SlideShare a Scribd company logo
Prof. David R. Jackson
Dept. of ECE
Notes 2
ECE 5317-6351
Microwave Engineering
Fall 2019
Transmission Lines
Part 1: TL Theory
1
Adapted from notes by
Prof. Jeffery T. Williams
Transmission-Line Theory
We need transmission-line theory whenever the length of a line
is significant compared to a wavelength.
2
L
Transmission Line
2 conductors
4 per-unit-length parameters:
C = capacitance/length [F/m]
L = inductance/length [H/m]
R = resistance/length [/m]
G = conductance/length [ /m or S/m]

Dz
3
Transmission Line (cont.)
z
D
 
,
i z t
+ + + + + + +
- - - - - - - - - -
 
,
v z t
x x x
B
4
Note: There are equal and opposite currents on the two conductors.
(We only need to work with the current on the top conductor, since we have chosen to put all of the series elements there.)
+
-
+
-
 
,
i z z t
 D
 
,
i z t
 
,
v z z t
 D
 
,
v z t
R z
D L z
D
G z
D C z
D
z
( , )
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
i z t
v z t v z z t i z t R z L z
t
v z z t
i z t i z z t v z z t G z C z
t

  D  D  D

  D
  D   D D  D

Transmission Line (cont.)
5
+
-
+
-
 
,
i z z t
 D
 
,
i z t
 
,
v z z t
 D
 
,
v z t
R z
D L z
D
G z
D C z
D
z
Hence
( , ) ( , ) ( , )
( , )
( , ) ( , ) ( , )
( , )
v z z t v z t i z t
Ri z t L
z t
i z z t i z t v z z t
Gv z z t C
z t
 D  
  
D 
 D    D
   D 
D 
Now let Dz  0:
v i
Ri L
z t
i v
Gv C
z t
 
  
 
 
  
 
“Telegrapher’s
Equations”
TEM Transmission Line (cont.)
6
To combine these, take the derivative of the first one with
respect to z:
2
2
2
2
v i i
R L
z z z t
i i
R L
z t z
v v v
R Gv C L G C
t t t
   
 
    
   
 
  
 
    
  
 
  
   
      
   
  
   
Switch the order of the
derivatives.
TEM Transmission Line (cont.)
7
i v
Gv C
z t
 
  
 
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
The same differential equation also holds for i.
Hence, we have:
2 2
2 2
v v v v
R Gv C L G C
z t t t
   
   
      
   
   
   
TEM Transmission Line (cont.)
8
Note: There is no exact solution in the time domain, in the lossy case.
 
2
2
2
( ) ( ) 0
d V
RG V RC LG j V LC V
dz
 
     
 
2 2
2 2
( ) 0
v v v
RG v RC LG LC
z t t
  
 
    
 
  
 
TEM Transmission Line (cont.)
Time-Harmonic Waves:
9
j
t




Note that
   
2
2
2
( )
d V
RG V j RC LG V LC V
dz
 
   
2
( ) ( )( )
RG j RC LG LC R j L G j C
   
     
=
=
Z R j L
Y G j C


 
 
series impedance / unit length
parallel admittance / unit length
Then we can write:
2
2
( )
d V
ZY V
dz

TEM Transmission Line (cont.)
10
Define
We have:
Solution:
2
ZY
 
( ) z z
V z Ae Be
 
 
 
 1/2
( )( )
R j L G j C
  
  
 
 
2
2
2
d V z
V z
dz


Then
TEM Transmission Line (cont.)
 is called the “propagation constant”.
11
Question: Which sign of the square root is correct?
Principal square root:
TEM Transmission Line (cont.)
/2
j
z r e 
   
  
12
 1/2
( )( )
R j L G j C
  
  
We choose the principal square root.
 
Re 0
z 
( )( )
R j L G j C
  
   Re 0
 
Hence
(Note the square-root (“radical”) symbol here.)
j
z re 

1/2
1/2
4 2, 4 2
1 1
,
2 2
j j
j j
  
 
 
  
 
 
Examples :
Denote:
TEM Transmission Line (cont.)
Re 0
 
 
13
( )( )
R j L G j C
  
  
[np/m]
  attenuationcontant
j
  
 
 
rad/m
  phaseconstant
 
1/m
  propagationconstant
TEM Transmission Line (cont.)
14
There are two possible locations for the complex square root:
0, 0
 
 
Hence:
Re
Im
 
 


R j L


Re
Im
G j C


Re
Im



Re
Im
( )( )
R j L G j C
  
  
The principal
square root must
be in the first
quadrant.
TEM Transmission Line (cont.)
15
  z z j z
V z Ae Ae e
  
  
 
Wave traveling in +z direction:
 
j
  
 
Wave is attenuating as it propagates.
  z z j z
V z Ae Ae e
  
  
 
Wave traveling in -z direction:
 
j
  
 
Wave is attenuating as it propagates.
TEM Transmission Line (cont.)
16
  
10
10
dB 20log
20log
20 0.4343
8.686
out
in
z
V
V
A e
A
z
z




 
   
 
 
 
   
 
 
  

Attenuation in
   
10
log 0.4343 ln
x x

Note:
Attenuation in dB/m:   z j z
V z Ae e
 
 

dB/m 8.686

Attenuationin
Wavenumber Notation
17
( )( )
R j L G j C
  
   "propagationconstant"
  z z j z
V z Ae Ae e
  
  
 
  z
jk z z j z
V z Ae Ae e
 
  
 
( )( )
z
k j R j L G j C
 
    "propagationwavenumber"
z
jk
 
j
  
 
z
k j
 
 
TEM Transmission Line (cont.)
0 0
( ) z z j z
V z V e V e e
  
     
 
Forward travelling wave (a wave traveling in the positive z direction):
 
 
 
 
 
 
0
0
0
( , ) Re
Re
cos
z j z j t
j z j z j t
z
v z t V e e e
V e e e e
V e t z
  
   

  
   
  
 


  
2
g




2
g
 

The wave “repeats” when:
Hence:
18
g
 0
t 
z
0
z
V e 
 
“snapshot” of wave
Phase Velocity
Let’s track the velocity of a fixed point on the wave (a point of constant
phase), e.g., the crest of the wave.
0
( , ) cos( )
z
v z t V e t z

  
  
  
19
z
(phase velocity)
p
v
Phase Velocity (cont.)
0
constant
 
 


 
 

t z
dz
dt
dz
dt
Set
Hence p
v



 
Im )(
p
v
R j L G j C

 

 
In expanded form:
20
Characteristic Impedance Z0
0
( )
( )
V z
Z
I z



0
0
( )
( )
z
z
V z V e
I z I e


  
  


so 0
0
0
V
Z
I



Assumption: A wave is traveling in the positive z direction.
(Note: Z0 is a number, not a function of z.)
21
 
I z

 
V z



z
Use first Telegrapher’s Equation:
v i
Ri L
z t
 
  
 
so
dV
RI j LI ZI
dz

    
Hence
0 0
z z
V e ZI e
 
    
  
Characteristic Impedance Z0 (cont.)
22
0
0
( )
( )
z
z
V z V e
I z I e


  
  


