2
Most read
3
Most read
10
Most read
Contents
1 NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS 2
1.1 Linear System of Equations in General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Linear System of Equations in Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Homogeneous and Non-Homogeneous Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Consistency of Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Solution of Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.1 Gauss Elimination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5.2 Gauss-Jordan Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5.3 Inverse of A if Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5.4 Iterative Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.5 Choleski Decomposition (Square-Root) Method for Positive Definite System of Matrices . . . . . . 10
1.5.6 LU Decomposition Using Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1
Chapter 1
NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
1.1 Linear System of Equations in General Form
a11x1 + a12x2 + a13x3 + ... + a1nxn = b1
a21x1 + a22x2 + a23x3 + ... + a2nxn = b2
a31x1 + a32x2 + a33x3 + ... + a3nxn = b3
.
.
.
an1x1 + an2x2 + an3x3 + ... + annxn = bn
1.2 Linear System of Equations in Matrix Form
AX = B
A =













a11 a12 a13 ... a1n
a21 a22 a23 ... a2n
a31 a32 a33 ... a3n
. . . .
. . . .
. . . .
an1 an2 an3 ... ann













, X =













x1
x2
x3
.
.
.
xn













, B =













b1
b2
b3
.
.
.
bn













1.3 Homogeneous and Non-Homogeneous Linear System of Equations
• If B = 0 ⇒ Homogeneous linear system of equations.
• If B = 0 ⇒ Non-homogeneous linear system of equations.
1.4 Consistency of Linear System of Equations
• If AX = B has no solution ⇒ Inconsistent linear system of equations.
• If AX = B has at least one solution ⇒ Consistent linear system of equations.
– The linear system of equations has one solution if the number of unknowns is equal to the number of indepen-
dent equations (A has inverse or |A| = 0).
2
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
– The linear system of equations has more than one solution if the number of unknowns is greater than the
number of independent equations(A has not inverse or |A| = 0).
NOTE: Any homogeneous linear system of equations is a consistent linear system of equations.
1.5 Solution of Linear System of Equations
1.5.1 Gauss Elimination Method
1. Backward substitution (Upper triangular system)
× × × ×
× × × ×
A
× × × ×
× × × ×
×
×
B
×
×
i=n
i=1 a1i − b1
i=n
i=1 a2i − b2
Check
i=n
i=1 a3i − b3
i=n
i=1 a4i − b4
Raws operations
↓ ↓ ↓ ...
× × × ×
0 × × ×
0 0 × ×
0 0 0 ×
×
×
×
×
Then apply backward substitution to get the unknowns.
Example
Consider the following linear system of equations
x + 6y + 5z = 28
2x + 4y + 9z = 37
3x + 7y + 8z = 41
A B Check Raws operations
1 6 5
2 4 9
3 7 8
28
37
41
−16
−22
−23
−2 × R1 + R2 → R2
−3 × R1 + R3 → R3
1 6 5
0 −8 −1
0 −11 −7
28
−19
−43
−16
10
25
−
11
8
× R2 + R3 → R3
1 6 5
0 −8 −1
0 0 45/8
28
−19
−135/8
−16
10
45/4
z =
135
45
= 3
y =
−19 + z
−8
= 2
x = 8 − 5z − 6y = 2
Mohamed Mohamed El-Sayed Atyya Page 3 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
2. Forward substitution (Lower triangular system)
× × × ×
× × × ×
A
× × × ×
× × × ×
×
×
B
×
×
i=n
i=1 a1i − b1
i=n
i=1 a2i − b2
Check
i=n
i=1 a3i − b3
i=n
i=1 a4i − b4
Raws operations
↓ ↓ ↓ ...
× 0 0 0
× × 0 0
× × × 0
× × × ×
×
×
×
×
Then apply forward substitution to get the unknowns.
Example
Consider the following linear system of equations
x + 6y + 5z = 28
2x + 4y + 9z = 37
3x + 7y + 8z = 41
A B Check Raws operations
1 6 5
2 4 9
3 7 8
28
37
41
−16
−22
−23
−
−9
8
× R3 + R2 → R2
−
−5
8
× R3 + R1 → R1
−7/8 13/8 0
−11/8 −31/8 0
3 −7 8
19/8
−73/8
41
−13/8
31/8
−23
1
8
× R1 → R1
1
8
× R2 → R2
−7 13 0
−11 −31 0
3 −7 8
19
−73
41
−13
31
−23
13
31
× R2 + R1 → R1
−360/31 0 0
−11 −31 0
3 7 8
−360/31
−73
41
0
31
−23
x = 1
y =
−73 + 11x
−31
= 2
z =
41 − 3x − 7y
8
= 3
Mohamed Mohamed El-Sayed Atyya Page 4 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
1.5.2 Gauss-Jordan Method
× × × ×
× × × ×
A
× × × ×
× × × ×
×
×
B
×
×
i=n
i=1 a1i − b1
i=n
i=1 a2i − b2
Check
i=n
i=1 a3i − b3
i=n
i=1 a4i − b4
Raws operations
↓ ↓ ↓ ...
I X
Example
Consider the following linear system of equations
x + 6y + 5z = 28
2x + 4y + 9z = 37
3x + 7y + 8z = 41
A B Check Raws operations
1 6 5
2 4 9
3 7 8
28
37
41
−16
−22
−23
−2 × R1 + R2 → R2
−3 × R1 + R3 → R3
1 6 5
0 −8 −1
0 −11 −7
28
−19
−43
−16
10
25
−
1
8
× R2 → R2
1 6 5
0 1 1/8
0 0 45/8
28
−19/8
−135/8
−16
−5/4
45/4
−6 × R2 + R1 → R1
11 × R2 + R3 → R3
1 0 17/4
0 1 1/8
0 0 45/8
55/4
−19/8
−135/8
−17/2
−5/4
45/4
−
8
45
× R3 → R3
1 0 17/4
0 1 1/8
0 0 1
55/4
−19/8
3
−17/2
−5/4
−2
−
17
4
× R3 + R1 → R1
−
1
8
× R3 + R2 → R2
1 0 0
0 1 0
0 0 1
1
2
3
0
−1
−2
x = 1
y = 2
z = 3
Mohamed Mohamed El-Sayed Atyya Page 5 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
1.5.3 Inverse of A if Exists
A I Check Raws operations
↓ ↓ ↓ ...
I A−1
X = A−1
B
Example
Consider the following linear system of equations
x + 6y + 5z = 28
2x + 4y + 9z = 37
3x + 7y + 8z = 41
A I Check Raw operations
1 6 5
2 4 9
3 7 8
1 0 0
0 1 0
0 0 1
11
14
17
−2 × R1 + R2 → R2
−3 × R1 + R3 → R3
1 6 5
0 −8 −1
0 −11 −7
1 0 0
−2 1 0
−3 0 1
11
−8
−16
−
1
8
× R2 → R2
1 6 5
0 1 0.125
0 −11 −7
1 0 0
0.25 −0.125 0
−3 0 1
11
1
−16
−6 × R2 + R1 → R1
11 × R2 + R3 → R3
1 0 4.25
0 1 0.125
0 0 −5.625
−0.5 0.75 0
0.25 −0.125 0
−0.25 −1.375 1
5
1
−5
−
1
5.625
× R3 → R3
1 0 4.25
0 1 0.125
0 0 1
−0.5 0.75 0
0.25 −0.125 0
2/45 11/45 −8/45
5
1
8/9
−0.125 × R3 + R2 → R2
−4.25 × R3 + R1 → R1
1 0 0
0 1 0
0 0 1
−31/45 −13/45 34/45
11/45 −7/45 1/45
2/45 11/45 −8/45
11/9
8/9
8/9
∴ A−1
=




