MetaPerturb is a meta-learned perturbation function that can enhance generalization of neural networks on different tasks and architectures. It proposes a novel meta-learning framework involving jointly training a main model and perturbation module on multiple source tasks to learn a transferable perturbation function. This meta-learned perturbation function can then be transferred to improve performance of a target model on an unseen target task or architecture, outperforming baselines on various datasets and architectures.