Recall:
From this we have:
Use:
0
0
0
V Z Z
Z
I ZY



  
Characteristic Impedance Z0 (cont.)
Z R j L
Y G j C


 
 
23
Both are in the first quadrant
0
0
/
Re 0
ZY
Z Z ZY
Z

  
  
 
first quadrant
right - half plane
0
Z
Z
Y
 (principal square root)
Hence, we have
Characteristic Impedance Z0 (cont.)
24
0
Z R j L
Z
Y G j C



 

0
Re 0
Z 
 
0
0
0 0
j z j j z
z z
z j z
V e e
V z V e V
V e e e
e
e
 
 

  


  

   


 
 
   
 
 
 
0
0 cos
c
, R
os
e j t
z
z
V e t
v z t V z
z
V z
e
e t



 
  

 
 









In the time domain:
Wave in +z
direction
Wave in -z
direction
General Case (Waves in Both Directions)
25
Backward-Traveling Wave
0
( )
( )
V z
Z
I z



 0
( )
( )
V z
Z
I z


 
so
A wave is traveling in the negative z direction.
Note:
The reference directions for voltage and current are chosen the
same as for the forward wave.
26
z
 
I z

 
V z



General Case
0 0
0 0
0
( )
1
( )
z z
z z
V z V e V e
I z V e V e
Z
 
 
   
   
 
 
 
 
A general superposition of forward and
backward traveling waves:
Most general case:
27
z
 
I z
 
V z


 
 
  
0 0
0 0
0 0
0
z z
z z
V z V e V e
V V
I z e e
Z
j R j L G j C
R j L
Z
G j
Z
C
 
 
    


   
 
 
    







 
2
m
g




[m/s]
p
v



Guided wavelength:
Phase velocity:
Summary of Basic TL formulas
28
dB/m 8.686

Attenuationin
 
I z
 
V z


Lossless Case
0, 0
R G
 
( )( )
j R j L G j C
j LC
    

    

so
0
LC

 


0
R j L
Z
G j C




 0
L
Z
C

1
p
v
LC

p
v



(independent of freq.)
(real and independent of freq.)
29
Lossless Case (cont.)
1
p
v
LC

If the medium between the two conductors is lossless and homogeneous
(uniform) and is characterized by (, ), then (proof given later):
LC 

The speed of light in a dielectric medium is
1
d
c


Hence, we have that: p d
v c

In the lossless case the phase velocity does not depend on the frequency, and it
is always equal to the speed of light (in the material).
(proof given later)
30
0 r r
LC k k
     
   
and
  0 0
z z
V z V e V e
 
   
 
Where do we assign z = 0 ?
The usual choice is at the load.
Amplitude of voltage wave
propagating in negative z
direction at z = 0.
Amplitude of voltage wave
propagating in positive z
direction at z = 0.
Terminated Transmission Line
31
 
 
0
0
0
0
V V
V V
 
 


 
V z

 
V z
 Terminating impedance (load)
 
V z
 
I z
0
z 
z
L
Z


  0
0 0
z
V V z e 

 
 
     
   
0 0
0 0
z z z z
V z V z e V z e
 
  
 
 
  0
0 0
z
V z V e 

 

  0
0 0
z
V V z e 

 
 
Terminated Transmission Line (cont.)
  0 0
z z
V z V e V e
 
   
 
Hence
Can we use z = z0 as
a reference plane?
32
  0
0 0
z
V z V e 

 

Terminating impedance (load)
 
V z
 
I z
0
z 
z
L
Z


0
z z

Terminated Transmission Line (cont.)
     
0 0
z z
V z V e V e
 
   
 
Compare:
This is simply a change of reference plane, from z = 0 to z = z0.
33
     
   
0 0
0 0
z z z z
V z V z e V z e
 
  
 
 
Terminating impedance (load)
 
V z
 
I z
0
z 
z
L
Z


0
z z

  0 0
z z
V z V e V e
 
   
 
What is V(-d) ?
  0 0
d d
V d V e V e
 
  
  
  0 0
0 0
d d
V V
I d e e
Z Z
 
 

  
Propagating
forwards
Propagating
backwards
Terminated Transmission Line (cont.)
d  distance away from load
The current at z = -d is then:
34
(This does not necessarily have to be the length of the entire line.)
Terminating impedance (load)
 
I d

z d
 


0
z 
z
L
Z
 
V d

   
2
0
0
1
d d
L
V
I d e e
Z
 


   
  2
0
0 0 0
0
1
d d d d
V
V d V e V e V e e
V
   

    

 
    
 
 
Similarly,
L  load reflection coefficient
Terminated Transmission Line (cont.)
35
   
2
0 1
d d
L
V d V e e
 
 
   
or
0
0
L
V
V


 
 
I d

z d
 


0
z 
z
L
Z
 
V d

(-d) = reflection coefficient at z = -d
  2 d
L
d e 

   
   
   
2
0
2
0
0
1
1
d d
L
d d
L
V d V e e
V
I d e e
Z
 
 
 


   
  
Z(-d) = impedance seen “looking” towards load at z = -d.
Terminated Transmission Line (cont.)
36
 
 
 
 
 
2
0 0
2
1
1
1 1
d
L
d
L
V d d
e
Z d Z Z
I d e d




 
   
 
 
     
 
     
   
Note:
If we are at the
beginning of the line,
we will call this the
“input impedance”.
 
I d

z d
 


0
z 
z
L
Z
 
V d

 
Z d

At the load (d = 0):
  0
1
0
1
L
L
L
Z Z Z
 
 
 
 
 
 
Terminated Transmission Line (cont.)
0
0
L
L
L
Z Z
Z Z

 

37

  2 d
L
d e 

   
At any point on the line(d > 0):
Thus,
 
2
0
0
0
2
0
0
1
1
d
L
L
d
L
L
Z Z
e
Z Z
Z d Z
Z Z
e
Z Z




 
 


 
 

 
 
 
 
 


 
 

 
 
Terminated Transmission Line (cont.)
 
 
 
2
0 0 2
1 1
1 1
d
L
d
L
d e
Z d Z Z
d e




 
    
 
  
   
    
 
 
Recall
38
Simplifying, we have:
 
 
 
0
0
0
tanh
tanh
L
L
Z Z d
Z d Z
Z Z d


 

   

 
Terminated Transmission Line (cont.)
 
