SlideShare a Scribd company logo
IIR 2013 - 4th Italian Information Retrieval Workshop
                            Pisa (Italy), 17.01.2013




 Cataldo Musto, Fedelucio Narducci, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis


Distributional models vs. Linked Data:
     exploiting crowdsourcing to
      personalize music playlists
exponential growth
                    of the available music
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Some stats
                 28,000,000 songs available on iTunes Store (*)
                         around 31,000 hours of music

 a typical user spends 1.5 hours for day listening to music
                                                                  =
                                         56 years
                          to listen to the whole iTunes Library
                                                             (*) http://www.digitalmusicnews.com/permalink/2012/120425itunes


C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Information Overload




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
what music should I listen to?
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
solution




                            personalization.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
solution




  personalized music playlists
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Is this something new?
                                                                                                  No.


C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Amazon.com


                                                                    Recommendations




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Genius @iTunes




                                                         Recommendations


C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Recommendations


C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
All the state of the art
                platforms share an
               important drawback.

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
training is a bottleneck.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
need for
                                                                          explicit
                                                                       information
                                                                            about
                                                                        user interests.

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
social media



 provide information about user preferences

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
example




      user preferences in music from Facebook
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Our contribution
                                                Play.me



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                      personalized music playlists
        • Goal
          • To provide users with personalized music playlists
        • Insights
          • Extraction of explicit user preferences from Facebook
          • Playlist creation by enriching explicit user preferences.
              • New artists are added to those explicitly extracted from
                          Facebook

                     • Comparison of two enrichment techniques
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       architecture




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       architecture




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                    pre-processing


    • Crawling from Last.fm
     • Public API
     • Content-based features
       • Name of the artist + Social tags
       • Noise processing
       • Information locally stored
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                    pre-processing




                          Sigur Ròs tag cloud from Last.fm


C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       architecture




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                 data extraction from Facebook




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                 data extraction from Facebook




           explicit preferences
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                 data extraction from Facebook




          implicit preferences
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       architecture




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       enrichment

    • Rationale
     • Given a set of explicit preferences extracted from
               Facebook
              • Play.me enrichs this set
              • Extraction of artists similar to those the user
                    explicity likes



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                             enrichment example




                                                                 Coldplay extracted from Facebook
       enrichment



               radiohead                              red hot chili peppers                         kings of leon

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       architecture




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                             playlist




Most popular songs of the artists extracted from Last.fm (as well as
    those added through the enrichment) are proposed to the user.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
let’s go
                                                                                          deeper
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                       enrichment


    • Comparison of two approaches
         •
        Content-based strategy
          •         Distributional Models

         • Linked Data

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                   enrichment based on Distributional Models

         • Content-based strategy
          • Each artist is modeled through a set of tags
            • Each artist is represented as a point in a
                        semantic geometrical space
                       • Distributional Models
                  • Similarity calculations to extract the most
                        similar artists.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models

                                                                   “meaning
                                                                    is its use”
                                                                           L.Wittgenstein
                                                                          (Austrian philosopher)

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
 insight
by analyzing large corpus of textual data it is possible
to infer information about the usage (about the meaning)
of the terms.
 example



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                             term/context matrix (WordSpace)

                             c1          c2          c3      c4          c5         c6         c7          c8          c9

  t1                        ✔                         ✔      ✔                                                         ✔
  t2                         ✔                        ✔                             ✔                                  ✔

  t3                        ✔                                ✔                                                         ✔
  t4                                     ✔                                          ✔           ✔          ✔
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                                    beer vs. glass: good overlap

                             c1          c2          c3      c4          c5         c6         c7          c8          c9

  t1                        ✔                         ✔      ✔                                                         ✔
  t2                         ✔                        ✔                             ✔                                  ✔

  t3                        ✔                                ✔                                                         ✔
  t4                                     ✔                                          ✔           ✔          ✔
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                                     beer vs. spoon: no overlap

                             c1          c2          c3      c4          c5         c6         c7          c8          c9

  t1                         ✔                        ✔      ✔                                                         ✔

  t2                         ✔                        ✔                             ✔                                  ✔

  t3                         ✔                               ✔                                                         ✔

  t4                                     ✔                                          ✔           ✔          ✔

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                                rock vs. post rock = good overlap

                                                             c1      c2            c3            c4          c5        c6

         rock                                                        ✔            ✔                                    ✔
   post rock                                                                      ✔                                    ✔
           jazz                                              ✔

       classical                                             ✔                                   ✔           ✔
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                                     rock vs. classical = no overlap

                                                             c1      c2            c3            c4          c5        c6

         rock                                                        ✔             ✔                                   ✔

     post rock                                                                     ✔                                   ✔

           jazz                                              ✔

     classical                                               ✔                                   ✔           ✔
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
representation of documents (*)
   can be inferred by combining the representation of
   the terms (**) occurring in the document.


