.getValue(),
1L ))), name("countWords"))
.map(new FormatAsTableRowFn(), name("FormatAsTableRowFn"))
.print(name("console"))
.populateDag(dag);
• Useful for low latency and high throughput
• Replicates (Partitions) the logic
• Configured at launch time (Application.java or
properties.xml)
• StreamCodec
• Used for controlling distribution of tuples to
downstream partitions
• Unifier (combine results of partitions)
• Passthrough unifier added by platform to merge
results from upstream partitions
• Can also be customized
• Type of partitions
• Static partitions - Statically partition at launch
time
• Dynamic partitions - Partitions changing at
runtime based on latency and/or throughput
• Parallel partitions - Upstream and downstream
operators using same partition scheme
Scalability - Partitioning
23
Scalability - Partitioning (contd.)
24
0 1 2 3
Logical DAG
0 1 2 U
Physical DAG
1
1 2
2
3
Parallel
Partitions
M x N
Partitions
OR
Shuffle
<configuration>
<property>
<name>dt.operator.1. attr.PARTITIONER</name>
<value>com.datatorrent.common.partitioner. StatelessPartitioner:3</value>
</property>
<property>
<name>dt.operator.2.port.inputPortName. attr.PARTITION_PARALLEL</name>
<value>true</value>
</property>
</configuration>
End-to-End Exactly-Once
25
Input Counter Store
Aggregate
CountsWords
Kafka Database
● Input
○ Uses com.datatorrent.contrib.kafka.KafkaSinglePortStringInputOperator
○ Emits words as a stream
○ Operator is idempotent
● Counter
○ com.datatorrent.lib.algo.UniqueCounter
● Store
○ Uses CountStoreOperator
○ Inserts into JDBC
○ Exactly-once results (End-To-End Exactly-once = At-least-once + Idempotency + Consistent State)
https://github.com/DataTorrent/examples/blob/master/tutorials/exactly-once
https://www.datatorrent.com/blog/end-to-end-exactly-once-with-apache-apex/
End-to-End Exactly-Once (Contd.)
26
Input Counter Store
Aggregate
CountsWords
Kafka Database
public static class CountStoreOperator extends AbstractJdbcTransactionableOutputOperator<KeyValPair<String, Integer>>
{
public static final String SQL =
"MERGE INTO words USING (VALUES ?, ?) I (word, wcount)"
+ " ON (words.word=I.word)"
+ " WHEN MATCHED THEN UPDATE SET words.wcount = words.wcount + I.wcount"
+ " WHEN NOT MATCHED THEN INSERT (word, wcount) VALUES (I.word, I.wcount)";
@Override
protected String getUpdateCommand()
{
return SQL;
}
@Override
protected void setStatementParameters(PreparedStatement statement, KeyValPair<String, Integer> tuple)throws SQLException
{
statement.setString(1, tuple.getKey());
statement.setInt(2, tuple.getValue());
}
}
End-to-End Exactly-Once (Contd.)
27
https://www.datatorrent.com/blog/fault-tolerant-file-processing/
Who is using Apex?