   
   
   
   
   
   
2
0
2
0 0 0
0 0 2
2 0 0
0
0
0 0
0
0 0
0
0
0
1
1
cosh sinh
cosh sinh
d
L
d
L L L
d
d L L
L
L
d d
L L
d d
L L
L
L
Z Z
e
Z Z Z Z Z Z e
Z d Z Z
Z Z Z Z e
Z Z
e
Z Z
Z Z e Z Z e
Z
Z Z e Z Z e
Z d Z d
Z
Z d Z d




 
 
 
 




 
 
 
 


 
   
   
 
 
    
    
 
  

 
 

 
 
 
  
  
  
 
 

  

 
Hence, we have
39
   
   
2
0
2
0
0
1
1
j d j d
L
j d j d
L
V d V e e
V
I d e e
Z
 
 
 


   
  
Impedance is periodic with period g/2:
 
 
2 1
2 1
2 1
2
/ 2
g
g
d d
d d
d d
 




 
 
  
Terminated Lossless Transmission Line
j j
   
  
Note:      
tanh tanh tan
d j d j d
  
 
The tan function repeats when
 
 
 
0
0
0
tan
tan
L
L
Z jZ d
Z d Z
Z jZ d


 

   

 
40
Lossless:
 
2
0 2
1
1
j d
L
j d
L
e
Z d Z
e




 

   

 
 
 
 
2
0 2
0
0
0
1
1
tanh
tanh
d
L
d
L
L
L
e
Z d Z
e
Z Z d
Z
Z Z d






 
 
   

 
 

  
 

 
0
0
2
L
L
L
g
p
Z Z
Z Z
v






 



Summary for Lossy Transmission Line
41
 
I d

z d
 


0
z 
z
L
Z
 
V d

 
Z d

( )( )
j R j L G j C
    
    
 
 
 
2
0 2
0
0
0
1
1
tan
tan
j d
L
j d
L
L
L
e
Z d Z
e
Z jZ d
Z
Z jZ d






 
 
   
 
 
 

  

 
0
0
2 2
L
L
L
g d
p d
Z Z
Z Z
k
v c
 
 




 

  
 
Summary for Lossless Transmission Line
42
 
I d

z d
 


0
z 
z
L
Z
 
V d

 
Z d

LC k
   
  
0
0
0
L
L
L
Z Z
Z Z

  

No reflection from the load
Matched Load (ZL=Z0)
  0
Z d Z z
  for any
43
 
2
0 2
1
1
d
L
d
L
e
Z d Z
e




 

   

 
 
I d

z d
 


0
z 
z
L
Z
 
V d

 
Z d


1
L
  
Always imaginary!
Short-Circuit Load (ZL=0)
44
 
 
 
0
0
0
tan
tan
L
L
Z jZ d
Z d Z
Z jZ d


 

   

 
   
0 tan
Z d jZ d

 
0
0
L
L
L
Z Z
Z Z

 

 
Z d
 z d
  0
z 
z
 
I d

 
V d



Lossless Case
Note: 2
g
d
d
 


  sc
Z d jX
 
S.C. can become an O.C. with a
g/4 transmission line.
Short-Circuit Load (ZL=0)
 
0 tan
sc
X Z d


45
   
0 tan
Z d jZ d

 
sc
X
Inductive
Capacitive
/ g
d 
0 1/ 4 1/ 2 3/ 4
Lossless Case
 
g d
 

lossless
0
0
1 /
1
1 /
L
L
L
Z Z
Z Z

  

Always imaginary!
Open-Circuit Load (ZL=)
46
1
L
  
0
0
L
L
L
Z Z
Z Z

 

 
 
 
0
0
0
tan
tan
L
L
Z jZ d
Z d Z
Z jZ d


 

   

 
   
0 cot
Z d jZ d

  
 
   
   
0
0
0
1 / tan
/ tan
L
L
j Z Z d
Z d Z
Z Z j d


 

   

 
or
 
Z d
 z d
  0
z 
z
 
I d

 
V d



Lossless Case
2
g
d
d
 


O.C. can become a S.C. with a
g/4 transmission line.
Open-Circuit Load (ZL=)
47
  oc
Z d jX
 
 
0 cot
oc
X Z d

 
   
0 cot
Z d jZ d

  
Note:
Inductive
Capacitive
oc
X
/ g
d 
0 1/ 4 1/ 2
Lossless Case
 
g d
 

lossless
Using Transmission Lines to Synthesize Loads
A microwave filter constructed from microstrip line.
This is very useful in microwave engineering.
48
We can obtain any reactance that we want from a short or open transmission line.
49
Find the voltage at any point on the line.
 
 
 
0
0
0
tanh
tanh
L
in
L
Z Z l
Z Z l Z
Z Z l


 

    
 

 
  in
Th
in Th
Z
V l V
Z Z
 
   

 
At the input:
Voltage on a Transmission Line
0 ,
Z   
V z
 
I z


0
z 
L
Z
l
Th
Z
Th
V


in
Z
Th
V
Th
Z
in
Z
 
V l





   
0
2
1
z z
L
V z V e
e  
  
 
 0
0
L
L
L
Z Z
Z Z

 

   
2
0 1
l l in
L Th
in Th
Z
V l V e e V
Z Z
 
   
      

 
   
2
2
1
1
z
l z
in L
Th l
in Th L
Z e
V z V e
Z Z e




 

   
 
    
 
 
 
At z = -l:
Hence
0 2
1
1
l
in
Th l
in Th L
Z
V V e
Z Z e


 

   
    
 
 
 
50
Voltage on a Transmission Line (cont.)

Incident (forward) wave (not the same as the initial wave from the source!)
Let’s derive an alternative form of the previous result.
 
2
0 2
1
1
l
L
in l
L
e
Z Z l Z
e




 
 
    

 
 
   
 
   
 
2
2
0 2
0
2 2
2
0
0 2
2
0
2
0 0
2
0
2
0 0
0
0
0
1
1
1
1 1
1
1
1
1
1
l
L
l
l
L
L
l l
l
L Th L
L
Th
l
L
l
L
l
Th L Th
l
L
l
Th Th
L
in
in T
Th
h
h
T
e
Z
Z e
e
Z e Z e
e
Z Z
e
Z e
Z Z e Z Z
e
Z
Z Z Z Z
e
Z Z
Z
Z Z
Z
Z Z



 









 






 
 
   
 
 
  
      
 

 
 
 
 

   
 
 
  
  

     


 
 
 


 
2
2 0
0
1
1
l
L
l Th
L
Th
e
Z Z
e
Z Z




 

 

    

 
51
Start with:
Voltage on a Transmission Line (cont.)
   
2
0
2
0
1
1
z
l z L
Th l
Th s L
Z e
V z V e
Z Z e




 

   

    
  
   
2
0
2
0
1
1
l
in L
l
in Th L
s
Th
Z Z e
Z Z Z Z e




  
 
   
   
  
 
where 0
0
Th
s
Th
Z Z
Z Z

 

Therefore, we have the following alternative form for the result:
Hence, we have
52
(source reflection coefficient)
Voltage on a Transmission Line (cont.)
   
