SlideShare a Scribd company logo
PROCEDURE FOR LOCALIZATION
AND ARRAYS DESIGNING
KINECT MICROPHONE ARRAY CASE STUDY
FOR LOCALIZATION PERFORMANCE
2016-10-08
MUHAMMAD IMRAN
CONTENTS
• Measurement Procedures (Data Acquisition)
• Array Performance Analysis
• Localization Performance
• Kinect Case study for Localization Performance
PROCEDURE
Measurement Procedures (Data Acquisition)
MEASUREMENT PROCEDURES (DATA ACQUISITION)
1. Measurement Setup
a. Data Acquisition HWD
b. Source Selection
• Wideband Source
• Narrowband Source (Single Frequency)
• Speech Source
c. Source Directivity
• Narrow (±20)
• Speech Source
d. Geometry Plan
• Placement of source and receiver
• Alignment of Array
DATA ACQUISITION HARDWARE
a. Genelec 8030
• 20 seconds
• Sampling = 44.1 KHz (Prefer)
• 860” Frames (if Frame size is 1024)
• 860” DOAs for One position
b. Kinect Array
• 04-CH: Linear Array
• Non-Uniform
• Windows Direct Sound
• Interface
• Source: Professor Edgar Choueiri, 3D3A Lab, Princeton University
• For Details: Microsoft Corporation
PLACEMENT AND ALIGNMENT
• Making Grid (Physical)
• Thread Network
• Protractor
• Separation between elements
• Error within 1 mm
• Axial Placement
• Alignment Errors
• Within the limits of (Hz, Vt)
• -0.5o to +0.5o
• Environmental Factors
• Temperature (STP)
• Humidity (STP)
• Back Ground Noise Level <= 20dB (±5dB)1
PROCEDURE FOR DATA ACQUISITION
• Kinect alignment to Loudspeaker
• With Magnetic Compass
• Exciting Sound Sources:
1. Pink Noise (Wideband Source)
• Duration = 10 sec
• Measurement Angles = -90 to + 90 (Step: 05o)
• For Linear Array
2. Sine 500, 1000, 1500 Hz
• Duration = 10 sec
• Radom angles (05-10 angles)
3. Speech (Anechoic)
• Duration = 10 sec
• Measurement Angles = -90 to + 90 (10o)
ARRAY DIRECTIVITY
• Figure 1: (Ref: 02): Microphone array directivity pattern in three dimensions
• What to measure (Ref: 01) (Formulae and Matlab Example Code)
1. Microphone Sensitivity
2. Microphone Noise and Output SNR
3. Array Directivity Pattern
4. Array Frequency Response
5. Array Directivity Index
Figure 1
Reference:
1. Chapter: 03: Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
2. MIT Media Lab: Kinect Array Directivity
ARRAY DIRECTIVITY
• Figure 2: A directivity pattern of Kinect (Azimuth @ 0o Elev.)
Figure 2a Figure 2b
Reference:
1. Chapter: 03, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
DIRECTIVITY INDEX COMPARISON
• Figure 3: A directivity Index of different number of microphone
• More Microphones more directivity
• More computational cost
• Less Microphones Less directivity
• Less computational cost
Directivity Index
0
2
4
6
8
10
12
Uni-directional Tw o element Four element
Microphone/Mic Array
DI,dB
Figure 3
Reference:
1. Chapter: 05, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
PROCEDURE
Localization Performance
PERFORMANCE ANALYSIS PROCEDURES (DOA)
1. Flow of computation
a. Data segmentation
b. Frame by Frame Computation
a. Localization Algo (GCC-PHAT)
b. Individual Pair Computing
c. Combining Pairs
2. Verification Parameters
a. Localization Accuracy
b. Localization Resolution
c. Localization Stability (Standard deviation) (The standard deviation tells the dispersion of data)
d. Robustness (Root Mean Squared Error: RMS)
3. Plotting and Describing Results
a. Histograms, Polar Plots
FLOW OF COMPUTATION
Flow of computation
a. Data segmentation
b. Frame by Frame Computation
a. GCC-PHAT
b. Individual Pair Computing
c. Combining Pairs
c. Recorded signal Length
a. 10 sec
d. Sampling
a. 44100 Samples/Sec
e. Total Frames
a. 430 (@ 1024)
f. Total DOA
a. 430
g. Recommended minimum = 200
CH1
CH2
CH3
CH4
Signal Length (10 sec)
VERIFICATION PARAMETERS
1. Plotting and Describing Results
a. Histograms, Polar Plots
2. Verification Parameters
1. Localization Resolution
2. *Localization Accuracy (Error)
3. *Localization Stability (Standard deviation)
4. **Confidence Level
Reference:
*Chapter: 06, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
**https://en.wikipedia.org/wiki/Confidence_interval
Kinect
Localization Performance
Experimental Evaluation
MEASUREMENTS
• Source: Pink Noise
• Ground fact angle: -90o to + 90o
• Measured duration: 10 to 20 sec
1. Pink Source
2. Speech
3. Anechoic Speech
Statistics
• Mean
• STD