−31/45 −13/45 34/45
11/45 −7/45 1/45
2/45 11/45 −8/45








x
y
z



 = A−1
B =




1
2
3




Mohamed Mohamed El-Sayed Atyya Page 6 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
1.5.4 Iterative Techniques
Consider the linear system of equations,
a11x1 + a12x2 + a13x3 + ... + a1nxn = b1
a21x1 + a22x2 + a23x3 + ... + a2nxn = b2
a31x1 + a32x2 + a33x3 + ... + a3nxn = b3
.
.
.
an1x1 + an2x2 + an3x3 + ... + annxn = bn
Rewrite it as,
x1 =
1
a11
[b1 − a12x2 − a13x3 − ... − a1nxn]
x2 =
1
a22
[b2 − a21x1 − a23x3 − ... − a2nxn]
x3 =
1
a33
[b3 − a31x1 − a32x2 − ... − a3nxn]
.
.
.
xn =
1
ann
bn − an1x1 − an2x2 − ... − an(n−1)xn−1
In general,
xn =
1
ann
bn −
n
i=1
anixi ; ∀ i = n
To get a solution with this method we should satisfy this conditions:
1. ann = 0 ∀ n ; existence condition.
2. A matrix should be diagonally dominant, |aii| > n
j=1 |aij| ∀ j; j = i ; convergence condition.
Methods of solution:
1. Jacobi method
We start the solution by an initial vector,
x(0)
= x
(0)
1 x
(0)
2 x
(0)
3 ... x
(0)
n
T
Then get the fist iteration values,
x
(1)
1 =
1
a11
b1 − a12x
(0)
2 − a13x
(0)
3 − ... − a1nx(0)
n
x
(1)
2 =
1
a22
b2 − a21x
(0)
1 − a23x
(0)
3 − ... − a2nx(0)
n
x
(1)
3 =
1
a33
b3 − a31x
(0)
1 − a32x
(0)
2 − ... − a3nx(0)
n
.
.
.
x(1)
n =
1
ann
bn − an1x
(0)
1 − an2x
(0)
2 − ... − an(n−1)x
(0)
n−1
Mohamed Mohamed El-Sayed Atyya Page 7 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
In general,
x(k)
n =
1
ann
bn −
n
i=1
anix
(k−1)
i ; ∀ i = n
Continue till get a solution with a certain percentage of error.
Example
Consider the following linear system of equations
x + y + 9z = 11
7x + 3y + 2z = 12
−2x + 8y + 4z = 10
and initial values
x(0)
= 0 0 0
T
with accuracy k = 5 ⇒ x(i+1)
− x(i)
< 0.5 × 10−5
A|B =