                                                                                    (*) documents = artists
                                                                                          (**) terms = tags

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                               term/context matrix (DocSpace)

                                      c1         c2          c3   c4         c5        c6         c7        c8         c9

  t2                                  ✔                      ✔                          ✔                              ✔

  t3                                  ✔                            ✔                                                   ✔




 d1                                   ✔                      ✔     ✔                    ✔                              ✔
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                   enrichment based on Distributional Models




                                                  Coldplay
                                                             Radiohead
                                                                 Kings of Leon



                                                             Lady Gaga
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                   enrichment based on Distributional Models

                          input: vector space representation




            output: artists with the highest cosine similarity



               radiohead                                     the killers                            kings of leon
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Linked Open Data Cloud




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Linked Open Data Cloud




                                                                            Structured
                                                                               (RDF)
                                                                         representation
                                                                          of the information
                                                                         stored in Wikipedia.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                              enrichment based on Linked Data




                           Coldplay play Alternative Rock
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                                                        RDF triple




                 Relationships are explictly encoded in RDF.



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                              enrichment based on Linked Data

         • Linked Open Data Cloud
         • Each artist is mapped on a DBpedia node.
          • univocal URI
          • Relationship between artists (nodes) are explicitly
                    encoded
                  • e.g. genre, artist category, etc.
              • Use of SPARQL to extract artists (nodes) that
                    share the same features
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
Play.me
                              enrichment based on Linked Data

                                         input: SPARQL query




                 output: artists sharing the same properties



               radiohead                                     the smiths                               the verve
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
recap
                                               enrichment process
    input: artist                                                            output: similar artists
                  coldplay                                                                  the smiths

                                                      Linked Data
                                                                                            radiohead


                                                                                            the verve


                                                                                            kings of leon
                                                 Distributional Models

                                                                                            radiohead



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental
        evaluation.

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design


   • Experiment
    • Which one is the enrichment technique that
              can provide users with the best playlists ?




C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design
                                                             settings


      • 30 users
           • Heterogeneous musical knowledge
      • Last.fm crawl: 228,878 artists
      • Extraction & Recommendation step
           •     325 artists extracted
           • 11              per user, on average
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental setup




               Given a playlist, each user can freely express her own
                  feedback (like/dislike) on the proposed tracks.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental setup




  Experiment repeated three times (one run with Linked Data enrichment, another
     one with Distributional Models, one with a simple baseline based on popularity).

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental setup




                         Users were unaware of the adopted configuration.

C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design
                                                             results
                       76,3
      80

                                                             75,2                          Linked Data
                                                                                           Distributional Models
                                                                                           Baseline (Popularity)
  73,75
                                                                                              69,7
   67,5

                65,9
                                                       64,6
  61,25                                                                                63,2

                                        58                                58                                   58
      55
                             n=1                                n=2                                 n=3
      n = number of artists added for each extracted artist
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design
                                                             results
                       76,3
      80

                                                             75,2                          Linked Data
                                                                                           Distributional Models
                                                                                           Baseline (Popularity)
  73,75
                                                                                              69,7
   67,5

                65,9
                                                       64,6
  61,25                                                                                63,2

                                        58                                58                                   58
      55
                             n=1                                n=2                                 n=3
                  distributional models overcome linked data
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design
                                                             results
                       76,3
      80

                                                             75,2                          Linked Data
                                                                                           Distributional Models
                                                                                           Baseline (Popularity)
  73,75
                                                                                              69,7
   67,5

                65,9
                                                       64,6
  61,25                                                                                63,2

                                        58                                58                                   58
      55
                             n=1                                n=2                                 n=3
precision in distributional models drops down more rapidly
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
experimental design
                                                             results
                       76,3
      80

                                                             75,2                          Linked Data
                                                                                           Distributional Models
                                                                                           Baseline (Popularity)
  73,75
                                                                                              69,7
   67,5

                65,9
                                                       64,6
  61,25                                                                                63,2

                                        58                                58                                   58
      55
                             n=1                                n=2                                 n=3
 good results for baseline, as well (poor music knowledge?)
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
conclusions.