28
• Powered by Apex
ᵒ http://apex.apache.org/powered-by-apex.html
ᵒ Also using Apex? Let us know to be added: users@apex.apache.org or @ApacheApex
• Pubmatic
ᵒ https://www.youtube.com/watch?v=JSXpgfQFcU8
• GE
ᵒ https://www.youtube.com/watch?v=hmaSkXhHNu0
ᵒ http://www.slideshare.net/ApacheApex/ge-iot-predix-time-series-data-ingestion-service-usin
g-apache-apex-hadoop
• SilverSpring Networks
ᵒ https://www.youtube.com/watch?v=8VORISKeSjI
ᵒ http://www.slideshare.net/ApacheApex/iot-big-data-ingestion-and-processing-in-hadoop-by-s
ilver-spring-networks
Resources
29
• http://apex.apache.org/
• Learn more - http://apex.apache.org/docs.html
• Subscribe - http://apex.apache.org/community.html
• Download - http://apex.apache.org/downloads.html
• Follow @ApacheApex - https://twitter.com/apacheapex
• Meetups - https://www.meetup.com/topics/apache-apex/
• Examples - https://github.com/DataTorrent/examples
• Slideshare - http://www.slideshare.net/ApacheApex/presentations
• https://www.youtube.com/results?search_query=apache+apex
• Free Enterprise License for Startups -
https://www.datatorrent.com/product/startup-accelerator/
Q&A
30

More Related Content

PPTX
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
PPTX
Kafka to Hadoop Ingest with Parsing, Dedup and other Big Data Transformations
PDF
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
PDF
From Batch to Streaming with Apache Apex Dataworks Summit 2017
PPTX
Intro to Apache Apex @ Women in Big Data
PPTX
Java High Level Stream API
PPTX
Ingesting Data from Kafka to JDBC with Transformation and Enrichment
PPTX
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac
Intro to Apache Apex - Next Gen Platform for Ingest and Transform
Kafka to Hadoop Ingest with Parsing, Dedup and other Big Data Transformations
Apache Big Data EU 2016: Next Gen Big Data Analytics with Apache Apex
From Batch to Streaming with Apache Apex Dataworks Summit 2017
Intro to Apache Apex @ Women in Big Data
Java High Level Stream API
Ingesting Data from Kafka to JDBC with Transformation and Enrichment
Intro to Apache Apex - Next Gen Native Hadoop Platform - Hackac

What's hot (20)

PPTX
Deep Dive into Apache Apex App Development
PDF
The Future of Apache Storm
PPTX
Intro to YARN (Hadoop 2.0) & Apex as YARN App (Next Gen Big Data)
PDF
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
PDF
Large-Scale Stream Processing in the Hadoop Ecosystem - Hadoop Summit 2016
PDF
Developing streaming applications with apache apex (strata + hadoop world)
PDF
Large-Scale Stream Processing in the Hadoop Ecosystem
PPTX
Hadoop Summit SJ 2016: Next Gen Big Data Analytics with Apache Apex
PPTX
Architectual Comparison of Apache Apex and Spark Streaming
PPTX
Next Gen Big Data Analytics with Apache Apex
PPTX
DataTorrent Presentation @ Big Data Application Meetup
PPTX
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
PPTX
Big Data Berlin v8.0 Stream Processing with Apache Apex
PPTX
Apache Apex: Stream Processing Architecture and Applications
PPTX
Fault-Tolerant File Input & Output
PDF
Large-Scale Stream Processing in the Hadoop Ecosystem
PDF
Low Latency Polyglot Model Scoring using Apache Apex
PPTX
Apache phoenix
PDF
A TPC Benchmark of Hive LLAP and Comparison with Presto
PPTX
Introduction to Real-Time Data Processing
Deep Dive into Apache Apex App Development
The Future of Apache Storm
Intro to YARN (Hadoop 2.0) & Apex as YARN App (Next Gen Big Data)
Actionable Insights with Apache Apex at Apache Big Data 2017 by Devendra Tagare
Large-Scale Stream Processing in the Hadoop Ecosystem - Hadoop Summit 2016
Developing streaming applications with apache apex (strata + hadoop world)
Large-Scale Stream Processing in the Hadoop Ecosystem
Hadoop Summit SJ 2016: Next Gen Big Data Analytics with Apache Apex
Architectual Comparison of Apache Apex and Spark Streaming
Next Gen Big Data Analytics with Apache Apex
DataTorrent Presentation @ Big Data Application Meetup
Apache Big Data 2016: Next Gen Big Data Analytics with Apache Apex
Big Data Berlin v8.0 Stream Processing with Apache Apex
Apache Apex: Stream Processing Architecture and Applications
Fault-Tolerant File Input & Output
Large-Scale Stream Processing in the Hadoop Ecosystem
Low Latency Polyglot Model Scoring using Apache Apex
Apache phoenix