1 1 9
7 3 2
−2 8 4
11
12
10


 not diagonally dominant
⇒ A|B =



7 3 2
−2 8 4
1 1 9
12
10
11



∴ x(i+1)
=
1
7
12 − 3y(i)
− 2z(i)
y(i+1)
=
1
8
10 − 2x(i)
− 4z(i)
z(i+1)
=
1
9
11 − x(i)
− y(i)
Iteration No. x y z
0 0 0 0
1 1.714286 1.250000 1.222222
2 0.829365 1.067461 0.892857
3 1.001700 1.010912 1.011463
4 0.992048 0.994694 0.998599
5 1.002674 0.998713 1.001473
6 1.000131 0.999932 0.999850
7 1.000072 1.000108 0.999993
8 0.999975 1.0000215 0.999980
9 0.999997 0.999999 1.000002
10 0.999999 0.999998 1.000000
| error| 0.000002 0.000001 0.000002
2. Gauss-Seidel method
We start the solution by an initial vector,
x(0)
= x
(0)
1 x
(0)
2 x
(0)
3 ... x
(0)
n
T
Mohamed Mohamed El-Sayed Atyya Page 8 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
Then get the fist iteration values,
x
(1)
1 =
1
a11
b1 − a12x
(0)
2 − a13x
(0)
3 − ... − a1nx(0)
n
x
(1)
2 =
1
a22
b2 − a21x
(1)
1 − a23x
(0)
3 − ... − a2nx(0)
n
x
(1)
3 =
1
a33
b3 − a31x
(1)
1 − a32x
(1)
2 − ... − a3nx(0)
n
.
.
.
x(1)
n =
1
ann
bn − an1x
(1)
1 − an2x
(1)
2 − ... − an(n−1)x
(0)
n−1
In general,
x(k)
n =
1
ann
bn −
i<n
i=1
anix
(k)
i +
i=n
i>n
anix
(k−1)
i
Continue till get a solution with a certain percentage of error.
Example
Consider the following linear system of equations
x + y + 9z = 11
7x + 3y + 2z = 12
−2x + 8y + 4z = 10
and initial values
x(0)
= 0 0 0
T
with accuracy k = 5 ⇒ x(i+1)
− x(i)
< 0.5 × 10−5
A|B =



1 1 9
7 3 2
−2 8 4
11
12
10


 not diagonally dominant
⇒ A|B =



7 3 2
−2 8 4
1 1 9
12
10
11



∴ x(i+1)
=
1
7
12 − 3y(i)
− 2z(i)
y(i+1)
=
1
8
10 − 2x(i+1)
− 4z(i)
z(i+1)
=
1
9
11 − x(i+1)
− y(i+1)
Mohamed Mohamed El-Sayed Atyya Page 9 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
Iteration No. x y z
0 0 0 0
1 1.714286 1.678572 0.845238
2 0.753401 1.015731 1.025652
3 0.985929 0.983656 1.003379
4 1.006039 0.999820 0.999349
5 1.000263 1.000391 0.999927
6 0.999853 0.999999 1.000016
7 0.999996 0.999991 1.000001
8 1.000004 1.000001 0.999999
9 1.000000 1.000001 1.000000
| error| 0.000004 0.000000 0.000001
1.5.5 Choleski Decomposition (Square-Root) Method for Positive Definite System of
Matrices
Theorem: A symmetrical n × n matrix is positive definite if and only if det(Ak) > 0 ;
k = 1, 2, 3, ..., n. where Ak is the k × k matrix formed by the kth
first row and
column of matrix A.
Theorem: For a symmetric positive definite matrix A, |aij|2
≤ |aiiajj| and the maximum
element of A lies on the main diagonal.
Theorem: Let A be a symmetric positive definite matrix, there is a unique upper-triangular
matrix R with the diagonal elements, such that RT
R = A or LLT
= A. Where
L = lower-triangular matrix, L = RT
.
A = LLT










a11 a12 a13 ... a1n
a21 a22 a23 ... a2n
. . . .
. . . .
. . . .
an1 an2 an3 ... ann










=










l11
l21 l22
. . .
. . .
. . .
ln1 ln2 . . . lnn




















l11 l21 . . . ln1
l22 . . . ln2
. .
. .
. .
lnn










l11 =
√
a11
lij =
1
lji
aij −
j−1
k=1
likljk ; j = 1, 2, 3, ..., i − 1
lii = aii −
i−1
k=1
l2
ik ; i = 1, 2, 3, ..., n
li−1, j = 0 ; j = i, i + 1, ..., n
Also,
A = RT
R
AX = B ⇒ RT
RX = B
RT
[RX − D] = AX − B ⇒ RT
D = B , RX = D
Mohamed Mohamed El-Sayed Atyya Page 10 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
Example
Consider the following linear system of equations
7x + y + 5z = 13
x + 8y + 2z = 11
5x + 2y + 9z = 16
7 1 5
1 8 2
5 2 9
⇒
55/7 9/7
9/7 38/7
⇒ 287/55
Pivot 1 =
√
7 Pivot 2 = 55/7 Pivot 3 = 287/55
R =




√
7 1/
√
7 5/
√
7
0 55/7 9/
√
385
0 0 287/55




RT
=




√
7 0 0
1/
√
7 55/7 0
5/
√
7 9/
√
385 287/55




RT
D = B ⇒ D = 13/
√
7 64/
√
385 287/55
T
RX = D ⇒ X = 1 1 1
T
For clarification
a11 a12 a13
a21 a22 a23
a31 a32 a33
⇒
b11 b12
b21 b22
⇒ c11
Pivot 1 =
√
a11 Pivot 2 =
√
b11 Pivot 3 =
√
c11
b11 = a22 −
a12
Pivot 1
×
a21
Pivot 1
b12 = a23 −
a13
Pivot 1
×
a21
Pivot 1
b21 = a32 −
a12
Pivot 1
×
a31
Pivot 1
b22 = a33 −
a13
Pivot 1
×
a31
Pivot 1
c11 = b22 −
b12
Pivot 2
×
b21
Pivot 2
R =