2
2
1
1
z
l z
in L
Th l
in Th L
Z e
V z V e
Z Z e




 

   
 
    
 
 
 
Recall:
Substitute
   
 
2
0
2
0
1
1
z
z l L
Th l
Th s L
Z e
V z V e
Z Z e




  

   

    
  
   
The “initial” voltage wave that would exist if there were no reflections from the load
(we have a semi-infinite transmission line or a matched load).
53
Voltage on a Transmission Line (cont.)
This term accounts for the multiple (infinite) bounces.
0 ,
Z   
V z
 
I z


0
z 
L
Z
l
Th
Z
Th
V


in
Z
 
 
       
2 2
2 2 2 2
0
0
1 l l
L L s
l l l l
Th L s L L s L s
Th
e e
Z
V l V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
Wave-bounce method (illustrated for z = -l):
54
Voltage on a Transmission Line (cont.)
We add up all of the bouncing waves.
0 ,
Z 


0
z 
L
Z
l
Th
Z
Th
V


in
Z
 
V l

 
   
   
2
2 2
2
2 2 2
0
0
1
1
l l
L S L S
l l l
Th L L S L S
Th
e e
Z
V l V e e e
Z Z
 
  
 
  
 
      
 
  
 
          
  
 
 

  

 
 
Geometric series:
2
0
1
1 , 1
1
n
n
z z z z
z


     

 2 l
L s
z e 

  
55
Group together alternating terms:
Voltage on a Transmission Line (cont.)
 
 
       
2 2
2 2 2 2
0
0
1 l l
L L s
l l l l
Th L s L L s L s
Th
e e
Z
V l V e e e e
Z Z
 
   
 
   
 
    
 
  
   
          
     
 

 
 

 
or
 
2
0
2
0
2
1
1
1
1
l
L s
Th
d
Th
L l
L s
e
Z
V l V
Z Z
e
e






 
 
  
  
    
 

   
 
 
  
 
 
 
 
2
0
2
0
1
1
l
L
Th l
Th L s
Z e
V l V
Z Z e




  

    
  
  
This agrees with the previous result (setting z = -l).
The wave-bounce method is a very tedious method – not recommended.
Hence
56
Voltage on a Transmission Line (cont.)
   
2
0
2
0
1
1
z
l z L
Th l
Th s L
Z e
V z V e
Z Z e




 

   
 
    
  
   
Previous (alternative)result :
At a distance d from the load:
     
 
  
   
*
*
*
2
0 2 2 * 2
*
0
2 2
2
0 0
2 4 2 2 * 2
* *
0 0
1
Re
2
1
Re 1 1
2
1 1
Re 1 Re
2 2
z z z
L L
z z z z z
L L L
P z V z I z
V
e e e
Z
V V
e e e e e
Z Z
  
    

  
 
    

 
 
   
 
 
   
   
     
   
   
   
2
2
0 2 4
0
1
1
2
z z
L
V
P z e e
Z
 

 
  
If Z0  real (low-loss transmission line):
Time-Average Power Flow
   
   
2
0
2
0
0
1
1
z z
L
z z
L
V z V e e
V
I z e e
Z
j
 
 
  
  

 
  
 
 
 
*
2 * 2
*
2 2
z z
L L
z z
L L
e e
e e
 
 
 
 
 
   
 pure imaginary
Note:
57
 
I z
z


0
z 
z
L
Z
 
V z
P(z) = power flowing in + z direction
(please see the note)
Low-loss line
   
2
2
0 2 4
0
2 2
2
0 0
2 2
0 0
1
1
2
1 1
2 2
z z
L
z z
L
V
P z e e
Z
V V
e e
Z Z
 
 

 
 
 
  
  
Power in forward-traveling wave Power in backward-traveling wave
   
2
2
0
0
1
1
2
L
V
P z
Z

  
Lossless line ( = 0)
Time-Average Power Flow (cont.)
58
 
I z
z


0
z 
z
L
Z
 
V z
Note:
For a very lossy
line, the total
power is not the
difference of the
two individual
powers.
0
0
0
tan
tan
L T
in T
T L
Z jZ d
Z Z
Z jZ d


 

  

 
2
4 4 2
g g
g
d
 
 
 

  
0
0
T
in T
L
jZ
Z Z
jZ
 
   
 
0
2
0
0
0
in in
T
L
Z Z
Z
Z
Z
   
 
Quarter-Wave Transformer
2
0T
in
L
Z
Z
Z

so
0 0
T L
Z Z Z

Hence
(This requires ZL to be real.)
59
Matching condition
0T
Z L
Z
0
Z
in
Z / 4
g
d 

Lossless line
Match a 100  load to a 50  transmission line at a given frequency.
0 100 50
70.7
T
Z  

0
0
2 2 2
g d
r r
k k

  
 
  
    
0 70.7
T
Z  
60
50
/ 4
g

 
100
L
Z  
0T
Z
0
c
f
 
Lossless line
Quarter-Wave Transformer (cont.)
LC k
   
  
Note:
Example
  2
0 1 L
j j z
L
V z V e e
 
 
  
   
 
2
0
2
0
1
1 L
j z j z
L
j
j z j z
L
V z V e e
V e e e
 

 
  
  
  
  
 
 
max 0
min 0
1
1
L
L
V V
V V


  
  
Voltage Standing Wave
61
z
1+ L

1
1- L

0
( )
V z
V 
/ 2
g
z 
D 
0
z 
2 2 / 2
g
z z
  
D   D 
 
I z
z


0
z 
z
L
Z
 
V z
Lossless Case
Note: The voltage repeats every g. The magnitude repeats every g /2.
Note: The voltage changes by a minus sign after g /2.
  max
min
V
V

Voltage Standing Wave Ratio VSWR
Voltage Standing Wave Ratio
1
1
L
L
 

 
VSWR z
1+ L

1
1- L

0
( )
V z
V 
/ 2
g
z 
D 
0
z 
62
 
 
max 0
min 0
1
1
L
L
V V
V V


  
  
 
I z
z


0
z 
z
L
Z
 
V z
At high frequency, discontinuity effects can become important.
Limitations of Transmission-Line Theory
Bend
Incident
Reflected
Transmitted
The simple TL model does not account for the bend.
63
L
Z
0
Z
Th
Z


At high frequency, radiation effects can also become important.
When will radiation occur?
We want energy to travel from the generator to the load, without radiating.
Limitations of Transmission-Line Theory (cont.)
64
This is explored next.
L
Z
0
Z
Th
Z


The coaxial cable is a perfectly shielded system – there is never any radiation at
any frequency, as long as the metal thickness is large compared with a skin depth.
The fields are confined
to the region between
the two conductors.
Limitations of Transmission-Line Theory (cont.)
65
Coaxial Cable
r
 a
b
z
The twin lead is an open type of transmission
line – the fields extend out to infinity.
The extended fields may cause interference
with nearby objects.
(This may be improved by using “twisted pair”.)
Limitations of Transmission-Line Theory (cont.)
Having fields that extend to infinity is not the same thing as having radiation, however!
66
 
The infinite twin lead will not radiate by itself, regardless of how far
apart the lines are (this is true for any transmission line).
The incident and reflected waves represent an exact solution to
Maxwell’s equations on the infinite line, at any frequency.
 