A TPC Benchmark of Hive LLAP and Comparison with Presto
Introduction to Real-Time Data Processing
Ad

Viewers also liked (18)

PPTX
Introduction to Apache Apex
PPTX
HDFS Internals
PPTX
Hadoop Interacting with HDFS
PPTX
Capital One's Next Generation Decision in less than 2 ms
PPTX
Introduction to Yarn
PPTX
Intro to Apache Apex (next gen Hadoop) & comparison to Spark Streaming
PPTX
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
PPTX
Introduction to Apache Apex and writing a big data streaming application
PPTX
Introduction to Map Reduce
PDF
Apache Hadoop YARN - Enabling Next Generation Data Applications
PPT
Римский корсаков снегурочка
PPT
Цветочные легенды
PPTX
High Performance Distributed Systems with CQRS
PPTX
правописание приставок урок№4
PPTX
бсп (обоб. урок)
PDF
Troubleshooting mysql-tutorial
PDF
Towards True Elasticity of Spark-(Michael Le and Min Li, IBM)
PDF
Windowing in Apache Apex
Introduction to Apache Apex
HDFS Internals
Hadoop Interacting with HDFS
Capital One's Next Generation Decision in less than 2 ms
Introduction to Yarn
Intro to Apache Apex (next gen Hadoop) & comparison to Spark Streaming
Building Your First Apache Apex (Next Gen Big Data/Hadoop) Application
Introduction to Apache Apex and writing a big data streaming application
Introduction to Map Reduce
Apache Hadoop YARN - Enabling Next Generation Data Applications
Римский корсаков снегурочка
Цветочные легенды
High Performance Distributed Systems with CQRS
правописание приставок урок№4
бсп (обоб. урок)
Troubleshooting mysql-tutorial
Towards True Elasticity of Spark-(Michael Le and Min Li, IBM)
Windowing in Apache Apex
Ad

Similar to Apache Big Data EU 2016: Building Streaming Applications with Apache Apex (20)

PDF
Stream Processing use cases and applications with Apache Apex by Thomas Weise
PDF
BigDataSpain 2016: Stream Processing Applications with Apache Apex
PDF
Introduction to Apache Apex by Thomas Weise
PDF
Building Your First Apache Apex Application
PDF
Building your first aplication using Apache Apex
PPTX
Introduction to Apache Flink
PPTX
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
PPTX
Apache Apex: Stream Processing Architecture and Applications
PDF
BigDataSpain 2016: Introduction to Apache Apex
PPTX
Stream processing - Apache flink
PPTX
Ingestion and Dimensions Compute and Enrich using Apache Apex
PDF
It's Time To Stop Using Lambda Architecture
PDF
Streaming architecture patterns
PDF
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
PPTX
Apache Flink Training: System Overview
PDF
Real Time Big Data Management
PPTX
Flink Streaming
PDF
Kafka Summit NYC 2017 - Building Advanced Streaming Applications using the La...
PPTX
Stream Processing with Apache Apex
PPTX
ApacheCon: Apache Flink - Fast and Reliable Large-Scale Data Processing
Stream Processing use cases and applications with Apache Apex by Thomas Weise
BigDataSpain 2016: Stream Processing Applications with Apache Apex
Introduction to Apache Apex by Thomas Weise
Building Your First Apache Apex Application
Building your first aplication using Apache Apex
Introduction to Apache Flink
Thomas Weise, Apache Apex PMC Member and Architect/Co-Founder, DataTorrent - ...
Apache Apex: Stream Processing Architecture and Applications
BigDataSpain 2016: Introduction to Apache Apex
Stream processing - Apache flink
Ingestion and Dimensions Compute and Enrich using Apache Apex
It's Time To Stop Using Lambda Architecture
Streaming architecture patterns
Building Scalable Data Pipelines - 2016 DataPalooza Seattle
Apache Flink Training: System Overview
Real Time Big Data Management
Flink Streaming
Kafka Summit NYC 2017 - Building Advanced Streaming Applications using the La...
Stream Processing with Apache Apex
ApacheCon: Apache Flink - Fast and Reliable Large-Scale Data Processing

Recently uploaded (20)

PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
KodekX | Application Modernization Development
PDF
Empathic Computing: Creating Shared Understanding
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
NewMind AI Monthly Chronicles - July 2025
PPTX
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
PDF
CIFDAQ's Market Insight: SEC Turns Pro Crypto
PPT
Teaching material agriculture food technology
PDF
Advanced methodologies resolving dimensionality complications for autism neur...