r11 r12 r13
0 r22 r23
0 0 r33



r11 =
a11
Pivot 1
r12 =
a12
Pivot 1
Mohamed Mohamed El-Sayed Atyya Page 11 of 13
1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
r13 =
a13
Pivot 1
r22 =
b11
Pivot 2
r23 =
b12
Pivot 2
r33 = Pivot 3
1.5.6 LU Decomposition Using Gauss Elimination
Consider a linear system of equations
AX = B
Which A can be expressed as
A = LU
Then we get
LUX = B
L [UX − D] = AX − B ⇒ LD = B , UX = D
Example
Consider the following linear system of equations
x + 6y + 5z = 28
2x + 4y + 9z = 37
3x + 7y + 8z = 41
A B Check Raw operations
1 6 5
2 4 9
3 7 8
28
37
41
−16
−22
−23
−2 × R1 + R2 → R2
−3 × R1 + R3 → R3
1 6 5
0 −8 −1
0 −11 −7
28
−19
−43
−16
10
25
−
11
8
× R2 + R3 → R3
1 6 5
0 −8 −1
0 0 −45/8
28
−19
−135/8
−16
10
45/4
U =




1 6 5
0 −8 −1
0 0 −45/8




L =




1 0 0
2 1 0
3 11/8 1




LD = B ⇒ D = 28 −19 −135/8
T
UX = D ⇒ X = 1 2 3
T
Note: As we see the raw operation in general is aij × Rj + Ri → Ri, this used to generate L matrix as lij = −aij
Mohamed Mohamed El-Sayed Atyya Page 12 of 13
1.6. REFERENCES
CHAPTER 1. NUMERICAL SOLUTIONS FOR
LINEAR SYSTEM OF EQUATIONS
1.6 References
1. A First Course in Numerical Analysis, 2 nd edition, Anthony Ralston and Philip Rabinowitz.
2. Elementary Numerical Analysis, An Algorithmic Approach, 3 rd edition, S. D. Conte and Carl de Boor.
3. Numerical Methods for Engineers, 6 th edition, Steven C. Chapra and Raymond P. Canale.
4. Numerical Methods and Algorithms, Milan Kubicek, Miroslava Dubcova, Drahoslava Janovska, VSCHT Praha 2005.
1.7 Contacts
mohamed.atyya94@eng-st.cu.edu.eg
Mohamed Mohamed El-Sayed Atyya Page 13 of 13

More Related Content

PPTX
newton raphson method
PDF
Newtons Divided Difference Formulation
PPT
Newton divided difference interpolation
PPTX
Determinants. Cramer’s Rule
PPTX
Taylor series
PPTX
presentation on Euler and Modified Euler method ,and Fitting of curve
PPT
Lu decomposition
PPTX
Newton Forward Difference Interpolation Method
newton raphson method
Newtons Divided Difference Formulation
Newton divided difference interpolation
Determinants. Cramer’s Rule
Taylor series
presentation on Euler and Modified Euler method ,and Fitting of curve
Lu decomposition
Newton Forward Difference Interpolation Method

What's hot (20)

PPTX
Numerical solution of system of linear equations
PPTX
Bisection
PPT
Multiple integrals
PPTX
Runge-Kutta methods with examples
PPTX
Remainder and factor theorems
PPTX
Interpolation
PPTX
Linear and non linear equation
PPT
numerical methods
PDF
Numerical Differentiation and Integration
PPTX
Laplace transforms
PPTX
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
PPTX
CMSC 56 | Lecture 6: Sets & Set Operations
PPTX
GAUSS ELIMINATION METHOD
PDF
Interpolation Methods
PPTX
linear equation and gaussian elimination
PPT
03 truncation errors
PPTX
Presentation on Solution to non linear equations
PPT
systems of linear equations & matrices
PPT
The binomial theorem class 11 maths
PPTX
Presentation on Numerical Integration
Numerical solution of system of linear equations
Bisection
Multiple integrals
Runge-Kutta methods with examples
Remainder and factor theorems
Interpolation
Linear and non linear equation
numerical methods
Numerical Differentiation and Integration
Laplace transforms
INVERSION OF MATRIX BY GAUSS ELIMINATION METHOD
CMSC 56 | Lecture 6: Sets & Set Operations
GAUSS ELIMINATION METHOD
Interpolation Methods
linear equation and gaussian elimination
03 truncation errors
Presentation on Solution to non linear equations
systems of linear equations & matrices
The binomial theorem class 11 maths
Presentation on Numerical Integration
Ad

Similar to Numerical solutions for linear system of equations (20)