*
1
ˆ
Re 0
2
t
S
P E H dS

 
   
 
 

S
+ -
Limitations of Transmission-Line Theory (cont.)
67
Incident
Reflected
No attenuation on an infinite lossless line
h
A discontinuity on the twin lead will cause radiation to occur.
Note:
Radiation effects usually increase as
the frequency increases.
Limitations of Transmission-Line Theory (cont.)
68
Incident wave
Pipe
Obstacle
Reflected wave
h
Bend
Incident wave
Bend
Reflected wave
h
To reduce radiation effects of the twin lead at discontinuities:
1) Reduce the separation distance h (keep h << ).
2) Twist the lines (twisted pair).
Limitations of Transmission-Line Theory (cont.)
CAT 5 cable
(twisted pair)
69
h

More Related Content

PPTX
Mosfet baising
PPTX
Wave guide tees
PPT
Two port networks
PDF
PDF
Smart traffic light controller using verilog
PPTX
Types of Sampling in Analog Communication
PDF
Chapter4 - The Continuous-Time Fourier Transform
PPT
Tracking in receivers
Mosfet baising
Wave guide tees
Two port networks
Smart traffic light controller using verilog
Types of Sampling in Analog Communication
Chapter4 - The Continuous-Time Fourier Transform
Tracking in receivers

What's hot (20)

PPT
Fan-in and Fan-out.ppt
PPTX
VLSI Design Sequential circuit design
PPT
Noise in Communication System
PDF
Compensators
PDF
Notes nyquist plot and stability criteria
PPTX
Signal flow graph Mason’s Gain Formula
PPTX
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
PDF
Ee560 mos theory_p101
PDF
Comparison Frequency modulation and Phase modulation
PPT
Clippers and clampers
PPT
Equalization
PPT
Antenna PARAMETERS
PPTX
MOSFET and Short channel effects
PDF
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
PPT
Rectangular waveguides
PDF
Two cavity klystron
PDF
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
PPTX
FHSS- Frequency Hop Spread Spectrum
PPTX
Microwave generators
PDF
DSP_FOEHU - Lec 11 - IIR Filter Design
Fan-in and Fan-out.ppt
VLSI Design Sequential circuit design
Noise in Communication System
Compensators
Notes nyquist plot and stability criteria
Signal flow graph Mason’s Gain Formula
opamp application, Bistable, astable and monostable multivibrator, IC-555 timer
Ee560 mos theory_p101
Comparison Frequency modulation and Phase modulation
Clippers and clampers
Equalization
Antenna PARAMETERS
MOSFET and Short channel effects
Engineering Electromagnetics 8th Edition Hayt Solutions Manual
Rectangular waveguides
Two cavity klystron
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
FHSS- Frequency Hop Spread Spectrum
Microwave generators
DSP_FOEHU - Lec 11 - IIR Filter Design
Ad

Similar to Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx (20)

PPTX
Transmission Lines Part 1 (TL Theory).pptx
PPTX
Notes 1 - Transmission Line Theory Theory
PPTX
PPTX
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
PPT
UNIT I.ppt
PDF
Transmissionline
PPTX
Notes 3 5317-6351 Transmission Lines Part 2 (TL Formulas) (2).pptx
PPTX
Notes 3 5317-6351 Transmission Lines Part 2 (TL Formulas).pptx
PPTX
Transmission Lines Part 2 (TL Formulas).pptx
PDF
Microwave engineering full
PDF
Chap2 s11b
PPT
Transmission line By Lipun
PPT
Lecture 7
PPTX
Waveguiding Structures Part 2 (Attenuation).pptx
PPT
Anodes_Crosstalk_Overview.ppt
PDF
D-tutorial.pdf
PPT
Bode plots-Lecture 1.ppt
PDF
Microwave Engineering Lecture Notes
PPT
Matching and TuningMatching and Tuning.ppt
PPT
Matching and Tuning in RF AND MICROWAVE ENGINEERING
Transmission Lines Part 1 (TL Theory).pptx
Notes 1 - Transmission Line Theory Theory
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
UNIT I.ppt
Transmissionline
Notes 3 5317-6351 Transmission Lines Part 2 (TL Formulas) (2).pptx
Notes 3 5317-6351 Transmission Lines Part 2 (TL Formulas).pptx
Transmission Lines Part 2 (TL Formulas).pptx
Microwave engineering full
Chap2 s11b
Transmission line By Lipun
Lecture 7
Waveguiding Structures Part 2 (Attenuation).pptx
Anodes_Crosstalk_Overview.ppt
D-tutorial.pdf
Bode plots-Lecture 1.ppt
Microwave Engineering Lecture Notes
Matching and TuningMatching and Tuning.ppt
Matching and Tuning in RF AND MICROWAVE ENGINEERING
Ad

Recently uploaded (20)

PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
Digital Logic Computer Design lecture notes
PDF
Well-logging-methods_new................
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Welding lecture in detail for understanding
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PPTX
UNIT 4 Total Quality Management .pptx
PPTX
Lecture Notes Electrical Wiring System Components
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
PPT on Performance Review to get promotions
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPTX
Geodesy 1.pptx...............................................
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
R24 SURVEYING LAB MANUAL for civil enggi
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Digital Logic Computer Design lecture notes
Well-logging-methods_new................
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Internet of Things (IOT) - A guide to understanding
Welding lecture in detail for understanding
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
UNIT 4 Total Quality Management .pptx
Lecture Notes Electrical Wiring System Components
Embodied AI: Ushering in the Next Era of Intelligent Systems
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PPT on Performance Review to get promotions
Automation-in-Manufacturing-Chapter-Introduction.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Geodesy 1.pptx...............................................
bas. eng. economics group 4 presentation 1.pptx
Model Code of Practice - Construction Work - 21102022 .pdf