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Modernizing your data center with Dell and AMD
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
Understanding_Digital_Forensics_Presentation.pptx
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Approach and Philosophy of On baking technology
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Mobile App Security Testing_ A Comprehensive Guide.pdf
KodekX | Application Modernization Development
Empathic Computing: Creating Shared Understanding
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
NewMind AI Monthly Chronicles - July 2025
PA Analog/Digital System: The Backbone of Modern Surveillance and Communication
CIFDAQ's Market Insight: SEC Turns Pro Crypto
Teaching material agriculture food technology
Advanced methodologies resolving dimensionality complications for autism neur...
“AI and Expert System Decision Support & Business Intelligence Systems”
Modernizing your data center with Dell and AMD
Network Security Unit 5.pdf for BCA BBA.
Understanding_Digital_Forensics_Presentation.pptx
Diabetes mellitus diagnosis method based random forest with bat algorithm
Reach Out and Touch Someone: Haptics and Empathic Computing
Approach and Philosophy of On baking technology
The Rise and Fall of 3GPP – Time for a Sabbatical?
Agricultural_Statistics_at_a_Glance_2022_0.pdf
The AUB Centre for AI in Media Proposal.docx
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy

Apache Big Data EU 2016: Building Streaming Applications with Apache Apex

  • 1. Building Streaming Applications with Apache Apex Chinmay Kolhatkar, Committer @ApacheApex, Engineer @DataTorrent Thomas Weise, PMC Chair @ApacheApex, Architect @DataTorrent Nov 15th 2016
  • 2. Agenda 2 • Application Development Model • Creating Apex Application - Project Structure • Apex APIs • Configuration Example • Operator APIs • Overview of Operator Library • Frequently used Connectors • Stateful Transformation & Windowing • Scalability - Partitioning • End-to-end Exactly Once
  • 3. Application Development Model 3 ▪Stream is a sequence of data tuples ▪Operator takes one or more input streams, performs computations & emits one or more output streams • Each Operator is YOUR custom business logic in java, or built-in operator from our open source library • Operator has many instances that run in parallel and each instance is single-threaded ▪Directed Acyclic Graph (DAG) is made up of operators and streams Directed Acyclic Graph (DAG) Filtered Stream Output Stream Tuple Tuple FilteredStream Enriched Stream Enriched Stream er Operator er Operator er Operator er Operator er Operator er Operator
  • 4. Creating Apex Application Project 4 chinmay@chinmay-VirtualBox:~/src$ mvn archetype:generate -DarchetypeGroupId=org.apache.apex -DarchetypeArtifactId=apex-app-archetype -DarchetypeVersion=LATEST -DgroupId=com.example -Dpackage=com.example.myapexapp -DartifactId=myapexapp -Dversion=1.0-SNAPSHOT … … ... Confirm properties configuration: groupId: com.example artifactId: myapexapp version: 1.0-SNAPSHOT package: com.example.myapexapp archetypeVersion: LATEST Y: : Y … … ... [INFO] project created from Archetype in dir: /media/sf_workspace/src/myapexapp [INFO] ------------------------------------------------------------------------ [INFO] BUILD SUCCESS [INFO] ------------------------------------------------------------------------ [INFO] Total time: 13.141 s [INFO] Finished at: 2016-11-15T14:06:56+05:30 [INFO] Final Memory: 18M/216M [INFO] ------------------------------------------------------------------------ chinmay@chinmay-VirtualBox:~/src$ https://www.youtube.com/watch?v=z-eeh-tjQrc
  • 5. Apex Application Project Structure 5 • pom.xml • Defines project structure and dependencies • Application.java • Defines the DAG • RandomNumberGenerator.java • Sample Operator • properties.xml • Contains operator and application properties and attributes • ApplicationTest.java • Sample test to test application in local mode