C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
both enrichment techniques
                     overcome the baseline
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
distributional models
                          overcome linked data
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
future research.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
merging different
                           enrichment techniques
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
evaluation with user-based metrics
                                (serendipity, novelty, unexpectedness)
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
modeling context.
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
questions?
C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis.
Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13

More Related Content

PDF
Crowdsourcing-enabled Linked Data management architecture
PDF
Crowdsourcing Linked Data Quality Assessment
PDF
Crowdsourcing Linked Data management
PPTX
Leveraging DBpedia for Adaptive Crowdsourcing in Linked Data Quality Assessment
PDF
TripleCheckMate
PPT
Linked Data Tutorial
KEY
JSON-LD: JSON for Linked Data
PDF
How to Make Awesome SlideShares: Tips & Tricks
Crowdsourcing-enabled Linked Data management architecture
Crowdsourcing Linked Data Quality Assessment
Crowdsourcing Linked Data management
Leveraging DBpedia for Adaptive Crowdsourcing in Linked Data Quality Assessment
TripleCheckMate
Linked Data Tutorial
JSON-LD: JSON for Linked Data
How to Make Awesome SlideShares: Tips & Tricks

More from Cataldo Musto (20)

PDF
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
PDF
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
PDF
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
PDF
Exploring the Effects of Natural Language Justifications in Food Recommender ...
PDF
Exploiting Distributional Semantics Models for Natural Language Context-aware...
PDF
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
PDF
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
PDF
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
PDF
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
PDF
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
PDF
Explanation Strategies - Advances in Content-based Recommender System
PDF
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
PDF
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
PDF
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
PDF
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
PDF
Holistic User Modeling for Personalized Services in Smart Cities
PDF
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
PDF
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
PDF
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
PDF
Il Linguaggio dell'Odio sui Social Network
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploiting Distributional Semantics Models for Natural Language Context-aware...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
Explanation Strategies - Advances in Content-based Recommender System
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Holistic User Modeling for Personalized Services in Smart Cities
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
Il Linguaggio dell'Odio sui Social Network

Recently uploaded (20)

PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Machine learning based COVID-19 study performance prediction
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PPTX
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PPTX
Cloud computing and distributed systems.
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PDF
Empathic Computing: Creating Shared Understanding
PDF
cuic standard and advanced reporting.pdf
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Big Data Technologies - Introduction.pptx
PPTX
MYSQL Presentation for SQL database connectivity
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
MIND Revenue Release Quarter 2 2025 Press Release
Machine learning based COVID-19 study performance prediction
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm
ACSFv1EN-58255 AWS Academy Cloud Security Foundations.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
NewMind AI Weekly Chronicles - August'25 Week I
Cloud computing and distributed systems.
sap open course for s4hana steps from ECC to s4
Build a system with the filesystem maintained by OSTree @ COSCUP 2025
Unlocking AI with Model Context Protocol (MCP)
Reach Out and Touch Someone: Haptics and Empathic Computing
Empathic Computing: Creating Shared Understanding
cuic standard and advanced reporting.pdf
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Big Data Technologies - Introduction.pptx
MYSQL Presentation for SQL database connectivity
Per capita expenditure prediction using model stacking based on satellite ima...
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx

Distributional Models vs. Linked Data: leveraging crowdsourcing to personalize music playlists