PPTX
Computational Method for Engineers: Solving a system of Linear Equations
PDF
Chapter 3 solving systems of linear equations
PPTX
LINEAR EQUATION.pptx
PDF
Matrices 2_System of Equations.pdf
PPTX
Solving a system of Linear Equations for Engineers
PPT
Solution of linear system of equations
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
DOCX
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
PPT
6640173.ppt
PPTX
Gaussian elimination method & homogeneous linear equation
PDF
Chapter 3: Linear Systems and Matrices - Part 1/Slides
PPTX
linear system of solutions
PDF
algebra lineal ada5c97a-340b-4ae9-afce-b864c9f851df.pdf
PPTX
Maths iii quick review by Dr Asish K Mukhopadhyay
PDF
07 chap3
DOCX
.Chapter7&8.
PPT
Solving Linear systems of Equations-Gauss elimination method
PPTX
Unit 3-Numerical Algorithms (3).pptx .is of topic data structures and algorithm
DOCX
algebra
PPT
Linear algebra03fallleturenotes01
Computational Method for Engineers: Solving a system of Linear Equations
Chapter 3 solving systems of linear equations
LINEAR EQUATION.pptx
Matrices 2_System of Equations.pdf
Solving a system of Linear Equations for Engineers
Solution of linear system of equations
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-5_DISCRETE MATHEMATICS
6640173.ppt
Gaussian elimination method & homogeneous linear equation
Chapter 3: Linear Systems and Matrices - Part 1/Slides
linear system of solutions
algebra lineal ada5c97a-340b-4ae9-afce-b864c9f851df.pdf
Maths iii quick review by Dr Asish K Mukhopadhyay
07 chap3
.Chapter7&8.
Solving Linear systems of Equations-Gauss elimination method
Unit 3-Numerical Algorithms (3).pptx .is of topic data structures and algorithm
algebra
Linear algebra03fallleturenotes01
Ad

More from Mohamed Mohamed El-Sayed (20)

PDF
Optimal control systems
PDF
Neural networks and deep learning
PDF
Numerical solutions for ode (differential equations)
PDF
PDF
PDF
Numerical integration
PDF
Numerical differentiation
PDF
Numerical solutions for 1 non linear eq and system of non linear eqs
PDF
PDF
PDF
PDF
V belt and rope drives
PDF
Flat belt pulleys
PDF
Flat belt drives
PDF
Optimal control systems
Neural networks and deep learning
Numerical solutions for ode (differential equations)
Numerical integration
Numerical differentiation
Numerical solutions for 1 non linear eq and system of non linear eqs
V belt and rope drives
Flat belt pulleys
Flat belt drives

Recently uploaded (20)

PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PDF
Exploratory_Data_Analysis_Fundamentals.pdf
PPTX
Module 8- Technological and Communication Skills.pptx
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PPTX
Current and future trends in Computer Vision.pptx
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
August -2025_Top10 Read_Articles_ijait.pdf
PDF
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
PDF
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
PPTX
CyberSecurity Mobile and Wireless Devices
PPTX
Feature types and data preprocessing steps
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PPTX
Amdahl’s law is explained in the above power point presentations
PPTX
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
PDF
August 2025 - Top 10 Read Articles in Network Security & Its Applications
PDF
Abrasive, erosive and cavitation wear.pdf
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
Exploratory_Data_Analysis_Fundamentals.pdf
Module 8- Technological and Communication Skills.pptx
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
Current and future trends in Computer Vision.pptx
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
August -2025_Top10 Read_Articles_ijait.pdf
ChapteR012372321DFGDSFGDFGDFSGDFGDFGDFGSDFGDFGFD
Accra-Kumasi Expressway - Prefeasibility Report Volume 1 of 7.11.2018.pdf
CyberSecurity Mobile and Wireless Devices
Feature types and data preprocessing steps
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
Amdahl’s law is explained in the above power point presentations
tack Data Structure with Array and Linked List Implementation, Push and Pop O...
August 2025 - Top 10 Read Articles in Network Security & Its Applications
Abrasive, erosive and cavitation wear.pdf
Soil Improvement Techniques Note - Rabbi
AUTOMOTIVE ENGINE MANAGEMENT (MECHATRONICS).pptx