  • 6. Apex APIs: Compositional (Low level) 6 Input Parser Counter Output CountsWordsLines Kafka Database Filter Filtered
  • 7. Apex APIs: Declarative (High Level) 7 File Input Parser Word Counter Console Output CountsWordsLines Folder StdOut StreamFactory.fromFolder("/tmp") .flatMap(input -> Arrays.asList(input.split(" ")), name("Words")) .window(new WindowOption.GlobalWindow(), new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1)) .countByKey(input -> new Tuple.PlainTuple<>(new KeyValPair<>(input, 1L)), name("countByKey")) .map(input -> input.getValue(), name("Counts")) .print(name("Console")) .populateDag(dag);
  • 8. Apex APIs: SQL 8 Kafka Input CSV Parser Filter CSV Formattter FilteredWordsLines Kafka File Project Projected Line Writer Formatted SQLExecEnvironment.getEnvironment() .registerTable("ORDERS", new KafkaEndpoint(conf.get("broker"), conf.get("topic"), new CSVMessageFormat(conf.get("schemaInDef")))) .registerTable("SALES", new FileEndpoint(conf.get("destFolder"), conf.get("destFileName"), new CSVMessageFormat(conf.get("schemaOutDef")))) .registerFunction("APEXCONCAT", this.getClass(), "apex_concat_str") .executeSQL(dag, "INSERT INTO SALES " + "SELECT STREAM ROWTIME, FLOOR(ROWTIME TO DAY), APEXCONCAT('OILPAINT', SUBSTRING(PRODUCT, 6, 7) " + "FROM ORDERS WHERE ID > 3 AND PRODUCT LIKE 'paint%'");
  • 9. Apex APIs: Beam 9 • Apex Runner of Beam is available!! • Build once run-anywhere model • Beam Streaming applications can be run on apex runner: public static void main(String[] args) { Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class); // Run with Apex runner options.setRunner(ApexRunner.class); Pipeline p = Pipeline.create(options); p.apply("ReadLines", TextIO.Read.from(options.getInput())) .apply(new CountWords()) .apply(MapElements.via(new FormatAsTextFn())) .apply("WriteCounts", TextIO.Write.to(options.getOutput())); .run().waitUntilFinish(); }
  • 10. Apex APIs: SAMOA 10 • Build once run-anywhere model for online machine learning algorithms • Any machine learning algorithm present in SAMOA can be run directly on Apex. • Uses Apex Iteration Support • Following example does classification of input data from HDFS using VHT algorithm on Apex: $ bin/samoa apex ../SAMOA-Apex-0.4.0-incubating-SNAPSHOT.jar "PrequentialEvaluation -d /tmp/dump.csv -l (classifiers.trees.VerticalHoeffdingTree -p 1) -s (org.apache.samoa.streams.ArffFileStream -s HDFSFileStreamSource -f /tmp/user/input/covtypeNorm.arff)"
  • 11. Configuration (properties.xml) 11 Input Parser Counter Output CountsWordsLines Kafka Database Filter Filtered
  • 12. Streaming Window Processing Time Window 12 • Finite time sliced windows based on processing (event arrival) time • Used for bookkeeping of streaming application • Derived Windows are: Checkpoint Windows, Committed Windows
  • 13. Operator APIs 13 Next streaming window Next streaming window Input Adapters - Starting of the pipeline. Interacts with external system to generate stream Generic Operators - Processing part of pipeline Output Adapters - Last operator in pipeline. Interacts with external system to finalize the processed stream OutputPort::emit()
  • 14. Overview of Operator Library (Malhar) 14 RDBMS • JDBC • MySQL • Oracle • MemSQL NoSQL • Cassandra, HBase • Aerospike, Accumulo • Couchbase/ CouchDB • Redis, MongoDB • Geode Messaging • Kafka • JMS (ActiveMQ etc.) • Kinesis, SQS • Flume, NiFi File Systems • HDFS/ Hive • Local File • S3 Parsers • XML • JSON • CSV • Avro • Parquet Transformations • Filters, Expression, Enrich • Windowing, Aggregation • Join • Dedup Analytics • Dimensional Aggregations (with state management for historical data + query) Protocols • HTTP • FTP • WebSocket • MQTT • SMTP Other • Elastic Search • Script (JavaScript, Python, R) • Solr • Twitter