• Error w.r.t. Ground angles
• Range (Target Range = ±5 @ Kinect)
• Stability / Robustness
• In Range: %
• Out Range: %
• Source: Pink Noise
• Ground fact angle: 0o
• Measured angles: (533)
1. Mean: -0.12o
2. STD: 0.11o
3. Error: 0.13o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.6o
a. In Range: 100% (533)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 5o
• Measured angles: (533)
1. Mean: 4.97o
2. STD: 0.18o
3. Error: 0.028o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1o
a. In Range: 100% (533)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 10o
• Measured angles: (543)
1. Mean: 9.87o
2. STD: 0.134o
3. Error: 0.13o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.6o
a. In Range: 100% (543)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 15o
• Measured angles: (133)
1. Mean: 15o
2. STD: 0.25o
3. Error: 0.004o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1.3o
a. In Range: 100% (133)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 20o
• Measured angles: (533)
1. Mean: 20.16o
2. STD: 0.19o
3. Error: 0.15o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.9o
a. In Range: 100% (533)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 25o
• Measured angles: (541)
1. Mean: 25o
2. STD: 0.25o
3. Error: 0.001o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1.4o
a. In Range: 100% (541)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 30o
• Measured angles: (534)
1. Mean: 29.7o
2. STD: 0.17o
3. Error: 0.29o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.8o
a. In Range: 100% (534)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 35o
• Measured angles: (519)
1. Mean: 34.05o
2. STD: 0.17o
3. Error: 0.95o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1o
a. In Range: 100% (526)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 40o
• Measured angles: (526)
1. Mean: 39.08o
2. STD: 0.19o
3. Error: 0.91o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1o
a. In Range: 100% (526)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 45o
• Measured angles: (190)
1. Mean: 43.9o
2. STD: 0.37o
3. Error: 2.9
4. Robustness: 100% (Target Range = ±5)
5. Range: 3o
a. In Range: 100% (190)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 50o
• Measured angles: (215)
1. Mean: 48.02o
2. STD: 0.5o
3. Error: 2o
4. Robustness: 100% (Target Range = ±5)
5. Range: 3o
a. In Range: 100% (215)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: 55o
• Measured angles: (195)
1. Mean: 54.1o
2. STD: 1.5o
3. Error: 0.8o
4. Robustness: 100% (Target Range = ±5)
5. Range: 7o
a. In Range: 94% (204)
b. Out Range: 6% (11)
Results
• Source: Pink Noise
• Ground fact angle: 60o
• Measured angles: (200)
1. Mean: 58.2o
2. STD: 2.34o
3. Error: 1.7o
4. Robustness: 100% (Target Range = ±5)
5. Range: 8.9o
a. In Range: 87% (176)
b. Out Range: 13% (24)
Results
• Source: Pink Noise
• Ground fact angle: 65o
• Measured angles: (201)
1. Mean: 54.1o
2. STD: 3o
3. Error: 10o
4. Robustness: 100% (Target Range = ±5)
5. Range: 11o
a. In Range: 98% (198)
b. Out Range: 2% (3)
Results
• Source: Pink Noise
• Ground fact angle: 70o
• Measured angles: (190)
1. Mean: 58.9o
2. STD: 3.25o
3. Error: 11o
4. Robustness: 100% (Target Range = ±5)
5. Range: 13o
a. In Range: 13% (24)
b. Out Range: 87% (166)
Results
• Source: Pink Noise
• Ground fact angle: 75o
• Measured angles: (185)
1. Mean: 65.9o
2. STD: 3.5o
3. Error: 9o
4. Robustness: 100% (Target Range = ±5)
5. Range: 21o
a. In Range: 5% (8)
b. Out Range: 95% (177)
Results
• Source: Pink Noise
• Ground fact angle: 80o
• Measured angles: (97)
1. Mean: 73.9o
2. STD: 0.38o
3. Error: 6o
4. Robustness: 100% (Target Range = ±5)
5. Range: 2o
a. In Range: 2.5% (2)
b. Out Range: 97.5% (95)
Results
• Source: Pink Noise
• Ground fact angle: 85o
• Measured angles: (195)
1. Mean: 71.4o
2. STD: 7.9o
3. Error: 8o
4. Robustness: 100% (Target Range = ±5)
5. Range: 30o
a. In Range: 15% (30)
b. Out Range: 85% (165)
Results
• Source: Pink Noise
• Ground fact angle: 90o
• Measured angles: (88)
1. Mean: 79.83o
2. STD: 3.19o
3. Error: 10o
4. Robustness: 100% (Target Range = ±5)
5. Range: 25o
a. In Range: 13% (11)
b. Out Range: 87% (77)
Results
• Source: Pink Noise
• Ground fact angle: -5o
• Measured angles: (136)
1. Mean: -5.07o
2. STD: 0.11o