Numerical solutions for linear system of equations

  • 1. Contents 1 NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 2 1.1 Linear System of Equations in General Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Linear System of Equations in Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Homogeneous and Non-Homogeneous Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Consistency of Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.5 Solution of Linear System of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5.1 Gauss Elimination Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5.2 Gauss-Jordan Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5.3 Inverse of A if Exists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.5.4 Iterative Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5.5 Choleski Decomposition (Square-Root) Method for Positive Definite System of Matrices . . . . . . 10 1.5.6 LU Decomposition Using Gauss Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.7 Contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1
  • 2. Chapter 1 NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 1.1 Linear System of Equations in General Form a11x1 + a12x2 + a13x3 + ... + a1nxn = b1 a21x1 + a22x2 + a23x3 + ... + a2nxn = b2 a31x1 + a32x2 + a33x3 + ... + a3nxn = b3 . . . an1x1 + an2x2 + an3x3 + ... + annxn = bn 1.2 Linear System of Equations in Matrix Form AX = B A =              a11 a12 a13 ... a1n a21 a22 a23 ... a2n a31 a32 a33 ... a3n . . . . . . . . . . . . an1 an2 an3 ... ann              , X =              x1 x2 x3 . . . xn              , B =              b1 b2 b3 . . . bn              1.3 Homogeneous and Non-Homogeneous Linear System of Equations • If B = 0 ⇒ Homogeneous linear system of equations. • If B = 0 ⇒ Non-homogeneous linear system of equations. 1.4 Consistency of Linear System of Equations • If AX = B has no solution ⇒ Inconsistent linear system of equations. • If AX = B has at least one solution ⇒ Consistent linear system of equations. – The linear system of equations has one solution if the number of unknowns is equal to the number of indepen- dent equations (A has inverse or |A| = 0). 2
  • 3. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS – The linear system of equations has more than one solution if the number of unknowns is greater than the number of independent equations(A has not inverse or |A| = 0). NOTE: Any homogeneous linear system of equations is a consistent linear system of equations. 1.5 Solution of Linear System of Equations 1.5.1 Gauss Elimination Method 1. Backward substitution (Upper triangular system) × × × × × × × × A × × × × × × × × × × B × × i=n i=1 a1i − b1 i=n i=1 a2i − b2 Check i=n i=1 a3i − b3 i=n i=1 a4i − b4 Raws operations ↓ ↓ ↓ ... × × × × 0 × × × 0 0 × × 0 0 0 × × × × × Then apply backward substitution to get the unknowns. Example Consider the following linear system of equations x + 6y + 5z = 28 2x + 4y + 9z = 37 3x + 7y + 8z = 41 A B Check Raws operations 1 6 5 2 4 9 3 7 8 28 37 41 −16 −22 −23 −2 × R1 + R2 → R2 −3 × R1 + R3 → R3 1 6 5 0 −8 −1 0 −11 −7 28 −19 −43 −16 10 25 − 11 8 × R2 + R3 → R3 1 6 5 0 −8 −1 0 0 45/8 28 −19 −135/8 −16 10 45/4 z = 135 45 = 3 y = −19 + z −8 = 2 x = 8 − 5z − 6y = 2 Mohamed Mohamed El-Sayed Atyya Page 3 of 13
  • 4. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 2. Forward substitution (Lower triangular system) × × × × × × × × A × × × × × × × × × × B × × i=n i=1 a1i − b1 i=n i=1 a2i − b2 Check i=n i=1 a3i − b3 i=n i=1 a4i − b4 Raws operations ↓ ↓ ↓ ... × 0 0 0 × × 0 0 × × × 0 × × × × × × × × Then apply forward substitution to get the unknowns. Example Consider the following linear system of equations x + 6y + 5z = 28 2x + 4y + 9z = 37 3x + 7y + 8z = 41 A B Check Raws operations 1 6 5 2 4 9 3 7 8 28 37 41 −16 −22 −23 − −9 8 × R3 + R2 → R2 − −5 8 × R3 + R1 → R1 −7/8 13/8 0 −11/8 −31/8 0 3 −7 8 19/8 −73/8 41 −13/8 31/8 −23 1 8 × R1 → R1 1 8 × R2 → R2 −7 13 0 −11 −31 0 3 −7 8 19 −73 41 −13 31 −23 13 31 × R2 + R1 → R1 −360/31 0 0 −11 −31 0 3 7 8 −360/31 −73 41 0 31 −23 x = 1 y = −73 + 11x −31 = 2 z = 41 − 3x − 7y 8 = 3 Mohamed Mohamed El-Sayed Atyya Page 4 of 13