  • 15. Frequently used Connectors Kafka Input 15 KafkaSinglePortInputOperator KafkaSinglePortByteArrayInputOperator Library malhar-contrib malhar-kafka Kafka Consumer 0.8 0.9 Emit Type byte[] byte[] Fault-Tolerance At Least Once, Exactly Once At Least Once, Exactly Once Scalability Static and Dynamic (with Kafka metadata) Static and Dynamic (with Kafka metadata) Multi-Cluster/Topic Yes Yes Idempotent Yes Yes Partition Strategy 1:1, 1:M 1:1, 1:M
  • 16. Frequently used Connectors Kafka Output 16 KafkaSinglePortOutputOperator KafkaSinglePortExactlyOnceOutputOperator Library malhar-contrib malhar-kafka Kafka Producer 0.8 0.9 Fault-Tolerance At Least Once At Least Once, Exactly Once Scalability Static and Dynamic (with Kafka metadata) Static and Dynamic, Automatic Partitioning based on Kafka metadata Multi-Cluster/Topic Yes Yes Idempotent Yes Yes Partition Strategy 1:1, 1:M 1:1, 1:M
  • 17. Frequently used Connectors File Input 17 • AbstractFileInputOperator • Used to read a file from source and emit the content of the file to downstream operator • Operator is idempotent • Supports Partitioning • Few Concrete Impl • FileLineInputOperator • AvroFileInputOperator • ParquetFilePOJOReader • https://www.datatorrent.com/blog/f ault-tolerant-file-processing/
  • 18. Frequently used Connectors File Output 18 • AbstractFileOutputOperator • Writes data to a file • Supports Partitions • Exactly-once results • Upstream operators should be idempotent • Few Concrete Impl • StringFileOutputOperator • https://www.datatorrent.com/blog/f ault-tolerant-file-processing/
  • 19. Windowing Support 19 • Event-time Windows • Computation based on event-time present in the tuple • Types of event-time windows supported: • Global : Single event-time window throughout the lifecycle of application • Timed : Tuple is assigned to single, non-overlapping, fixed width windows immediately followed by next window • Sliding Time : Tuple is can be assigned to multiple, overlapping fixed width windows. • Session : Tuple is assigned to single, variable width windows with a predefined min gap
  • 20. Stateful Windowed Processing 20 • WindowedOperator from malhar-library • Used to process data based on Event time as contrary to ingression time • Supports windowing semantics of Apache Beam model • Supported features: • Watermarks • Allowed Lateness • Accumulation • Accumulation Modes: Accumulating, Discarding, Accumulating & Retracting • Triggers • Storage • In memory based • Managed State based
  • 21. Stateful Windowed Processing Compositional API 21 @Override public void populateDAG(DAG dag, Configuration configuration) { WordGenerator inputOperator = new WordGenerator(); KeyedWindowedOperatorImpl windowedOperator = new KeyedWindowedOperatorImpl(); Accumulation<Long, MutableLong, Long> sum = new SumAccumulation(); windowedOperator.setAccumulation(sum); windowedOperator.setDataStorage(new InMemoryWindowedKeyedStorage<String, MutableLong>()); windowedOperator.setRetractionStorage(new InMemoryWindowedKeyedStorage<String, Long>()); windowedOperator.setWindowStateStorage(new InMemoryWindowedStorage<WindowState>()); windowedOperator.setWindowOption(new WindowOption.TimeWindows(Duration.standardMinutes(1))); windowedOperator.setTriggerOption(TriggerOption.AtWatermark() .withEarlyFiringsAtEvery(Duration.millis(1000)) .accumulatingAndRetractingFiredPanes()); windowedOperator.setAllowedLateness(Duration.millis(14000)); ConsoleOutputOperator outputOperator = new ConsoleOutputOperator(); dag.addOperator( "inputOperator", inputOperator); dag.addOperator( "windowedOperator", windowedOperator); dag.addOperator( "outputOperator", outputOperator); dag.addStream( "input_windowed", inputOperator. output, windowedOperator.input); dag.addStream( "windowed_output", windowedOperator.output, outputOperator. input); }