Notes 2 5317-6351 Transmission Lines Part 1 (TL Theory).pptx

  • 1. Prof. David R. Jackson Dept. of ECE Notes 2 ECE 5317-6351 Microwave Engineering Fall 2019 Transmission Lines Part 1: TL Theory 1 Adapted from notes by Prof. Jeffery T. Williams
  • 2. Transmission-Line Theory We need transmission-line theory whenever the length of a line is significant compared to a wavelength. 2 L
  • 3. Transmission Line 2 conductors 4 per-unit-length parameters: C = capacitance/length [F/m] L = inductance/length [H/m] R = resistance/length [/m] G = conductance/length [ /m or S/m]  Dz 3
  • 4. Transmission Line (cont.) z D   , i z t + + + + + + + - - - - - - - - - -   , v z t x x x B 4 Note: There are equal and opposite currents on the two conductors. (We only need to work with the current on the top conductor, since we have chosen to put all of the series elements there.) + - + -   , i z z t  D   , i z t   , v z z t  D   , v z t R z D L z D G z D C z D z
  • 5. ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) i z t v z t v z z t i z t R z L z t v z z t i z t i z z t v z z t G z C z t    D  D  D    D   D   D D  D  Transmission Line (cont.) 5 + - + -   , i z z t  D   , i z t   , v z z t  D   , v z t R z D L z D G z D C z D z
  • 6. Hence ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) v z z t v z t i z t Ri z t L z t i z z t i z t v z z t Gv z z t C z t  D      D   D    D    D  D  Now let Dz  0: v i Ri L z t i v Gv C z t               “Telegrapher’s Equations” TEM Transmission Line (cont.) 6
  • 7. To combine these, take the derivative of the first one with respect to z: 2 2 2 2 v i i R L z z z t i i R L z t z v v v R Gv C L G C t t t                                                          Switch the order of the derivatives. TEM Transmission Line (cont.) 7 i v Gv C z t       
  • 8.   2 2 2 2 ( ) 0 v v v RG v RC LG LC z t t                  The same differential equation also holds for i. Hence, we have: 2 2 2 2 v v v v R Gv C L G C z t t t                            TEM Transmission Line (cont.) 8 Note: There is no exact solution in the time domain, in the lossy case.
  • 9.   2 2 2 ( ) ( ) 0 d V RG V RC LG j V LC V dz           2 2 2 2 ( ) 0 v v v RG v RC LG LC z t t                  TEM Transmission Line (cont.) Time-Harmonic Waves: 9 j t    
  • 10. Note that     2 2 2 ( ) d V RG V j RC LG V LC V dz       2 ( ) ( )( ) RG j RC LG LC R j L G j C           = = Z R j L Y G j C       series impedance / unit length parallel admittance / unit length Then we can write: 2 2 ( ) d V ZY V dz  TEM Transmission Line (cont.) 10
  • 11. Define We have: Solution: 2 ZY   ( ) z z V z Ae Be        1/2 ( )( ) R j L G j C           2 2 2 d V z V z dz   Then TEM Transmission Line (cont.)  is called the “propagation constant”. 11 Question: Which sign of the square root is correct?
  • 12. Principal square root: TEM Transmission Line (cont.) /2 j z r e         12  1/2 ( )( ) R j L G j C       We choose the principal square root.   Re 0 z  ( )( ) R j L G j C       Re 0   Hence (Note the square-root (“radical”) symbol here.) j z re   1/2 1/2 4 2, 4 2 1 1 , 2 2 j j j j               Examples :
  • 13. Denote: TEM Transmission Line (cont.) Re 0     13 ( )( ) R j L G j C       [np/m]   attenuationcontant j        rad/m   phaseconstant   1/m   propagationconstant
  • 14. TEM Transmission Line (cont.) 14 There are two possible locations for the complex square root: 0, 0     Hence: Re Im       R j L   Re Im G j C   Re Im    Re Im ( )( ) R j L G j C       The principal square root must be in the first quadrant.
  • 15. TEM Transmission Line (cont.) 15   z z j z V z Ae Ae e         Wave traveling in +z direction:   j      Wave is attenuating as it propagates.   z z j z V z Ae Ae e         Wave traveling in -z direction:   j      Wave is attenuating as it propagates.
  • 16. TEM Transmission Line (cont.) 16    10 10 dB 20log 20log 20 0.4343 8.686 out in z V V A e A z z                             Attenuation in     10 log 0.4343 ln x x  Note: Attenuation in dB/m:   z j z V z Ae e      dB/m 8.686  Attenuationin
  • 17. Wavenumber Notation 17 ( )( ) R j L G j C       "propagationconstant"   z z j z V z Ae Ae e           z jk z z j z V z Ae Ae e        ( )( ) z k j R j L G j C       "propagationwavenumber" z jk   j      z k j    
  • 18. TEM Transmission Line (cont.) 0 0 ( ) z z j z V z V e V e e            Forward travelling wave (a wave traveling in the positive z direction):             0 0 0 ( , ) Re Re cos z j z j t j z j z j t z v z t V e e e V e e e e V e t z                          2 g     2 g    The wave “repeats” when: Hence: 18 g  0 t  z 0 z V e    “snapshot” of wave
  • 19. Phase Velocity Let’s track the velocity of a fixed point on the wave (a point of constant phase), e.g., the crest of the wave. 0 ( , ) cos( ) z v z t V e t z           19 z (phase velocity) p v
  • 20. Phase Velocity (cont.) 0 constant            t z dz dt dz dt Set Hence p v      Im )( p v R j L G j C       In expanded form: 20
  • 21. Characteristic Impedance Z0 0 ( ) ( ) V z Z I z    0 0 ( ) ( ) z z V z V e I z I e           so 0 0 0 V Z I    Assumption: A wave is traveling in the positive z direction. (Note: Z0 is a number, not a function of z.) 21   I z    V z    z
  • 22. Use first Telegrapher’s Equation: v i Ri L z t        so dV RI j LI ZI dz       Hence 0 0 z z V e ZI e           Characteristic Impedance Z0 (cont.) 22 0 0 ( ) ( ) z z V z V e I z I e           Recall:
  • 23. From this we have: Use: 0 0 0 V Z Z Z I ZY       Characteristic Impedance Z0 (cont.) Z R j L Y G j C       23 Both are in the first quadrant 0 0 / Re 0 ZY Z Z ZY Z          first quadrant right - half plane 0 Z Z Y  (principal square root)
  • 24. Hence, we have Characteristic Impedance Z0 (cont.) 24 0 Z R j L Z Y G j C       0 Re 0 Z 
  • 25.   0 0 0 0 j z j j z z z z j z V e e V z V e V V e e e e e                                   0 0 cos c , R os e j t z z V e t v z t V z z V z e e t                       In the time domain: Wave in +z direction Wave in -z direction General Case (Waves in Both Directions) 25
  • 26. Backward-Traveling Wave 0 ( ) ( ) V z Z I z     0 ( ) ( ) V z Z I z     so A wave is traveling in the negative z direction. Note: The reference directions for voltage and current are chosen the same as for the forward wave. 26 z   I z    V z   
  • 27. General Case 0 0 0 0 0 ( ) 1 ( ) z z z z V z V e V e I z V e V e Z                     A general superposition of forward and backward traveling waves: Most general case: 27 z   I z   V z  
  • 28.        0 0 0 0 0 0 0 z z z z V z V e V e V V I z e e Z j R j L G j C R j L Z G j Z C                                  2 m g     [m/s] p v    Guided wavelength: Phase velocity: Summary of Basic TL formulas 28 dB/m 8.686  Attenuationin   I z   V z  