3. Error: 0.07o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.67o
a. In Range: 100% (136)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -10o
• Measured angles: (87)
1. Mean: -10.19o
2. STD: 0.13o
3. Error: 0.2o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.6o
a. In Range: 100% (87)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -15o
• Measured angles: (124)
1. Mean: -15.36o
2. STD: 0.16o
3. Error: 0.35o
4. Robustness: 100% (Target Range = ±5)
5. Range: 0.8o
a. In Range: 100% (124)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -20o
• Measured angles: (200)
1. Mean: -20.4o
2. STD: 0.2o
3. Error: 0.4o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1.1o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -25o
• Measured angles: (200)
1. Mean: -25.3o
2. STD: 0.23o
3. Error: 0.3o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1.3o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -30o
• Measured angles: (199)
1. Mean: -30.4o
2. STD: 0.29o
3. Error: 0.44o
4. Robustness: 100% (Target Range = ±5)
5. Range: 1.5o
a. In Range: 100% (199)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -35o
• Measured angles: (200)
1. Mean: -37.16o
2. STD: 0.33o
3. Error: 2.1o
4. Robustness: 100% (Target Range = ±5)
5. Range: 2.5o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -40o
• Measured angles: (200)
1. Mean: -42.3o
2. STD: 0.39o
3. Error: 2.3o
4. Robustness: 100% (Target Range = ±5)
5. Range: 2.4o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -45o
• Measured angles: (200)
1. Mean: -47.74o
2. STD: 0.47o
3. Error: 2.73o
4. Robustness: 100% (Target Range = ±5)
5. Range: 2.9o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -50o
• Measured angles: (201)
1. Mean: -48.8o
2. STD: 0.6o
3. Error: 1.1o
4. Robustness: 100% (Target Range = ±5)
5. Range: 3.8o
a. In Range: 100% (201)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -55o
• Measured angles: (199)
1. Mean: -57.5o
2. STD: 0.76o
3. Error: 2.1o
4. Robustness: 100% (Target Range = ±5)
5. Range: 4.6o
a. In Range: 100% (201)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -60o
• Measured angles: (200)
1. Mean: -61.52o
2. STD: 0.96o
3. Error: 1.5o
4. Robustness: 100% (Target Range = ±5)
5. Range: 5.4o
a. In Range: 100% (200)
b. Out Range: 0% (0)
Results
• Source: Pink Noise
• Ground fact angle: -65o
• Measured angles: (199)
1. Mean: -66.5o
2. STD: 1.3o
3. Error: 1.5o
4. Robustness: 100% (Target Range = ±5)
5. Range: 8.7o
a. In Range: 87% (174)
b. Out Range: 13% (25)
Results
• Source: Pink Noise
• Ground fact angle: -70o
• Measured angles: (198)
1. Mean: -71o
2. STD: 2.6o
3. Error: 1o
4. Robustness: 100% (Target Range = ±5)
5. Range: 18o
a. In Range: 91% (182)
b. Out Range: 9% (16)
Results
• Source: Pink Noise
• Ground fact angle: -75o
• Measured angles: (159)
1. Mean: -72.1o
2. STD: 8.5o
3. Error: 2.8o
4. Robustness: 100% (Target Range = ±5)
5. Range: 37o
a. In Range: 84% (134)
b. Out Range: 16% (25)
Results
• Source: Pink Noise
• Ground fact angle: -80o
• Measured angles: (201)
1. Mean: -71o
2. STD: 11.2o
3. Error: 8.8o
4. Robustness: 100% (Target Range = ±5)
5. Range: 43o
a. In Range: 44% (90)
b. Out Range: 56% (111)
Results
• Source: Pink Noise
• Ground fact angle: -85o
• Measured angles: (201)
1. Mean: -63.7o
2. STD: 11.7o
3. Error: 21o
4. Robustness: 100% (Target Range = ±5)
5. Range: 44o
a. In Range: 16% (32)
b. Out Range: 84% (169)
Results
• Source: Pink Noise
• Ground fact angle: -90o
• Measured angles: (200)
1. Mean: -60.8o
2. STD: 10o
3. Error: 29o
4. Robustness: 100% (Target Range = ±5)
5. Range: 48o
a. In Range: 2% (3)
b. Out Range: 98% (197)
Results
ANALYSIS AND DISCUSSION
• Source: Pink Noise
• Ground fact angle: -90o to + 90o
• Measured duration: 10 to 20 sec
1. Pink Source
2. Speech
3. Anechoic Speech
Statistics
• Mean
• STD
• Error w.r.t. Ground angles
• Range (Target Range = ±5 @ Kinect)
• Stability / Robustness
• In Range: %
• Out Range: %
ANALYSIS AND DISCUSSION
Mean Angle STD
Measurement Range Error
STD
ANALYSIS AND DISCUSSION
Mean Angle STD
Measurement Range Error
ANALYSIS AND DISCUSSION
In/Out Bound In/Out Bound

More Related Content

PDF
20211118 AI+ Remote Sensing
PDF
AI+ Remote Sensing: Applying Deep Learning to Image Enhancement, Analytics, a...