  • 5. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 1.5.2 Gauss-Jordan Method × × × × × × × × A × × × × × × × × × × B × × i=n i=1 a1i − b1 i=n i=1 a2i − b2 Check i=n i=1 a3i − b3 i=n i=1 a4i − b4 Raws operations ↓ ↓ ↓ ... I X Example Consider the following linear system of equations x + 6y + 5z = 28 2x + 4y + 9z = 37 3x + 7y + 8z = 41 A B Check Raws operations 1 6 5 2 4 9 3 7 8 28 37 41 −16 −22 −23 −2 × R1 + R2 → R2 −3 × R1 + R3 → R3 1 6 5 0 −8 −1 0 −11 −7 28 −19 −43 −16 10 25 − 1 8 × R2 → R2 1 6 5 0 1 1/8 0 0 45/8 28 −19/8 −135/8 −16 −5/4 45/4 −6 × R2 + R1 → R1 11 × R2 + R3 → R3 1 0 17/4 0 1 1/8 0 0 45/8 55/4 −19/8 −135/8 −17/2 −5/4 45/4 − 8 45 × R3 → R3 1 0 17/4 0 1 1/8 0 0 1 55/4 −19/8 3 −17/2 −5/4 −2 − 17 4 × R3 + R1 → R1 − 1 8 × R3 + R2 → R2 1 0 0 0 1 0 0 0 1 1 2 3 0 −1 −2 x = 1 y = 2 z = 3 Mohamed Mohamed El-Sayed Atyya Page 5 of 13
  • 6. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 1.5.3 Inverse of A if Exists A I Check Raws operations ↓ ↓ ↓ ... I A−1 X = A−1 B Example Consider the following linear system of equations x + 6y + 5z = 28 2x + 4y + 9z = 37 3x + 7y + 8z = 41 A I Check Raw operations 1 6 5 2 4 9 3 7 8 1 0 0 0 1 0 0 0 1 11 14 17 −2 × R1 + R2 → R2 −3 × R1 + R3 → R3 1 6 5 0 −8 −1 0 −11 −7 1 0 0 −2 1 0 −3 0 1 11 −8 −16 − 1 8 × R2 → R2 1 6 5 0 1 0.125 0 −11 −7 1 0 0 0.25 −0.125 0 −3 0 1 11 1 −16 −6 × R2 + R1 → R1 11 × R2 + R3 → R3 1 0 4.25 0 1 0.125 0 0 −5.625 −0.5 0.75 0 0.25 −0.125 0 −0.25 −1.375 1 5 1 −5 − 1 5.625 × R3 → R3 1 0 4.25 0 1 0.125 0 0 1 −0.5 0.75 0 0.25 −0.125 0 2/45 11/45 −8/45 5 1 8/9 −0.125 × R3 + R2 → R2 −4.25 × R3 + R1 → R1 1 0 0 0 1 0 0 0 1 −31/45 −13/45 34/45 11/45 −7/45 1/45 2/45 11/45 −8/45 11/9 8/9 8/9 ∴ A−1 =     −31/45 −13/45 34/45 11/45 −7/45 1/45 2/45 11/45 −8/45         x y z     = A−1 B =     1 2 3     Mohamed Mohamed El-Sayed Atyya Page 6 of 13
  • 7. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 1.5.4 Iterative Techniques Consider the linear system of equations, a11x1 + a12x2 + a13x3 + ... + a1nxn = b1 a21x1 + a22x2 + a23x3 + ... + a2nxn = b2 a31x1 + a32x2 + a33x3 + ... + a3nxn = b3 . . . an1x1 + an2x2 + an3x3 + ... + annxn = bn Rewrite it as, x1 = 1 a11 [b1 − a12x2 − a13x3 − ... − a1nxn] x2 = 1 a22 [b2 − a21x1 − a23x3 − ... − a2nxn] x3 = 1 a33 [b3 − a31x1 − a32x2 − ... − a3nxn] . . . xn = 1 ann bn − an1x1 − an2x2 − ... − an(n−1)xn−1 In general, xn = 1 ann bn − n i=1 anixi ; ∀ i = n To get a solution with this method we should satisfy this conditions: 1. ann = 0 ∀ n ; existence condition. 2. A matrix should be diagonally dominant, |aii| > n j=1 |aij| ∀ j; j = i ; convergence condition. Methods of solution: 1. Jacobi method We start the solution by an initial vector, x(0) = x (0) 1 x (0) 2 x (0) 3 ... x (0) n T Then get the fist iteration values, x (1) 1 = 1 a11 b1 − a12x (0) 2 − a13x (0) 3 − ... − a1nx(0) n x (1) 2 = 1 a22 b2 − a21x (0) 1 − a23x (0) 3 − ... − a2nx(0) n x (1) 3 = 1 a33 b3 − a31x (0) 1 − a32x (0) 2 − ... − a3nx(0) n . . . x(1) n = 1 ann bn − an1x (0) 1 − an2x (0) 2 − ... − an(n−1)x (0) n−1 Mohamed Mohamed El-Sayed Atyya Page 7 of 13
  • 8. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS In general, x(k) n = 1 ann bn − n i=1 anix (k−1) i ; ∀ i = n Continue till get a solution with a certain percentage of error. Example Consider the following linear system of equations x + y + 9z = 11 7x + 3y + 2z = 12 −2x + 8y + 4z = 10 and initial values x(0) = 0 0 0 T with accuracy k = 5 ⇒ x(i+1) − x(i) < 0.5 × 10−5 A|B =    1 1 9 7 3 2 −2 8 4 11 12 10    not diagonally dominant ⇒ A|B =    7 3 2 −2 8 4 1 1 9 12 10 11    ∴ x(i+1) = 1 7 12 − 3y(i) − 2z(i) y(i+1) = 1 8 10 − 2x(i) − 4z(i) z(i+1) = 1 9 11 − x(i) − y(i) Iteration No. x y z 0 0 0 0 1 1.714286 1.250000 1.222222 2 0.829365 1.067461 0.892857 3 1.001700 1.010912 1.011463 4 0.992048 0.994694 0.998599 5 1.002674 0.998713 1.001473 6 1.000131 0.999932 0.999850 7 1.000072 1.000108 0.999993 8 0.999975 1.0000215 0.999980 9 0.999997 0.999999 1.000002 10 0.999999 0.999998 1.000000 | error| 0.000002 0.000001 0.000002 2. Gauss-Seidel method We start the solution by an initial vector, x(0) = x (0) 1 x (0) 2 x (0) 3 ... x (0) n T Mohamed Mohamed El-Sayed Atyya Page 8 of 13
  • 9. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS Then get the fist iteration values, x (1) 1 = 1 a11 b1 − a12x (0) 2 − a13x (0) 3 − ... − a1nx(0) n x (1) 2 = 1 a22 b2 − a21x (1) 1 − a23x (0) 3 − ... − a2nx(0) n x (1) 3 = 1 a33 b3 − a31x (1) 1 − a32x (1) 2 − ... − a3nx(0) n . . . x(1) n = 1 ann bn − an1x (1) 1 − an2x (1) 2 − ... − an(n−1)x (0) n−1 In general, x(k) n = 1 ann bn − i<n i=1 anix (k) i + i=n i>n anix (k−1) i Continue till get a solution with a certain percentage of error. Example Consider the following linear system of equations x + y + 9z = 11 7x + 3y + 2z = 12 −2x + 8y + 4z = 10 and initial values x(0) = 0 0 0 T with accuracy k = 5 ⇒ x(i+1) − x(i) < 0.5 × 10−5 A|B =    1 1 9 7 3 2 −2 8 4 11 12 10    not diagonally dominant ⇒ A|B =    7 3 2 −2 8 4 1 1 9 12 10 11    ∴ x(i+1) = 1 7 12 − 3y(i) − 2z(i) y(i+1) = 1 8 10 − 2x(i+1) − 4z(i) z(i+1) = 1 9 11 − x(i+1) − y(i+1) Mohamed Mohamed El-Sayed Atyya Page 9 of 13