  • 29. Lossless Case 0, 0 R G   ( )( ) j R j L G j C j LC             so 0 LC      0 R j L Z G j C      0 L Z C  1 p v LC  p v    (independent of freq.) (real and independent of freq.) 29
  • 30. Lossless Case (cont.) 1 p v LC  If the medium between the two conductors is lossless and homogeneous (uniform) and is characterized by (, ), then (proof given later): LC   The speed of light in a dielectric medium is 1 d c   Hence, we have that: p d v c  In the lossless case the phase velocity does not depend on the frequency, and it is always equal to the speed of light (in the material). (proof given later) 30 0 r r LC k k           and
  • 31.   0 0 z z V z V e V e         Where do we assign z = 0 ? The usual choice is at the load. Amplitude of voltage wave propagating in negative z direction at z = 0. Amplitude of voltage wave propagating in positive z direction at z = 0. Terminated Transmission Line 31     0 0 0 0 V V V V         V z    V z  Terminating impedance (load)   V z   I z 0 z  z L Z  
  • 32.   0 0 0 z V V z e                 0 0 0 0 z z z z V z V z e V z e            0 0 0 z V z V e        0 0 0 z V V z e       Terminated Transmission Line (cont.)   0 0 z z V z V e V e         Hence Can we use z = z0 as a reference plane? 32   0 0 0 z V z V e      Terminating impedance (load)   V z   I z 0 z  z L Z   0 z z 
  • 33. Terminated Transmission Line (cont.)       0 0 z z V z V e V e         Compare: This is simply a change of reference plane, from z = 0 to z = z0. 33           0 0 0 0 z z z z V z V z e V z e          Terminating impedance (load)   V z   I z 0 z  z L Z   0 z z 
  • 34.   0 0 z z V z V e V e         What is V(-d) ?   0 0 d d V d V e V e           0 0 0 0 d d V V I d e e Z Z         Propagating forwards Propagating backwards Terminated Transmission Line (cont.) d  distance away from load The current at z = -d is then: 34 (This does not necessarily have to be the length of the entire line.) Terminating impedance (load)   I d  z d     0 z  z L Z   V d 
  • 35.     2 0 0 1 d d L V I d e e Z           2 0 0 0 0 0 1 d d d d V V d V e V e V e e V                       Similarly, L  load reflection coefficient Terminated Transmission Line (cont.) 35     2 0 1 d d L V d V e e         or 0 0 L V V       I d  z d     0 z  z L Z   V d  (-d) = reflection coefficient at z = -d   2 d L d e      
  • 36.         2 0 2 0 0 1 1 d d L d d L V d V e e V I d e e Z                Z(-d) = impedance seen “looking” towards load at z = -d. Terminated Transmission Line (cont.) 36           2 0 0 2 1 1 1 1 d L d L V d d e Z d Z Z I d e d                                 Note: If we are at the beginning of the line, we will call this the “input impedance”.   I d  z d     0 z  z L Z   V d    Z d 
  • 37. At the load (d = 0):   0 1 0 1 L L L Z Z Z             Terminated Transmission Line (cont.) 0 0 L L L Z Z Z Z     37    2 d L d e       At any point on the line(d > 0):
  • 38. Thus,   2 0 0 0 2 0 0 1 1 d L L d L L Z Z e Z Z Z d Z Z Z e Z Z                                     Terminated Transmission Line (cont.)       2 0 0 2 1 1 1 1 d L d L d e Z d Z Z d e                              Recall 38
  • 39. Simplifying, we have:       0 0 0 tanh tanh L L Z Z d Z d Z Z Z d             Terminated Transmission Line (cont.)                           2 0 2 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 1 cosh sinh cosh sinh d L d L L L d d L L L L d d L L d d L L L L Z Z e Z Z Z Z Z Z e Z d Z Z Z Z Z Z e Z Z e Z Z Z Z e Z Z e Z Z Z e Z Z e Z d Z d Z Z d Z d                                                                                        Hence, we have 39
  • 40.         2 0 2 0 0 1 1 j d j d L j d j d L V d V e e V I d e e Z                Impedance is periodic with period g/2:     2 1 2 1 2 1 2 / 2 g g d d d d d d              Terminated Lossless Transmission Line j j        Note:       tanh tanh tan d j d j d      The tan function repeats when       0 0 0 tan tan L L Z jZ d Z d Z Z jZ d             40 Lossless:   2 0 2 1 1 j d L j d L e Z d Z e              
  • 41.       2 0 2 0 0 0 1 1 tanh tanh d L d L L L e Z d Z e Z Z d Z Z Z d                             0 0 2 L L L g p Z Z Z Z v            Summary for Lossy Transmission Line 41   I d  z d     0 z  z L Z   V d    Z d  ( )( ) j R j L G j C          
  • 42.       2 0 2 0 0 0 1 1 tan tan j d L j d L L L e Z d Z e Z jZ d Z Z jZ d                            0 0 2 2 L L L g d p d Z Z Z Z k v c                 Summary for Lossless Transmission Line 42   I d  z d     0 z  z L Z   V d    Z d  LC k       
  • 43. 0 0 0 L L L Z Z Z Z      No reflection from the load Matched Load (ZL=Z0)   0 Z d Z z   for any 43   2 0 2 1 1 d L d L e Z d Z e                 I d  z d     0 z  z L Z   V d    Z d  
  • 44. 1 L    Always imaginary! Short-Circuit Load (ZL=0) 44       0 0 0 tan tan L L Z jZ d Z d Z Z jZ d                 0 tan Z d jZ d    0 0 L L L Z Z Z Z       Z d  z d   0 z  z   I d    V d    Lossless Case
  • 45. Note: 2 g d d       sc Z d jX   S.C. can become an O.C. with a g/4 transmission line. Short-Circuit Load (ZL=0)   0 tan sc X Z d   45     0 tan Z d jZ d    sc X Inductive Capacitive / g d  0 1/ 4 1/ 2 3/ 4 Lossless Case   g d    lossless
  • 46. 0 0 1 / 1 1 / L L L Z Z Z Z      Always imaginary! Open-Circuit Load (ZL=) 46 1 L    0 0 L L L Z Z Z Z           0 0 0 tan tan L L Z jZ d Z d Z Z jZ d                 0 cot Z d jZ d               0 0 0 1 / tan / tan L L j Z Z d Z d Z Z Z j d             or   Z d  z d   0 z  z   I d    V d    Lossless Case
  • 47. 2 g d d     O.C. can become a S.C. with a g/4 transmission line. Open-Circuit Load (ZL=) 47   oc Z d jX     0 cot oc X Z d        0 cot Z d jZ d     Note: Inductive Capacitive oc X / g d  0 1/ 4 1/ 2 Lossless Case   g d    lossless
  • 48. Using Transmission Lines to Synthesize Loads A microwave filter constructed from microstrip line. This is very useful in microwave engineering. 48 We can obtain any reactance that we want from a short or open transmission line.
  • 49. 49 Find the voltage at any point on the line.       0 0 0 tanh tanh L in L Z Z l Z Z l Z Z Z l                  in Th in Th Z V l V Z Z          At the input: Voltage on a Transmission Line 0 , Z    V z   I z   0 z  L Z l Th Z Th V   in Z Th V Th Z in Z   V l     
  • 50.     0 2 1 z z L V z V e e         0 0 L L L Z Z Z Z         2 0 1 l l in L Th in Th Z V l V e e V Z Z                     2 2 1 1 z l z in L Th l in Th L Z e V z V e Z Z e                         At z = -l: Hence 0 2 1 1 l in Th l in Th L Z V V e Z Z e                     50 Voltage on a Transmission Line (cont.)  Incident (forward) wave (not the same as the initial wave from the source!)