PDF
Object Tracking with Instance Matching and Online Learning
PPTX
Sound Source Localization
PDF
Sound Source Localization with microphone arrays
PDF
Food Preservation for Farming Communities in Nepal: A Low Cost Engineering So...
PDF
FPGA Based Acoustic Source Localization Project
PDF
Immersive audio rendering for interactive complex virtual architectural envir...
20211118 AI+ Remote Sensing
AI+ Remote Sensing: Applying Deep Learning to Image Enhancement, Analytics, a...
Object Tracking with Instance Matching and Online Learning
Sound Source Localization
Sound Source Localization with microphone arrays
Food Preservation for Farming Communities in Nepal: A Low Cost Engineering So...
FPGA Based Acoustic Source Localization Project
Immersive audio rendering for interactive complex virtual architectural envir...

Similar to Kinect Microphone Array case study (20)

PDF
2+3D Photography 2017 – INV 7 The 3D Image Capture Moonshot: Managing the Ene...
PDF
Coherent Adaptive Focusing Technology for the Inspection of Complex Geometry
PDF
NTEK Dodecahedral Sound Source
PDF
NTEK Omni-directional Sound Source (5" 3D)
PDF
NTEK Omni-directional Sound Source (4" HP)
PDF
Advantages of the LA-950 Laser Diffraction PSA
PDF
An Efficient Approach to Extract Singular Points for Fingerprint Recognition
PPTX
Calibration of Phased array UT and TOFD (1).pptx
PDF
NTEK Omni-directional Sound Source (4" LT)
PPTX
Entropy-based Histograms for Selectivity Estimation
PPSX
Exploring Methods to Improve Edge Detection with Canny Algorithm
PDF
Hvordan maler og dokumenterer du?
PDF
IRDC Theory and practice of building instruments for diffuse reflectance meas...
PDF
Selection of ear defenders
PDF
20Dieterich-SRSSRTDosimetry.pdf
PDF
NTEK Directional Loudspeaker
PDF
19Mackie-IMRTDosimetry.pdf
PDF
hh2014_presentation2noBackup
PDF
lesson 2 digital data acquisition and data processing
PPT
Using nasal curves matching for expression robust 3D nose recognition
2+3D Photography 2017 – INV 7 The 3D Image Capture Moonshot: Managing the Ene...
Coherent Adaptive Focusing Technology for the Inspection of Complex Geometry
NTEK Dodecahedral Sound Source
NTEK Omni-directional Sound Source (5" 3D)
NTEK Omni-directional Sound Source (4" HP)
Advantages of the LA-950 Laser Diffraction PSA
An Efficient Approach to Extract Singular Points for Fingerprint Recognition
Calibration of Phased array UT and TOFD (1).pptx
NTEK Omni-directional Sound Source (4" LT)
Entropy-based Histograms for Selectivity Estimation
Exploring Methods to Improve Edge Detection with Canny Algorithm
Hvordan maler og dokumenterer du?
IRDC Theory and practice of building instruments for diffuse reflectance meas...
Selection of ear defenders
20Dieterich-SRSSRTDosimetry.pdf
NTEK Directional Loudspeaker
19Mackie-IMRTDosimetry.pdf
hh2014_presentation2noBackup
lesson 2 digital data acquisition and data processing
Using nasal curves matching for expression robust 3D nose recognition
Ad

Recently uploaded (20)

PPTX
Safety Seminar civil to be ensured for safe working.