  • 10. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS Iteration No. x y z 0 0 0 0 1 1.714286 1.678572 0.845238 2 0.753401 1.015731 1.025652 3 0.985929 0.983656 1.003379 4 1.006039 0.999820 0.999349 5 1.000263 1.000391 0.999927 6 0.999853 0.999999 1.000016 7 0.999996 0.999991 1.000001 8 1.000004 1.000001 0.999999 9 1.000000 1.000001 1.000000 | error| 0.000004 0.000000 0.000001 1.5.5 Choleski Decomposition (Square-Root) Method for Positive Definite System of Matrices Theorem: A symmetrical n × n matrix is positive definite if and only if det(Ak) > 0 ; k = 1, 2, 3, ..., n. where Ak is the k × k matrix formed by the kth first row and column of matrix A. Theorem: For a symmetric positive definite matrix A, |aij|2 ≤ |aiiajj| and the maximum element of A lies on the main diagonal. Theorem: Let A be a symmetric positive definite matrix, there is a unique upper-triangular matrix R with the diagonal elements, such that RT R = A or LLT = A. Where L = lower-triangular matrix, L = RT . A = LLT           a11 a12 a13 ... a1n a21 a22 a23 ... a2n . . . . . . . . . . . . an1 an2 an3 ... ann           =           l11 l21 l22 . . . . . . . . . ln1 ln2 . . . lnn                     l11 l21 . . . ln1 l22 . . . ln2 . . . . . . lnn           l11 = √ a11 lij = 1 lji aij − j−1 k=1 likljk ; j = 1, 2, 3, ..., i − 1 lii = aii − i−1 k=1 l2 ik ; i = 1, 2, 3, ..., n li−1, j = 0 ; j = i, i + 1, ..., n Also, A = RT R AX = B ⇒ RT RX = B RT [RX − D] = AX − B ⇒ RT D = B , RX = D Mohamed Mohamed El-Sayed Atyya Page 10 of 13
  • 11. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS Example Consider the following linear system of equations 7x + y + 5z = 13 x + 8y + 2z = 11 5x + 2y + 9z = 16 7 1 5 1 8 2 5 2 9 ⇒ 55/7 9/7 9/7 38/7 ⇒ 287/55 Pivot 1 = √ 7 Pivot 2 = 55/7 Pivot 3 = 287/55 R =     √ 7 1/ √ 7 5/ √ 7 0 55/7 9/ √ 385 0 0 287/55     RT =     √ 7 0 0 1/ √ 7 55/7 0 5/ √ 7 9/ √ 385 287/55     RT D = B ⇒ D = 13/ √ 7 64/ √ 385 287/55 T RX = D ⇒ X = 1 1 1 T For clarification a11 a12 a13 a21 a22 a23 a31 a32 a33 ⇒ b11 b12 b21 b22 ⇒ c11 Pivot 1 = √ a11 Pivot 2 = √ b11 Pivot 3 = √ c11 b11 = a22 − a12 Pivot 1 × a21 Pivot 1 b12 = a23 − a13 Pivot 1 × a21 Pivot 1 b21 = a32 − a12 Pivot 1 × a31 Pivot 1 b22 = a33 − a13 Pivot 1 × a31 Pivot 1 c11 = b22 − b12 Pivot 2 × b21 Pivot 2 R =    r11 r12 r13 0 r22 r23 0 0 r33    r11 = a11 Pivot 1 r12 = a12 Pivot 1 Mohamed Mohamed El-Sayed Atyya Page 11 of 13
  • 12. 1.5. SOLUTION OF LINEAR SYSTEM OF EQUATIONS CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS r13 = a13 Pivot 1 r22 = b11 Pivot 2 r23 = b12 Pivot 2 r33 = Pivot 3 1.5.6 LU Decomposition Using Gauss Elimination Consider a linear system of equations AX = B Which A can be expressed as A = LU Then we get LUX = B L [UX − D] = AX − B ⇒ LD = B , UX = D Example Consider the following linear system of equations x + 6y + 5z = 28 2x + 4y + 9z = 37 3x + 7y + 8z = 41 A B Check Raw operations 1 6 5 2 4 9 3 7 8 28 37 41 −16 −22 −23 −2 × R1 + R2 → R2 −3 × R1 + R3 → R3 1 6 5 0 −8 −1 0 −11 −7 28 −19 −43 −16 10 25 − 11 8 × R2 + R3 → R3 1 6 5 0 −8 −1 0 0 −45/8 28 −19 −135/8 −16 10 45/4 U =     1 6 5 0 −8 −1 0 0 −45/8     L =     1 0 0 2 1 0 3 11/8 1     LD = B ⇒ D = 28 −19 −135/8 T UX = D ⇒ X = 1 2 3 T Note: As we see the raw operation in general is aij × Rj + Ri → Ri, this used to generate L matrix as lij = −aij Mohamed Mohamed El-Sayed Atyya Page 12 of 13
  • 13. 1.6. REFERENCES CHAPTER 1. NUMERICAL SOLUTIONS FOR LINEAR SYSTEM OF EQUATIONS 1.6 References 1. A First Course in Numerical Analysis, 2 nd edition, Anthony Ralston and Philip Rabinowitz. 2. Elementary Numerical Analysis, An Algorithmic Approach, 3 rd edition, S. D. Conte and Carl de Boor. 3. Numerical Methods for Engineers, 6 th edition, Steven C. Chapra and Raymond P. Canale. 4. Numerical Methods and Algorithms, Milan Kubicek, Miroslava Dubcova, Drahoslava Janovska, VSCHT Praha 2005. 1.7 Contacts mohamed.atyya94@eng-st.cu.edu.eg Mohamed Mohamed El-Sayed Atyya Page 13 of 13