  • 51. Let’s derive an alternative form of the previous result.   2 0 2 1 1 l L in l L e Z Z l Z e                               2 2 0 2 0 2 2 2 0 0 2 2 0 2 0 0 2 0 2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 l L l l L L l l l L Th L L Th l L l L l Th L Th l L l Th Th L in in T Th h h T e Z Z e e Z e Z e e Z Z e Z e Z Z e Z Z e Z Z Z Z Z e Z Z Z Z Z Z Z Z                                                                                          2 2 0 0 1 1 l L l Th L Th e Z Z e Z Z                   51 Start with: Voltage on a Transmission Line (cont.)
  • 52.     2 0 2 0 1 1 z l z L Th l Th s L Z e V z V e Z Z e                         2 0 2 0 1 1 l in L l in Th L s Th Z Z e Z Z Z Z e                       where 0 0 Th s Th Z Z Z Z     Therefore, we have the following alternative form for the result: Hence, we have 52 (source reflection coefficient) Voltage on a Transmission Line (cont.)     2 2 1 1 z l z in L Th l in Th L Z e V z V e Z Z e                         Recall: Substitute
  • 53.       2 0 2 0 1 1 z z l L Th l Th s L Z e V z V e Z Z e                          The “initial” voltage wave that would exist if there were no reflections from the load (we have a semi-infinite transmission line or a matched load). 53 Voltage on a Transmission Line (cont.) This term accounts for the multiple (infinite) bounces. 0 , Z    V z   I z   0 z  L Z l Th Z Th V   in Z
  • 54.             2 2 2 2 2 2 0 0 1 l l L L s l l l l Th L s L L s L s Th e e Z V l V e e e e Z Z                                                        Wave-bounce method (illustrated for z = -l): 54 Voltage on a Transmission Line (cont.) We add up all of the bouncing waves. 0 , Z    0 z  L Z l Th Z Th V   in Z   V l 
  • 55.           2 2 2 2 2 2 2 0 0 1 1 l l L S L S l l l Th L L S L S Th e e Z V l V e e e Z Z                                                      Geometric series: 2 0 1 1 , 1 1 n n z z z z z           2 l L s z e      55 Group together alternating terms: Voltage on a Transmission Line (cont.)             2 2 2 2 2 2 0 0 1 l l L L s l l l l Th L s L L s L s Th e e Z V l V e e e e Z Z                                                       
  • 56. or   2 0 2 0 2 1 1 1 1 l L s Th d Th L l L s e Z V l V Z Z e e                                            2 0 2 0 1 1 l L Th l Th L s Z e V l V Z Z e                    This agrees with the previous result (setting z = -l). The wave-bounce method is a very tedious method – not recommended. Hence 56 Voltage on a Transmission Line (cont.)     2 0 2 0 1 1 z l z L Th l Th s L Z e V z V e Z Z e                          Previous (alternative)result :
  • 57. At a distance d from the load:                * * * 2 0 2 2 * 2 * 0 2 2 2 0 0 2 4 2 2 * 2 * * 0 0 1 Re 2 1 Re 1 1 2 1 1 Re 1 Re 2 2 z z z L L z z z z z L L L P z V z I z V e e e Z V V e e e e e Z Z                                                           2 2 0 2 4 0 1 1 2 z z L V P z e e Z         If Z0  real (low-loss transmission line): Time-Average Power Flow         2 0 2 0 0 1 1 z z L z z L V z V e e V I z e e Z j                       * 2 * 2 * 2 2 z z L L z z L L e e e e                pure imaginary Note: 57   I z z   0 z  z L Z   V z P(z) = power flowing in + z direction (please see the note)
  • 58. Low-loss line     2 2 0 2 4 0 2 2 2 0 0 2 2 0 0 1 1 2 1 1 2 2 z z L z z L V P z e e Z V V e e Z Z                  Power in forward-traveling wave Power in backward-traveling wave     2 2 0 0 1 1 2 L V P z Z     Lossless line ( = 0) Time-Average Power Flow (cont.) 58   I z z   0 z  z L Z   V z Note: For a very lossy line, the total power is not the difference of the two individual powers.
  • 59. 0 0 0 tan tan L T in T T L Z jZ d Z Z Z jZ d            2 4 4 2 g g g d           0 0 T in T L jZ Z Z jZ         0 2 0 0 0 in in T L Z Z Z Z Z       Quarter-Wave Transformer 2 0T in L Z Z Z  so 0 0 T L Z Z Z  Hence (This requires ZL to be real.) 59 Matching condition 0T Z L Z 0 Z in Z / 4 g d   Lossless line
  • 60. Match a 100  load to a 50  transmission line at a given frequency. 0 100 50 70.7 T Z    0 0 2 2 2 g d r r k k               0 70.7 T Z   60 50 / 4 g    100 L Z   0T Z 0 c f   Lossless line Quarter-Wave Transformer (cont.) LC k        Note: Example
  • 61.   2 0 1 L j j z L V z V e e              2 0 2 0 1 1 L j z j z L j j z j z L V z V e e V e e e                      max 0 min 0 1 1 L L V V V V         Voltage Standing Wave 61 z 1+ L  1 1- L  0 ( ) V z V  / 2 g z  D  0 z  2 2 / 2 g z z    D   D    I z z   0 z  z L Z   V z Lossless Case Note: The voltage repeats every g. The magnitude repeats every g /2. Note: The voltage changes by a minus sign after g /2.
  • 62.   max min V V  Voltage Standing Wave Ratio VSWR Voltage Standing Wave Ratio 1 1 L L      VSWR z 1+ L  1 1- L  0 ( ) V z V  / 2 g z  D  0 z  62     max 0 min 0 1 1 L L V V V V           I z z   0 z  z L Z   V z
  • 63. At high frequency, discontinuity effects can become important. Limitations of Transmission-Line Theory Bend Incident Reflected Transmitted The simple TL model does not account for the bend. 63 L Z 0 Z Th Z  
  • 64. At high frequency, radiation effects can also become important. When will radiation occur? We want energy to travel from the generator to the load, without radiating. Limitations of Transmission-Line Theory (cont.) 64 This is explored next. L Z 0 Z Th Z  
  • 65. The coaxial cable is a perfectly shielded system – there is never any radiation at any frequency, as long as the metal thickness is large compared with a skin depth. The fields are confined to the region between the two conductors. Limitations of Transmission-Line Theory (cont.) 65 Coaxial Cable r  a b z
  • 66. The twin lead is an open type of transmission line – the fields extend out to infinity. The extended fields may cause interference with nearby objects. (This may be improved by using “twisted pair”.) Limitations of Transmission-Line Theory (cont.) Having fields that extend to infinity is not the same thing as having radiation, however! 66  
  • 67. The infinite twin lead will not radiate by itself, regardless of how far apart the lines are (this is true for any transmission line). The incident and reflected waves represent an exact solution to Maxwell’s equations on the infinite line, at any frequency.   * 1 ˆ Re 0 2 t S P E H dS             S + - Limitations of Transmission-Line Theory (cont.) 67 Incident Reflected No attenuation on an infinite lossless line h
  • 68. A discontinuity on the twin lead will cause radiation to occur. Note: Radiation effects usually increase as the frequency increases. Limitations of Transmission-Line Theory (cont.) 68 Incident wave Pipe Obstacle Reflected wave h Bend Incident wave Bend Reflected wave h
  • 69. To reduce radiation effects of the twin lead at discontinuities: 1) Reduce the separation distance h (keep h << ). 2) Twist the lines (twisted pair). Limitations of Transmission-Line Theory (cont.) CAT 5 cable (twisted pair) 69 h