PPTX
Artificial Intelligence
PDF
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
PDF
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
PDF
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
PPT
Occupational Health and Safety Management System
PDF
Visual Aids for Exploratory Data Analysis.pdf
PDF
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
PDF
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
PPTX
Current and future trends in Computer Vision.pptx
PPTX
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
PPTX
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
PDF
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
PPT
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
PDF
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
PDF
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
PDF
Soil Improvement Techniques Note - Rabbi
PPTX
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
PDF
Categorization of Factors Affecting Classification Algorithms Selection
PDF
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Safety Seminar civil to be ensured for safe working.
Artificial Intelligence
SMART SIGNAL TIMING FOR URBAN INTERSECTIONS USING REAL-TIME VEHICLE DETECTI...
A SYSTEMATIC REVIEW OF APPLICATIONS IN FRAUD DETECTION
Human-AI Collaboration: Balancing Agentic AI and Autonomy in Hybrid Systems
Occupational Health and Safety Management System
Visual Aids for Exploratory Data Analysis.pdf
COURSE DESCRIPTOR OF SURVEYING R24 SYLLABUS
Influence of Green Infrastructure on Residents’ Endorsement of the New Ecolog...
Current and future trends in Computer Vision.pptx
Graph Data Structures with Types, Traversals, Connectivity, and Real-Life App...
Sorting and Hashing in Data Structures with Algorithms, Techniques, Implement...
BIO-INSPIRED ARCHITECTURE FOR PARSIMONIOUS CONVERSATIONAL INTELLIGENCE : THE ...
INTRODUCTION -Data Warehousing and Mining-M.Tech- VTU.ppt
null (2) bgfbg bfgb bfgb fbfg bfbgf b.pdf
Level 2 – IBM Data and AI Fundamentals (1)_v1.1.PDF
Soil Improvement Techniques Note - Rabbi
CURRICULAM DESIGN engineering FOR CSE 2025.pptx
Categorization of Factors Affecting Classification Algorithms Selection
UNIT no 1 INTRODUCTION TO DBMS NOTES.pdf
Ad

Kinect Microphone Array case study

  • 1. PROCEDURE FOR LOCALIZATION AND ARRAYS DESIGNING KINECT MICROPHONE ARRAY CASE STUDY FOR LOCALIZATION PERFORMANCE 2016-10-08 MUHAMMAD IMRAN
  • 2. CONTENTS • Measurement Procedures (Data Acquisition) • Array Performance Analysis • Localization Performance • Kinect Case study for Localization Performance
  • 4. MEASUREMENT PROCEDURES (DATA ACQUISITION) 1. Measurement Setup a. Data Acquisition HWD b. Source Selection • Wideband Source • Narrowband Source (Single Frequency) • Speech Source c. Source Directivity • Narrow (±20) • Speech Source d. Geometry Plan • Placement of source and receiver • Alignment of Array
  • 5. DATA ACQUISITION HARDWARE a. Genelec 8030 • 20 seconds • Sampling = 44.1 KHz (Prefer) • 860” Frames (if Frame size is 1024) • 860” DOAs for One position b. Kinect Array • 04-CH: Linear Array • Non-Uniform • Windows Direct Sound • Interface • Source: Professor Edgar Choueiri, 3D3A Lab, Princeton University • For Details: Microsoft Corporation
  • 6. PLACEMENT AND ALIGNMENT • Making Grid (Physical) • Thread Network • Protractor • Separation between elements • Error within 1 mm • Axial Placement • Alignment Errors • Within the limits of (Hz, Vt) • -0.5o to +0.5o • Environmental Factors • Temperature (STP) • Humidity (STP) • Back Ground Noise Level <= 20dB (±5dB)1
  • 7. PROCEDURE FOR DATA ACQUISITION • Kinect alignment to Loudspeaker • With Magnetic Compass • Exciting Sound Sources: 1. Pink Noise (Wideband Source) • Duration = 10 sec • Measurement Angles = -90 to + 90 (Step: 05o) • For Linear Array 2. Sine 500, 1000, 1500 Hz • Duration = 10 sec • Radom angles (05-10 angles) 3. Speech (Anechoic) • Duration = 10 sec • Measurement Angles = -90 to + 90 (10o)