  • 1. IIR 2013 - 4th Italian Information Retrieval Workshop Pisa (Italy), 17.01.2013 Cataldo Musto, Fedelucio Narducci, Giovanni Semeraro, Pasquale Lops, Marco de Gemmis Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists
  • 2. exponential growth of the available music C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 3. Some stats 28,000,000 songs available on iTunes Store (*) around 31,000 hours of music a typical user spends 1.5 hours for day listening to music = 56 years to listen to the whole iTunes Library (*) http://www.digitalmusicnews.com/permalink/2012/120425itunes C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 4. Information Overload C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 5. what music should I listen to? C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 6. solution personalization. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 7. solution personalized music playlists C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 8. Is this something new? No. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 9. Amazon.com Recommendations C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 10. Genius @iTunes Recommendations C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 11. Recommendations C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 12. All the state of the art platforms share an important drawback. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 13. training is a bottleneck. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 14. need for explicit information about user interests. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 15. social media provide information about user preferences C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 16. example user preferences in music from Facebook C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 17. Our contribution Play.me C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 18. Play.me personalized music playlists • Goal • To provide users with personalized music playlists • Insights • Extraction of explicit user preferences from Facebook • Playlist creation by enriching explicit user preferences. • New artists are added to those explicitly extracted from Facebook • Comparison of two enrichment techniques C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 19. Play.me architecture C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 20. Play.me architecture C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 21. Play.me pre-processing • Crawling from Last.fm • Public API • Content-based features • Name of the artist + Social tags • Noise processing • Information locally stored C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 22. Play.me pre-processing Sigur Ròs tag cloud from Last.fm C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 23. Play.me architecture C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 24. Play.me data extraction from Facebook C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 25. Play.me data extraction from Facebook explicit preferences C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 26. Play.me data extraction from Facebook implicit preferences C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 27. Play.me architecture C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 28. Play.me enrichment • Rationale • Given a set of explicit preferences extracted from Facebook • Play.me enrichs this set • Extraction of artists similar to those the user explicity likes C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 29. Play.me enrichment example Coldplay extracted from Facebook enrichment radiohead red hot chili peppers kings of leon C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 30. Play.me architecture C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 31. Play.me playlist Most popular songs of the artists extracted from Last.fm (as well as those added through the enrichment) are proposed to the user. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 32. let’s go deeper C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 33. Play.me enrichment • Comparison of two approaches • Content-based strategy • Distributional Models • Linked Data C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 34. Play.me enrichment based on Distributional Models • Content-based strategy • Each artist is modeled through a set of tags • Each artist is represented as a point in a semantic geometrical space • Distributional Models • Similarity calculations to extract the most similar artists. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 35. distributional models “meaning is its use” L.Wittgenstein (Austrian philosopher) C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 36. distributional models insight by analyzing large corpus of textual data it is possible to infer information about the usage (about the meaning) of the terms. example C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 37. distributional models term/context matrix (WordSpace) c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 38. distributional models beer vs. glass: good overlap c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 39. distributional models beer vs. spoon: no overlap c1 c2 c3 c4 c5 c6 c7 c8 c9 t1 ✔ ✔ ✔ ✔ t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ t4 ✔ ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 40. distributional models rock vs. post rock = good overlap c1 c2 c3 c4 c5 c6 rock ✔ ✔ ✔ post rock ✔ ✔ jazz ✔ classical ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 41. distributional models rock vs. classical = no overlap c1 c2 c3 c4 c5 c6 rock ✔ ✔ ✔ post rock ✔ ✔ jazz ✔ classical ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 42. representation of documents (*) can be inferred by combining the representation of the terms (**) occurring in the document. (*) documents = artists (**) terms = tags C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 43. distributional models term/context matrix (DocSpace) c1 c2 c3 c4 c5 c6 c7 c8 c9 t2 ✔ ✔ ✔ ✔ t3 ✔ ✔ ✔ d1 ✔ ✔ ✔ ✔ ✔ C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 44. Play.me enrichment based on Distributional Models Coldplay Radiohead Kings of Leon Lady Gaga C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 45. Play.me enrichment based on Distributional Models input: vector space representation output: artists with the highest cosine similarity radiohead the killers kings of leon C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 46. Linked Open Data Cloud C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 47. Linked Open Data Cloud Structured (RDF) representation of the information stored in Wikipedia. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 48. Play.me enrichment based on Linked Data Coldplay play Alternative Rock C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 49. Play.me RDF triple Relationships are explictly encoded in RDF. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 50. Play.me enrichment based on Linked Data • Linked Open Data Cloud • Each artist is mapped on a DBpedia node. • univocal URI • Relationship between artists (nodes) are explicitly encoded • e.g. genre, artist category, etc. • Use of SPARQL to extract artists (nodes) that share the same features C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 51. Play.me enrichment based on Linked Data input: SPARQL query output: artists sharing the same properties radiohead the smiths the verve C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 52. recap enrichment process input: artist output: similar artists coldplay the smiths Linked Data radiohead the verve kings of leon Distributional Models radiohead C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 53. experimental evaluation. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 54. experimental design • Experiment • Which one is the enrichment technique that can provide users with the best playlists ? C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 55. experimental design settings • 30 users • Heterogeneous musical knowledge • Last.fm crawl: 228,878 artists • Extraction & Recommendation step • 325 artists extracted • 11 per user, on average C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 56. experimental setup Given a playlist, each user can freely express her own feedback (like/dislike) on the proposed tracks. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 57. experimental setup Experiment repeated three times (one run with Linked Data enrichment, another one with Distributional Models, one with a simple baseline based on popularity). C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 58. experimental setup Users were unaware of the adopted configuration. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 59. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 n = number of artists added for each extracted artist C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 60. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 distributional models overcome linked data C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 61. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 precision in distributional models drops down more rapidly C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 62. experimental design results 76,3 80 75,2 Linked Data Distributional Models Baseline (Popularity) 73,75 69,7 67,5 65,9 64,6 61,25 63,2 58 58 58 55 n=1 n=2 n=3 good results for baseline, as well (poor music knowledge?) C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 63. conclusions. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 64. both enrichment techniques overcome the baseline C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 65. distributional models overcome linked data C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 66. future research. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 67. merging different enrichment techniques C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 68. evaluation with user-based metrics (serendipity, novelty, unexpectedness) C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 69. modeling context. C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13
  • 70. questions? C. Musto, F. Narducci, G. Semeraro, P. Lops, M. de Gemmis. Distributional models vs. Linked Data: exploiting crowdsourcing to personalize music playlists - IIR 2013 - 17.01.13