  • 22. Stateful Windowed Processing Declarative API 22 StreamFactory.fromFolder("/tmp") .flatMap(input -> Arrays.asList(input.split( " ")), name("ExtractWords")) .map(input -> new TimestampedTuple<>(System.currentTimeMillis(), input), name("AddTimestampFn")) .window(new TimeWindows(Duration.standardMinutes(WINDOW_SIZE)), new TriggerOption().accumulatingFiredPanes().withEarlyFiringsAtEvery(1)) .countByKey(input -> new TimestampedTuple<>(input.getTimestamp(), new KeyValPair<>(input.getValue(), 1L ))), name("countWords")) .map(new FormatAsTableRowFn(), name("FormatAsTableRowFn")) .print(name("console")) .populateDag(dag);
  • 23. • Useful for low latency and high throughput • Replicates (Partitions) the logic • Configured at launch time (Application.java or properties.xml) • StreamCodec • Used for controlling distribution of tuples to downstream partitions • Unifier (combine results of partitions) • Passthrough unifier added by platform to merge results from upstream partitions • Can also be customized • Type of partitions • Static partitions - Statically partition at launch time • Dynamic partitions - Partitions changing at runtime based on latency and/or throughput • Parallel partitions - Upstream and downstream operators using same partition scheme Scalability - Partitioning 23
  • 24. Scalability - Partitioning (contd.) 24 0 1 2 3 Logical DAG 0 1 2 U Physical DAG 1 1 2 2 3 Parallel Partitions M x N Partitions OR Shuffle <configuration> <property> <name>dt.operator.1. attr.PARTITIONER</name> <value>com.datatorrent.common.partitioner. StatelessPartitioner:3</value> </property> <property> <name>dt.operator.2.port.inputPortName. attr.PARTITION_PARALLEL</name> <value>true</value> </property> </configuration>
  • 25. End-to-End Exactly-Once 25 Input Counter Store Aggregate CountsWords Kafka Database ● Input ○ Uses com.datatorrent.contrib.kafka.KafkaSinglePortStringInputOperator ○ Emits words as a stream ○ Operator is idempotent ● Counter ○ com.datatorrent.lib.algo.UniqueCounter ● Store ○ Uses CountStoreOperator ○ Inserts into JDBC ○ Exactly-once results (End-To-End Exactly-once = At-least-once + Idempotency + Consistent State) https://github.com/DataTorrent/examples/blob/master/tutorials/exactly-once https://www.datatorrent.com/blog/end-to-end-exactly-once-with-apache-apex/
  • 26. End-to-End Exactly-Once (Contd.) 26 Input Counter Store Aggregate CountsWords Kafka Database public static class CountStoreOperator extends AbstractJdbcTransactionableOutputOperator<KeyValPair<String, Integer>> { public static final String SQL = "MERGE INTO words USING (VALUES ?, ?) I (word, wcount)" + " ON (words.word=I.word)" + " WHEN MATCHED THEN UPDATE SET words.wcount = words.wcount + I.wcount" + " WHEN NOT MATCHED THEN INSERT (word, wcount) VALUES (I.word, I.wcount)"; @Override protected String getUpdateCommand() { return SQL; } @Override protected void setStatementParameters(PreparedStatement statement, KeyValPair<String, Integer> tuple)throws SQLException { statement.setString(1, tuple.getKey()); statement.setInt(2, tuple.getValue()); } }
  • 28. Who is using Apex? 28 • Powered by Apex ᵒ http://apex.apache.org/powered-by-apex.html ᵒ Also using Apex? Let us know to be added: users@apex.apache.org or @ApacheApex • Pubmatic ᵒ https://www.youtube.com/watch?v=JSXpgfQFcU8 • GE ᵒ https://www.youtube.com/watch?v=hmaSkXhHNu0 ᵒ http://www.slideshare.net/ApacheApex/ge-iot-predix-time-series-data-ingestion-service-usin g-apache-apex-hadoop • SilverSpring Networks ᵒ https://www.youtube.com/watch?v=8VORISKeSjI ᵒ http://www.slideshare.net/ApacheApex/iot-big-data-ingestion-and-processing-in-hadoop-by-s ilver-spring-networks
  • 29. Resources 29 • http://apex.apache.org/ • Learn more - http://apex.apache.org/docs.html • Subscribe - http://apex.apache.org/community.html • Download - http://apex.apache.org/downloads.html • Follow @ApacheApex - https://twitter.com/apacheapex • Meetups - https://www.meetup.com/topics/apache-apex/ • Examples - https://github.com/DataTorrent/examples • Slideshare - http://www.slideshare.net/ApacheApex/presentations • https://www.youtube.com/results?search_query=apache+apex • Free Enterprise License for Startups - https://www.datatorrent.com/product/startup-accelerator/