  • 8. ARRAY DIRECTIVITY • Figure 1: (Ref: 02): Microphone array directivity pattern in three dimensions • What to measure (Ref: 01) (Formulae and Matlab Example Code) 1. Microphone Sensitivity 2. Microphone Noise and Output SNR 3. Array Directivity Pattern 4. Array Frequency Response 5. Array Directivity Index Figure 1 Reference: 1. Chapter: 03: Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009 2. MIT Media Lab: Kinect Array Directivity
  • 9. ARRAY DIRECTIVITY • Figure 2: A directivity pattern of Kinect (Azimuth @ 0o Elev.) Figure 2a Figure 2b Reference: 1. Chapter: 03, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
  • 10. DIRECTIVITY INDEX COMPARISON • Figure 3: A directivity Index of different number of microphone • More Microphones more directivity • More computational cost • Less Microphones Less directivity • Less computational cost Directivity Index 0 2 4 6 8 10 12 Uni-directional Tw o element Four element Microphone/Mic Array DI,dB Figure 3 Reference: 1. Chapter: 05, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009
  • 12. PERFORMANCE ANALYSIS PROCEDURES (DOA) 1. Flow of computation a. Data segmentation b. Frame by Frame Computation a. Localization Algo (GCC-PHAT) b. Individual Pair Computing c. Combining Pairs 2. Verification Parameters a. Localization Accuracy b. Localization Resolution c. Localization Stability (Standard deviation) (The standard deviation tells the dispersion of data) d. Robustness (Root Mean Squared Error: RMS) 3. Plotting and Describing Results a. Histograms, Polar Plots
  • 13. FLOW OF COMPUTATION Flow of computation a. Data segmentation b. Frame by Frame Computation a. GCC-PHAT b. Individual Pair Computing c. Combining Pairs c. Recorded signal Length a. 10 sec d. Sampling a. 44100 Samples/Sec e. Total Frames a. 430 (@ 1024) f. Total DOA a. 430 g. Recommended minimum = 200 CH1 CH2 CH3 CH4 Signal Length (10 sec)
  • 14. VERIFICATION PARAMETERS 1. Plotting and Describing Results a. Histograms, Polar Plots 2. Verification Parameters 1. Localization Resolution 2. *Localization Accuracy (Error) 3. *Localization Stability (Standard deviation) 4. **Confidence Level Reference: *Chapter: 06, Tashev, Ivan Jelev. Sound capture and processing: practical approaches. John Wiley & Sons, 2009 **https://en.wikipedia.org/wiki/Confidence_interval
  • 16. MEASUREMENTS • Source: Pink Noise • Ground fact angle: -90o to + 90o • Measured duration: 10 to 20 sec 1. Pink Source 2. Speech 3. Anechoic Speech Statistics • Mean • STD • Error w.r.t. Ground angles • Range (Target Range = ±5 @ Kinect) • Stability / Robustness • In Range: % • Out Range: %
  • 17. • Source: Pink Noise • Ground fact angle: 0o • Measured angles: (533) 1. Mean: -0.12o 2. STD: 0.11o 3. Error: 0.13o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.6o a. In Range: 100% (533) b. Out Range: 0% (0) Results
  • 18. • Source: Pink Noise • Ground fact angle: 5o • Measured angles: (533) 1. Mean: 4.97o 2. STD: 0.18o 3. Error: 0.028o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1o a. In Range: 100% (533) b. Out Range: 0% (0) Results
  • 19. • Source: Pink Noise • Ground fact angle: 10o • Measured angles: (543) 1. Mean: 9.87o 2. STD: 0.134o 3. Error: 0.13o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.6o a. In Range: 100% (543) b. Out Range: 0% (0) Results
  • 20. • Source: Pink Noise • Ground fact angle: 15o • Measured angles: (133) 1. Mean: 15o 2. STD: 0.25o 3. Error: 0.004o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1.3o a. In Range: 100% (133) b. Out Range: 0% (0) Results
  • 21. • Source: Pink Noise • Ground fact angle: 20o • Measured angles: (533) 1. Mean: 20.16o 2. STD: 0.19o 3. Error: 0.15o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.9o a. In Range: 100% (533) b. Out Range: 0% (0) Results
  • 22. • Source: Pink Noise • Ground fact angle: 25o • Measured angles: (541) 1. Mean: 25o 2. STD: 0.25o 3. Error: 0.001o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1.4o a. In Range: 100% (541) b. Out Range: 0% (0) Results
  • 23. • Source: Pink Noise • Ground fact angle: 30o • Measured angles: (534) 1. Mean: 29.7o 2. STD: 0.17o 3. Error: 0.29o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.8o a. In Range: 100% (534) b. Out Range: 0% (0) Results
  • 24. • Source: Pink Noise • Ground fact angle: 35o • Measured angles: (519) 1. Mean: 34.05o 2. STD: 0.17o 3. Error: 0.95o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1o a. In Range: 100% (526) b. Out Range: 0% (0) Results
  • 25. • Source: Pink Noise • Ground fact angle: 40o • Measured angles: (526) 1. Mean: 39.08o 2. STD: 0.19o 3. Error: 0.91o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1o a. In Range: 100% (526) b. Out Range: 0% (0) Results
  • 26. • Source: Pink Noise • Ground fact angle: 45o • Measured angles: (190) 1. Mean: 43.9o 2. STD: 0.37o 3. Error: 2.9 4. Robustness: 100% (Target Range = ±5) 5. Range: 3o a. In Range: 100% (190) b. Out Range: 0% (0) Results
  • 27. • Source: Pink Noise • Ground fact angle: 50o • Measured angles: (215) 1. Mean: 48.02o 2. STD: 0.5o 3. Error: 2o 4. Robustness: 100% (Target Range = ±5) 5. Range: 3o a. In Range: 100% (215) b. Out Range: 0% (0) Results
  • 28. • Source: Pink Noise • Ground fact angle: 55o • Measured angles: (195) 1. Mean: 54.1o 2. STD: 1.5o 3. Error: 0.8o 4. Robustness: 100% (Target Range = ±5) 5. Range: 7o a. In Range: 94% (204) b. Out Range: 6% (11) Results
  • 29. • Source: Pink Noise • Ground fact angle: 60o • Measured angles: (200) 1. Mean: 58.2o 2. STD: 2.34o 3. Error: 1.7o 4. Robustness: 100% (Target Range = ±5) 5. Range: 8.9o a. In Range: 87% (176) b. Out Range: 13% (24) Results
  • 30. • Source: Pink Noise • Ground fact angle: 65o • Measured angles: (201) 1. Mean: 54.1o 2. STD: 3o 3. Error: 10o 4. Robustness: 100% (Target Range = ±5) 5. Range: 11o a. In Range: 98% (198) b. Out Range: 2% (3) Results
  • 31. • Source: Pink Noise • Ground fact angle: 70o • Measured angles: (190) 1. Mean: 58.9o 2. STD: 3.25o 3. Error: 11o 4. Robustness: 100% (Target Range = ±5) 5. Range: 13o a. In Range: 13% (24) b. Out Range: 87% (166) Results
  • 32. • Source: Pink Noise • Ground fact angle: 75o • Measured angles: (185) 1. Mean: 65.9o 2. STD: 3.5o 3. Error: 9o 4. Robustness: 100% (Target Range = ±5) 5. Range: 21o a. In Range: 5% (8) b. Out Range: 95% (177) Results
  • 33. • Source: Pink Noise • Ground fact angle: 80o • Measured angles: (97) 1. Mean: 73.9o 2. STD: 0.38o 3. Error: 6o 4. Robustness: 100% (Target Range = ±5) 5. Range: 2o a. In Range: 2.5% (2) b. Out Range: 97.5% (95) Results
  • 34. • Source: Pink Noise • Ground fact angle: 85o • Measured angles: (195) 1. Mean: 71.4o 2. STD: 7.9o 3. Error: 8o 4. Robustness: 100% (Target Range = ±5) 5. Range: 30o a. In Range: 15% (30) b. Out Range: 85% (165) Results
  • 35. • Source: Pink Noise • Ground fact angle: 90o • Measured angles: (88) 1. Mean: 79.83o 2. STD: 3.19o 3. Error: 10o 4. Robustness: 100% (Target Range = ±5) 5. Range: 25o a. In Range: 13% (11) b. Out Range: 87% (77) Results
  • 36. • Source: Pink Noise • Ground fact angle: -5o • Measured angles: (136) 1. Mean: -5.07o 2. STD: 0.11o 3. Error: 0.07o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.67o a. In Range: 100% (136) b. Out Range: 0% (0) Results
  • 37. • Source: Pink Noise • Ground fact angle: -10o • Measured angles: (87) 1. Mean: -10.19o 2. STD: 0.13o 3. Error: 0.2o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.6o a. In Range: 100% (87) b. Out Range: 0% (0) Results
  • 38. • Source: Pink Noise • Ground fact angle: -15o • Measured angles: (124) 1. Mean: -15.36o 2. STD: 0.16o 3. Error: 0.35o 4. Robustness: 100% (Target Range = ±5) 5. Range: 0.8o a. In Range: 100% (124) b. Out Range: 0% (0) Results
  • 39. • Source: Pink Noise • Ground fact angle: -20o • Measured angles: (200) 1. Mean: -20.4o 2. STD: 0.2o 3. Error: 0.4o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1.1o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 40. • Source: Pink Noise • Ground fact angle: -25o • Measured angles: (200) 1. Mean: -25.3o 2. STD: 0.23o 3. Error: 0.3o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1.3o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 41. • Source: Pink Noise • Ground fact angle: -30o • Measured angles: (199) 1. Mean: -30.4o 2. STD: 0.29o 3. Error: 0.44o 4. Robustness: 100% (Target Range = ±5) 5. Range: 1.5o a. In Range: 100% (199) b. Out Range: 0% (0) Results
  • 42. • Source: Pink Noise • Ground fact angle: -35o • Measured angles: (200) 1. Mean: -37.16o 2. STD: 0.33o 3. Error: 2.1o 4. Robustness: 100% (Target Range = ±5) 5. Range: 2.5o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 43. • Source: Pink Noise • Ground fact angle: -40o • Measured angles: (200) 1. Mean: -42.3o 2. STD: 0.39o 3. Error: 2.3o 4. Robustness: 100% (Target Range = ±5) 5. Range: 2.4o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 44. • Source: Pink Noise • Ground fact angle: -45o • Measured angles: (200) 1. Mean: -47.74o 2. STD: 0.47o 3. Error: 2.73o 4. Robustness: 100% (Target Range = ±5) 5. Range: 2.9o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 45. • Source: Pink Noise • Ground fact angle: -50o • Measured angles: (201) 1. Mean: -48.8o 2. STD: 0.6o 3. Error: 1.1o 4. Robustness: 100% (Target Range = ±5) 5. Range: 3.8o a. In Range: 100% (201) b. Out Range: 0% (0) Results
  • 46. • Source: Pink Noise • Ground fact angle: -55o • Measured angles: (199) 1. Mean: -57.5o 2. STD: 0.76o 3. Error: 2.1o 4. Robustness: 100% (Target Range = ±5) 5. Range: 4.6o a. In Range: 100% (201) b. Out Range: 0% (0) Results
  • 47. • Source: Pink Noise • Ground fact angle: -60o • Measured angles: (200) 1. Mean: -61.52o 2. STD: 0.96o 3. Error: 1.5o 4. Robustness: 100% (Target Range = ±5) 5. Range: 5.4o a. In Range: 100% (200) b. Out Range: 0% (0) Results
  • 48. • Source: Pink Noise • Ground fact angle: -65o • Measured angles: (199) 1. Mean: -66.5o 2. STD: 1.3o 3. Error: 1.5o 4. Robustness: 100% (Target Range = ±5) 5. Range: 8.7o a. In Range: 87% (174) b. Out Range: 13% (25) Results
  • 49. • Source: Pink Noise • Ground fact angle: -70o • Measured angles: (198) 1. Mean: -71o 2. STD: 2.6o 3. Error: 1o 4. Robustness: 100% (Target Range = ±5) 5. Range: 18o a. In Range: 91% (182) b. Out Range: 9% (16) Results
  • 50. • Source: Pink Noise • Ground fact angle: -75o • Measured angles: (159) 1. Mean: -72.1o 2. STD: 8.5o 3. Error: 2.8o 4. Robustness: 100% (Target Range = ±5) 5. Range: 37o a. In Range: 84% (134) b. Out Range: 16% (25) Results
  • 51. • Source: Pink Noise • Ground fact angle: -80o • Measured angles: (201) 1. Mean: -71o 2. STD: 11.2o 3. Error: 8.8o 4. Robustness: 100% (Target Range = ±5) 5. Range: 43o a. In Range: 44% (90) b. Out Range: 56% (111) Results
  • 52. • Source: Pink Noise • Ground fact angle: -85o • Measured angles: (201) 1. Mean: -63.7o 2. STD: 11.7o 3. Error: 21o 4. Robustness: 100% (Target Range = ±5) 5. Range: 44o a. In Range: 16% (32) b. Out Range: 84% (169) Results
  • 53. • Source: Pink Noise • Ground fact angle: -90o • Measured angles: (200) 1. Mean: -60.8o 2. STD: 10o 3. Error: 29o 4. Robustness: 100% (Target Range = ±5) 5. Range: 48o a. In Range: 2% (3) b. Out Range: 98% (197) Results
  • 54. ANALYSIS AND DISCUSSION • Source: Pink Noise • Ground fact angle: -90o to + 90o • Measured duration: 10 to 20 sec 1. Pink Source 2. Speech 3. Anechoic Speech Statistics • Mean • STD • Error w.r.t. Ground angles • Range (Target Range = ±5 @ Kinect) • Stability / Robustness • In Range: % • Out Range: %
  • 55. ANALYSIS AND DISCUSSION Mean Angle STD Measurement Range Error STD
  • 56. ANALYSIS AND DISCUSSION Mean Angle STD Measurement Range Error
  • 57. ANALYSIS AND DISCUSSION In/Out Bound In/Out Bound